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ABSTRACT
A weighted rational cubic spline interpolation has been constructed
using rational spline with quadratic denominator. GC1-piecewise
rational cubic spline function involving parameters has been con-
structed which produces a monotonic interpolant to given mono-
tonic data . The degree of smoothness of this spline is GC2 in
the interpolating interval when the parameters satisfy a continuous
system. It is observed that under certain conditions the interpolant
preserve the convexity property of the data set. We have discussed
the constrains for GC2-rational spline interpolant in section. Also
the error estimate formula of this interpolation are obtained.

Keywords:
Interpolation, shape parameters, monotonicity, convexity, approxi-
mation

1. INTRODUCTION
Spline interpolation is a useful and powerful tool in CAGD. In
many cases the rational spline curves better approximating func-
tions than the usual spline functions. It has been observed that many
simple shapes including conic section and quadratic surfaces can
not be represented exactly by usual spline, whereas rational splines
can exactly represent all these conic sections and quadratic surfaces
in an easy manner. Shape preserving interpolation is a powerful tool
to visualize the data in the form of curves and surfaces. The prob-
lem of curve interpolation to the given data has been studied with
various requirements. One may be concerned with the smoothness
of the interpolating curves, the preservation of the underlying shape
features of the data, the computational complexity, or the fulfill-
ment of certain constraints. Shape preserving signifies preserving
the three basic crucial features such as positivity, monotonicity and
convexity of the data.

Convexity preserving C2 rational quadratic trigonometric
spline were presented in [4]. Duan et.al.[3] represented the con-
struction and shape preserving analysis of a new weighted rational
cubic interpolation and its approximation. Sarfraz et.al.[7] uses the
piecewiseC1 rationdal cubic function developed by Delbourgo and
gregory[1] to preserve the shape of positive data. Since their ratio-
nal function has only a single parameters there is no freedom for
curve modification and hence the method is not suitable for inter-
active curve design. Sarfraz[6] developed a rational cubic function

with quadratic denominator that involves two free parameters. The
rational function in [6] attained C2 continuity by imposing con-
straints on first derivatives at the knots and is unable to interpolate
the data with specified derivatives. In this paper we have discussed
the monotonicity, convexity and approximation properties of ratio-
nal spline with cubic numerator and quadratic denominator. The
shape parameters play a crucial role in preserving the convexity
and monotonicit of GC2 rational spline

The paper is organized as follows: The piecewise rational (cu-
bic /quadratic) spline interpolant is developed in section 2. the ap-
proximation properties of the rational interpolation are studied in
section 3. Monotonicity and convexity are studied in section 4. We
have discussed the constrains for GC2-rational spline interpolant
in section 5.

2. THE RATIONAL (CUBIC/QUADRATIC) SPLINE
INTERPOLATION

A rational (cubic/quadratic) spline with based on function values
and derivatives was given in [5]. Given a data set {(ti, fi, di), i =
1, 2, ....n} where fi and di are the function values and the deriva-
tive values defined at the knots, respectively, and a = t1 < t2 <
..... < tn = b are the knots. let hi = ti+1 − ti, θ = t−ti

hi
, and let

αi and βi and λi be positive parameters .
Denote

P (t) = pi(t)
qi(t)

(2.1 )
Where

pi(t) = (1−θ)2αifi+θ(1−θ)2Vi+θ
2(1−θ)Wi+θ

2βifi+1

qi(t) = (1− θ)2αi + θ(1− θ) + θ2βi
and

Vi = fi + αihiλidi
Wi = fi+1 − βihidi+1

This rational cubic spline P(t) satisfies
P (ti) = fi, P

′
(ti) = λidi

P (ti+1) = fi+1, P
′
(ti+1) = di+1 (2.2)

Where d
′
i s denote the derivative values at the knots ti. These

derivative parameters are usually note given and can be determined
by using the method as discussed in [2]. .

3. ERROR ESTIMATION OF INTERPOLATION
This section investigates the estimation of the approximation

error incurred when the rational cubic function (2.1) is used to in-
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terpolate data from an arbitrary function that is GC2[a, b]. Local-
ity of the interpolation allows error estimation in each subinterval
[ti, ti+1] without loss of generality. Consider the case that the knots
are equally spaced, namely hi = h = tn−t0

n
for all i = 1,2...n.

The Peano Kernel theorem [8] is used to estimate the error in each
subinterval [ti, ti+1] as
R[f] = f(t) - P(t) =

∫ ti+2

ti
f2(τ)Rt[(t− τ)+]dτ , tε[ti, ti+1] (3.1)

Where
Rt[(t− τ)+] =

{ p(τ), ti < τ < t
q(τ), t < τ < ti+1

Where
p(τ) = (t− τ)− θ2((1−θ)+βi)(ti+1−τ)−θ2(1−θ)βih

(1−θ)2αi+θ(1−θ)+θ2βi
,

and
q(τ) = − θ

2((1−θ)+βi)(ti+1−τ)−θ2(1−θ)βih
(1−θ)2αi+θ(1−θ)+θ2βi

,

Then
‖R(f)‖ = ‖f(t)− P (t)‖
≤ ‖f2(t)‖[

∫ t
ti
|p(τ)|dτ +

∫ ti+1

t
|q(τ)|dτ ] (3.2)

For q(τ), since
q(t) = − θ2(1−θ)2h

(1−θ)2αi+θ(1−θ)+θ2βi
≤ 0

q(ti+1) = θ2(1−θ)βih
(1−θ)2αi+θ(1−θ)+θ2βi

≥ 0

It is easy to see that the root τ? of q(τ)is
τ? = ti+1 − (1−θ)βih

(1−θ)+βi
Thus∫ ti+1

ti
|q(τ)|dτ =

∫ τ?
t
−q(τ)d(τ) +

∫ ti+1

τ?
q(τ)dτ

= θ2(1−θ)2(1+βi)
2h2

2((1−θ)+βi)((1−θ)2αi+θ(1−θ)+θ2βi)
similarly since,

p(t)= q(t) ≤ 0, p(ti) = θ(1−θ)2αih

(1−θ)2αi+θ(1−θ)+θ2βi
≥ 0

and the root τ? of p(τ) in [ti, t] is
τ? = ti+1 − (θ+(1−θ)αi)

θ+αi

So that∫ t
ti
|p(τ)|dτ =

∫ τ?
ti
p(τ)dτ +

∫ t
τ?
−p(τ)dτ

=
θ2(1−θ)2(θ2+α2

i
)h2

2(θ+αi)((1−θ)2αi+θ(1−θ)+θ2βi)
From the calculation above, it can be shown that
‖R[f ]‖ = ‖f(t)− P (t)‖ ≤ ‖f2(t)‖h2W (θ, αi, βi)

Where
W (θ, αi, βi) = W1(θ, αi, βi) +W2(θ, αi, βi) (3.3)

W1(θ, αi, βi) =
θ2(1−θ)2(θ2+α2

i
)h2

2(θ+αi)((1−θ)2αi+θ(1−θ)+θ2βi)

W2(θ, αi, βi = θ2(1−θ)2(1+βi)
2h2

2((1−θ)+βi)((1−θ)2αi+θ(1−θ)+θ2βi)
from the calculation above, it can be shown that
‖R[f ]‖ = ‖f(t)− P (t)‖ ≤ ‖f2(t)‖h2W (θ, αi, βi)
The above can be summarized as :
Theorem 3.1. The error of rational (cubic/quadratic) function de-
fined in (2.1) for f(t)εGC2[a, b] in each subinterval [ti, ti+1] is
‖R[f ]‖ = ‖f(t)− P (t)‖ ≤ ‖f2(t)‖h2mi

mi = max0≤θ≤1W (θ, αi, βi)

4. MONOTONICITY AND CONVEXITY
PRESERVING SPLINE INTERPOLANT

4.1. Monotonicity
We assume a monotonic increasing data, so that

λi > 0, f1 ≤ f2 ≤ ...... ≤ fn (4.1)
or equivalently

∆i ≥ 0, (i = 1, 2, ...n− 1)

To have a monotonic interpolant P(t), it is necessary that the deriva-
tive parameters di should satisfy:

di ≥ 0 i = 1, 2........n (4.2)
P(t) is monotonic if and only if

P
′
(t) ≥ 0, tε[a, b]

After simplification, it can be shown that for tε[ti, ti+1]

P
′
(t) = (1−θ)4A1i+θ(1−θ)3B1i+θ

2(1−θ)2C1i+θ
2(1−θ2)D1i+θ(1−θ)2E1i+θ

4F1i

((1−θ)2αi+θ(1−θ)+θ2βi)2
(4.3)

Where
A1i = λidiα

2
i

B1i = (∆i − 2βidi+1)αi
C1i = 2αiβi∆i + ∆i − λidiαi(1 + βi − βi(1 + αi)di+1)
D1i = βi∆i

E1i = αi(1 + 2βi)∆i

F1i = β2
i di+1

We observe that P
′
(t) is positive if each ofA1i, B1i, C1i,D1i, E1i

and F1i are positive. SinceA1i,D1i, E1i and F1i are automatically
positive.
Thus the sufficient condition for the interpolant P(t) be monotone
is that B1i ≥ 0 and C1i ≥ 0
Now

βi ≥ 0 if (∆i − 2βidi+1)αi ≥ 0

ie βi ≤ ∆i
2di+1

(A)
C1i ≥ 0

if 2αiβi∆i + ∆i − λidiαi(1 + βi)− βi(1 + αi)di+1) ≥ 0

ie βi ≥ αiλidi
(1−αi)di+1

(B)
Therefore the spline interpolant is monotone if

αiλidi
(1−αi)di+1

≤ βi ≤ ∆i
2di+1

(4.4)

Therefore P
′
(t) is monotone if (4.4) holds.

We have thus proved the following theorem.
Theorem 4.1. Given a monotonic increasing set of data satisfying
(4.1) and the derivative values satisfying (4.2), there exist a mono-
tone rational (cubic /quadratic) spline interpolant PεGC

′
[a, b] in-

volving the parameters αi ≥ 0 and βi ≥ 0 which satisfies the
interpolatary conditions (2.2) provided (4.4) holds.
4.2 Convexity

Engineering practice usually requires the interpolating func-
tion retains the shape of the given data. In order to get the con-
dition for the interpolation to keep convexity or concavity in the
interpolating interval, consider the condition for the second order
derivative to remain positive or negative in the interpolating inter-
val. With assumption a strictly convex data then

∆1 ≤ ∆2 ≤ ....... ≤ ∆n−1 (4.5)
For a convex interpolant P(t), it is necessary that the derivative pa-
rameters to be:
d1 < ∆1 < ....... < ∆i−1 < di < ∆i < .... < ∆n−1 < dn (4.6)
P(t) is convex if

P
′′
(t) ≥ 0 (4.7)

for all tε[a, b]. For tε[ti, ti+1], the second derivative is
P
′′
(t) = (1−θ)3A2i+θ(1−θ)2B2i+θ

2(1−θ)C2i+θ
3D2i

h((1−θ)2αi+θ(1−θ)+θ2βi)3
(4.8)

Where
A2i = 2α2

i (βi(∆i − di+1) + (∆i − λidi))
B2i = 6α2

iβi(∆i − λidi)
C2i = 6αiβ

2
i (di+1 −∆i)

D2i = 2β2
i (αi(λidi−∆i) + (di+1−∆i)) (4.9)

we observe that P
′′
(t) is non negative if each A2i, B2i, C2i and

D2i is non negative since we are assuming that (4.6) holds, B2i is
positive when λidi < ∆i and C2i is automatically positive. Thus
the sufficient condition for the interpolant P(t) to be convex is that

A2i ≥ 0, B2i ≥ 0 and D2i ≥ 0
A2i ≥ 0 if
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2α2
i (βi(∆i − di+1) + (∆i − λidi)) ≥ 0

ie βi ≥ ∆i−λidi
di+1−∆i

(C)
B2i ≥ 0 if
6α2

iβi(∆i − λidi) ≥ 0

ie λi ≤ ∆i
di

(D)
and D2i ≥ 0 if

2β2
i (αi(λidi −∆i) + (di+1 −∆i)) ≥ 0

ie ∆i−λidi
di+1−∆i

≥ 1
αi

(E)
Therefor the spline interpolant is convex if

1
αi
≤ ∆i−λidi

di+1−∆i
≤ βi (4.10).

Thus the spline interpolant is convex if (4.10) together with (4.6)
holds.
we have thus proved the following theorem.
Theorem 4.2. For a given set of strict convex data a convex rational
spline interpolant PεGC1[a, b] involving the parameters αi and βi
exist, which satisfy the interpolating condition (2.2), the derivative
parameters d

′
is satisfying (4.6) and (4.10) holds.

GC2rational spline interpolant
Rational spline could even be C2 in the interpolating interval [a, b]
infect let

P
′′
(ti+) = λ2

iP
′′
(ti−), i = 2,3,......n-1

the condition lead to the following continuous system of linear
equations:

hiαiαi−1λ
2
i di−1 + (hiαiλ

2
i + hi−1βi−1λi)di +

hi−1βiβi−1di+1

= hi(1 + αi−1)αi∆i−1λ
2
i + hi−1(1 + βi)βi−1∆i

(4.11)
Therefor, if the successive parameters (αi−1, βi−1)and (αi, βi) sat-
isfy (4.11) at i= 2,3.......n-1, namely for the positive parameters
αi−1, βi−1 and the selected βi, if

αi =
hi−1βi−1((∆i−λidi)+βi(∆i−di+1))

hiλ
2
i
((di−∆i−1)+αi−1(λi−1di−∆i−1))

then
P (t)εGC2[a, b]..
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