
International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 2, December 2013

8

Least Recently Used Page Replacement using Last Use
Distance (LRUL)

Ruchin Gupta

IT, Ajay Kumar Garg Engg.
College, Ghaziabad, India

 Narendra Teotia
IT, Ajay Kumar Garg Engg.
College, Ghaziabad, India

ABSTRACT

Virtual memory technique is used in modern OS which

permits the execution of a program while it is partially

available in memory thus providing an illusion of very large

memory to the user and freeing the user from the concern of

large program size. This uses a page replacement technique

such as first in first out (FIFO), least recently used (LRU),

optimal etc. to replace a page in memory when a frame is

needed and no free frame is available in memory. Here page

replacement policy severely affects the performance of virtual

memory. It has been observed that LRU approximates optimal

so LRU and its variants are quite common in use in operating

system as a reasonable choice of page replacement algorithm.

But LRU performs very poor by generating continuous page

faults while accessing looping pattern if all the pages does not

fit in the memory simultaneously. This paper presents a

simple modified LRU algorithm called LRUL overcoming

this problem using the concept of last use distance (LUD). It

is observed that the new algorithm gives better results than

LRU.

General Terms

Operating system, page replacement algorithm.

Keywords

Operating system, LRU, page replacement algorithm.

1. INTRODUCTION
Operating system uses the concept of virtual memory to

provide an illusion to a user having a very large amount of

main memory available and allowing him/her to execute a

program to be partially there in main memory [1]. In most of

the operating systems virtual memory in implemented by

demand paging. There are several advantages of using this

concept like less I/O, efficient resource utilization etc.

Performance of virtual memory is affected by the choice of

page replacement technique used.

There are several page replacement techniques suggested by

different researchers. Elizabeth J. O'Neil1, Patrick E. O'Neil1,

Gerhard Weikum uses LRU-K page replacement algorithm or

database disk buffering [2]. Sedigheh Khajoueinejad, Mojtaba

Sabeghi, Azam Sadeghzadeh used fuzzy cache replacement

policy [3].

Optimal technique is proven to be the best but it can not be

implemented because it requires future knowledge of the

reference string. Least recently used policy approximates it

and that is the reason different variations of LRU have been

implemented. It is well known however that there are many

situations where LRU behaves far from optimal [4]. Under

LRU an allocated memory page of a program will become a

replacement candidate if the page has not been accessed for a

certain period of time under two conditions: (1) the program

does not need to access the page; and (2) the program is

conducting page faults (a sleeping process) so that it is not

able to access the page although it might have done so without

the page faults. However, LRU page replacement

implementations do not discriminate between two types of

LRU pages and treat them equally [5]. So it means that LRU

can be improved. Some page replacement policies and some

other definitions are given below.

1.1 First in, First out (FIFO) method
In this when a page is needed, the page that has been in

memory for the longest period of time is selected for

replacement. The rationale is that a page that has only recently

been swapped in will have a higher probability of being used

again soon according to temporal locality principle.

1.2 Least Recently Used (LRU) method

Least recently used page replacement policy assumes that

page reference pattern in the recent past is a mirror of the

pattern in the near future. Pages that are accessed recently are

likely to continue to be accessed and ought to be kept in

physical memory.

1.3 Optimal method

This policy selects a page for replacement which will be used

after the longest period of time. Since this requires

knowledge of the future reference string,that’s why can not

be implemented in the system. Hence this policy is used for

comparative study only.

1.4 LRU k method

LRU k method has been successfully applied database disk

buffering and has been shown to be better than LRU. Also

LRU 2 has been found to be best for k=2. As per this policy

LRU is a special case of LRU k where k=1.

The LRU-K Algorithm specifies a page replacement policy

when a memory frame is needed for a new page requested: the

page p to be dropped (i.e., selected as a replacement victim) is

the one whose backward K-distance (bt(p,K)) is the maximum

of all pages in memory. The only time the choice is

ambiguous is when more than one page has bt(p,K) = ∞.In

this case, a subsidiary policy may be used to select a

replacement victim among the pages with infinite Backward

K-distance; for example, classical LRU could be employed as

a subsidiary policy.

2. MEMORY ACCESS PATTERN

 CLASSIFICATION
It is possible to draw following observations regarding

memory access patterns.

Few no of pages are accessed very heavily and have a very

high frequency of occurrences. It is also observed that few

pages are accessed two or more times and are not used for a

long time .Such occurrences of pages show high degree of

temporal locality as temporal locality says that a recently

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 2, December 2013

9

accessed page will be accessed soon in future. Such kinds of

accesses are also known as correlated accesses.

Some pages have many correlated accesses in a short period

of time and then it is not accessed for a long time. Such kind

of access pattern is known as scan accesses. Scan is

performed on a large number of pages in relatively short time.

Few set of pages are accessed repeatedly like in looping

pattern. This is known as loop pattern. The loop pattern is a

LRU unfriendly pattern. In the worst case scenario, where

loop accesses more pages than fitted into memory, LRU will

have zero hit rate and page fault happens every time the next

page in loop is accessed.

3. SUGGESTED ALGORITHM (LRUL)
Suggested algorithm uses last use distance (LUD) which is the

distance between the current occurrence of a page to its last

occurrence looking backward in the reference string from the

current reference.

1. If free frame is available in memory then allocate the

frame.

2. If no free frame is available, then find the last occurrence

of the newly requested page back in the reference string

and compute the distance between its last occurrence and

it’s recent occurrence (call it last use distance in short

“LUD”), also calculate the LUD for the page which has

come just before this newly requested page .Now if the

LUD for these two pages come to be equal then replace

the most recently used page, otherwise replace the LRU

page from the memory. If there is no occurrence of the

newly requested page or previous page then set its LUD

to ∞.

4. EXAMPLE
In the following example; page faults are calculated using

LRU, LRU2, LRUL, Optimal policy for the reference string

1,2,3,4,1,2,3,4,1,2,3,4,1,2,3,4.Results show that LRUL

performs better than LRU and LRU2 giving results close to

optimal incase of loop pattern.

Here LRU/Optimal, LRU2/Optimal, LRUL/Optimal defines a

new parameter called page fault ratio (PFR). This PFR

compares the performance of a policy compared to Optimal.

More close the PFR value to 1 means better is the policy.

Hence for a good policy PFR should decrease rapidly with

increased no of frames.

It can be observed that PFR for LRUL is less and reduces

rapidly towards 1 than others. Figure1 shows the plot between

no. of frames and no. of page faults for all the 4 policies.

Figure1 shows the effectiveness of the suggested algorithm in

comparison to others and indicates its closeness to optimal

policy.

Table 1. No of page faults using LRUL and comparison with others

No. of

frames

LRU

(series1)

LRU2

(series2)

LRUL

(series3)

Optimal

(series4)

LRUL

/Optimal

LRU2/

Optimal

LRUL

/Optimal

1 16 16 16 16 1 1 1

2 16 15 13 12 1.333333 1.25 1.083333

3 16 14 9 8 2 1.75 1.125

4 4 4 4 4 1 1 1

Fig 1: x axis =no. of frames and y axis= no. of page faults

5. CONCLUSIONS
It is observed that looping pattern accesses a set of pages

repeatedly in a cyclic manner and if all these pages does not

fit in the memory simultaneously then LRU generates

continuous page faults and this is the worst behavior of LRU

that’s why such kind of patterns are known LRU unfriendly

patterns. Suggested modified algorithm uses last use distance

to determine a looping pattern and gives lesser no of page

faults compared to LRU and LRU2. Also it gives results quite

close to optimal. Simplicity is an important advantage of the

0

5

10

15

20

0 1 2 3 4 5

Series1

Series2

Series3

Series4

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 2, December 2013

10

suggested algorithm. In case of non loop pattern this simply

reduces to LRU policy.

6. REFERENCES
[1] Abraham Silberschatz, Peter Baer, 1999.Operating

System Concepts (5th Ed.).New York: John Wiley &

Sons, Inc.

[2] Elizabeth J. O'Neil1, Patrick E. O'Neil1, Gerhard

Weikum.The LRU-K Page Replacement Algorithm For

Database Disk Buffering.SIGMOD Washington, DC,

USA 1993 ACM.

[3] Sedigheh Khajoueinejad, Mojtaba Sabeghi, Azam

Sadeghzadeh. A Fuzzy Cache Replacement Policy and

its Experimental Performance Assessment, 2006 IEEE.

[4] Ben Juurlink, Approximating the Optimal Replacement

Algorithm.CF’04,April 14–16, 2004, ACM 1581137419/

04/0004.

[5] Song Jianga,, Xiaodong Zhangb. Token-ordered LRU: an

effective page replacement policy and its

implementation in Linux systems, 2004 Elsevier .

IJCATM : www.ijcaonline.org

