
International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 13, December 2013

17

A Model for Coordinating Jobs on Mobile Wireless

Computational Grids

Adekunle Adeyelu
Maths and Computer Sc.

Dept.
Benue State University

Makurdi, Nigeria

Emmanuel Olajubu
Computer Sc. and Eng.

Dept.
Obafemi Awolowo

University
Ile-Ife, Nigeria

Adesola Aderounmu
Computer Sc. and Eng.

Dept.
Obafemi Awolowo

University
Ile-Ife, Nigeria

Tivlumun Ge
Maths and Computer Sc.

Dept.
Benue State University

Makurdi, Nigeria

ABSTRACT

This paper presents a report of a study carried out to develop a

job coordination model for the active resources on a mobile

wireless computational grid. This was with a view to

addressing the problem of frequent disruptions in connections

and high computation time for a job resulting from the

mobility of the mobile resources actively processing tasks.

The proposed framework is a load-balancing three tier

hierarchical system configuration and scheduling policies

employing mobile Agents coordinating messengers carrying

data and instructions among the hierarchical structured nodes.

The model achieves a remarkable performance as compared

with theoretical values in that there were reduction in

response times and latencies when simulated with various

workloads. The proposed migration and checkpointing

approach ensures that currently executing processes are not

always migrated because of loss of signal only, but only with

reduction in battery power of the mobile hosts within the

allocated time for processing a task.

Keywords

Mobile wireless computational Grid, Mobile Agents, load-

balancing, hierarchical, scheduling

1. INTRODUCTION
Wireless Grids extend the capability of Grid computing to

wireless devices. It expands the wired grid thereby

simplifying the interchange of information and the

collaboration between heterogeneous wireless devices [1]. It

is growing because of the fast developments in wireless

technology and Grid computing technology. The number of

users of laptops, PDAs (Personal Digital Assistants), cell

phones, and other wireless devices is continuously increasing

leading to more networked wireless devices, and creating an

infinite united potential of unexploited resources [2].

Wireless grid computing supports sharing of these resources

by mobile, and fixed wireless devices within the virtual

organizations.

Computational grids represent a new and rapidly evolving

research area, which has gained a lot of attention in the past

several years. A computational grid can be viewed as a

transparent accumulation of many computing devices on a

network that facilitates sharing of distributed resources [3].

They are typically considered in the context of sharing

processor power of many computers interconnected by a

wired network. Most of the current grid applications focus on

high performance computing mostly supporting applications

of scientific research. Consequently, computing devices

employed for such grid implementations usually consist of

homogeneous collections of computers which are rich in

different resources up to the class of servers [4].

Mobile wireless grids are challenged by dynamic topology

due to the mobile nature of the limited computational and

battery powered active resources; resulting in frequent

disruptions in connections and high computation time for

jobs. Since the purpose of the Grid is to provide a highly

available, consistent and ubiquitous environment, integrating

mobile devices into the Grid, through wireless links, could

undermine all relevant quality of service requirements.

Architecture to support large numbers of mobile devices in a

computational grid for example must address the issues of

device heterogeneity, low-bandwidth, high-latency

connectivity; possibly extended periods of disconnectionon;

device power consumption; and software interoperability.

This work attempts to solve the problem of instability that

results from disruptions in accessing the active wireless

resources in a mobile wireless computational grid computing

environment by developing a coordination framework with

self- configuring and self-administering capability that allows

dynamic changes for a mobile computational grid architecture

and deliver results even in events of failures and instabilities

of some of the scheduled mobile nodes.

2. RELATED WORKS
This section presents relevant works done on job coordination

on wireless networks and mobile computational grids. In one

of the works, the multi-agent system approach was employed

using a cellular network-based grid architecture in which all

agents have a high degree of independence [5]. The

computing resources of the existing mobile devices in a given

cell were aggregated to solve a resource-intensive task thereby

realizing ubiquitous computing. In this work cellular

networks are divided into geographical areas of service called

cells. Each cell has a base station that uses wireless

transmission technologies to provide services to mobile users

in its area. The mobile computational resources providing

services to these mobile users must reside within the non-

interacting cell networks. The system is in such a way that

only mobile nodes can initiate a task. The completion of

assigned task cannot be guaranteed as it could be disrupted if

a subordinate agent suddenly becomes an initiator. This

architecture is not tolerant to temporal mobility of the

subordinate out of the wireless range. Also migration of sub-

tasks to another agent without checkpointing makes it

unsuitable for cooperating dependent computation. This

wastage of computational resources is imminent as the

Initiator can anytime abort the task, leading to termination of

tasks on the subordinate.

In another research effort, there was an improvement in this

architecture through the modification of the function of the

Keep-alive server which collects real-time information about

the progress of each Subordinate towards completing the

partial computational task delegated to it by the grid

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 13, December 2013

18

infrastructure [6]. If one of the Subordinates should time-out

or abort a partial computational task, the Keep-Alive server

will inform the Brokering Service, which will reallocate the

corresponding partial task to a different Subordinate. On the

other hand, if the Initiator of a task moves to a new area, the

Brokering Service is currently programmed to abort all partial

tasks associated with the Initiator.

It also attempted to hide the complexity of the underlying

architecture from clients of the resource-sharing services. As

the Subordinates or the Initiator moves out of range of the

wireless cell containing the original Brokering Service, the

handoff mechanisms in place ensure a smooth, transparent

transition to the next cell, thus making the user unaware of the

change of control.

The research attempt proposed a collaborative problem-

solving Framework for Mobile devices. It addressed only the

problem of handoff resulting from the movement of either the

Initiator or the subordinate migrating to another cell by

proposing load balancing techniques employed in wired

networks to resolve such imbalances and restore network

stability [6].

Further improvement led to another architecture that embraces

mobile devices within a wireless cell to share their

computational power by joining a framework modeled after a

computational grid [7]. The paradigm of a multi-agent system

was used with each mobile device viewed as an autonomous

intelligent agent [8], [9] with a significant degree of

autonomy, capable of performing independent tasks, sharing

resources with other agents, and communicating with other

agents in the grid.

These attempts were operational within a cell network. None

of them addressed issues of mobility of these mobile nodes

out of their cells, even if their battery power is still high

enough to continue with computation, a condition that is

highly probable in a mobile wireless grid. There was no

consideration for interactions among cells. The research effort

seeks to tackle these issues with a view to developing a

recovery protocol that deals with the peculiar nature of mobile

wireless computational grid, such that the system could

coordinate the scheduled resources and the computational

tasks to completion even in the event of failures and

instability of mobile resources across heterogeneous platforms

and cells.

3. MATERIALS AND METHODS
The architecture of the model is as shown in Figure 1. It is a

three-tier paradigm consisting of the Chief coordinator at the

base level, level coordinator at the middle and mobile hosts at

the last level. The scheduling policy employed is hierarchical.

The chief coordinator breaks down the submitted job into

tasks and distribute to the level coordinators. The level

coordinators split the tasks into processes for the mobile hosts

to execute. The mobile agents move the instructions, data and

results from one level of the architecture to the other. They

also monitor the power and signal strength status of the

mobile hosts. Migration and checkpointing operations are also

carried out by these agents.

The wireless mobile computational grid system generally

consists of n mobile worker nodes called Mobile Hosts (MHs)

and m Level coordinators called Mobile Support Nodes

(MSNs), n>>m. MHs are connected through wireless

networks and MSNs are connected through wired network.

Communication links connecting MHs and MSNs are

assumed to be First In-First-Out (FIFO). Jobs take arbitrary

but finite amount of time for processing. There are no

synchronized clocks or shared memory among mobile hosts

and level coordinators except at the chief coordinator level.

Two types of messages are assumed; execution messages

generated based on computational work processes and

Coordination Messages generated to coordinate the

checkpointing and migration activities. Two types of

checkpoints are saved; Migration Checkpoint which is saved

before planned disconnection of MHs and permanent

checkpoints which is saved by the level and chief

coordinators. One or more tasks on the level coordinators may

try to initiate checkpointing but only one task can have the

privilege over the others depending on if the task is a

cooperating dependent one. The algorithm is shown in Figure

2.

The mobile agents adapt the MESSENGER coordination

model. They send the migration checkpoints to the level

coordinators before planned disconnection and migration.

They also use Mobile Internet Protocol (Mobile IP) to relay

the migration checkpoints or results of completely executed

processes to the level coordinators within the time assigned

for them. Only the most recent checkpoints are saved by the

mobile agents on the local storage of the mobile hosts. If any

mobile host fails as a result of hardware or software failure,

the level coordinator reschedules the program to another

available mobile host.

The mobile agent also monitors the battery power and signal

strength status of the worker nodes. For this architecture,

battery power status of the mobile host is taken as a higher

priority condition for migration than signal strength. This is

because battery power availability is a critical factor for

executing a program. The mobile host can continue to run a

program even if it is out of network range provided that its

battery power is not lower than a preset minimum value. The

agent performs migration at a

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 13, December 2013

19

C lie n t

Grid Ap p lic a tion User Interfa c e (GRMS, Billing,

 Sec urity,Ap p lic a tions, Grid too lkits, Na tive OS)

M N

M N

C hie f C o o rd ina to r
Sup e r Sc he d ule r

M AN ET

M N 1

M N 2

L C n

L S n

L C 3L C 2

L S 2 L S 3

L C 1

LS 1

LC: Loc a l C oord ina tor

LS: Loc a l Sc hed uler

MANET: Mob ile Ad -hoc Network

MN: Mob ile Nod e

MA: Mob ile Ag ent

M A M A

M A
M A

M A

M A
M A

M A M A

M A
M A

M A

M N 4

M N 3
M N n

Wire le ss M o b ile No d e C lo u d

Wire less Link

Re q ue st

Re q ue st

Re sp o nse

Re sp o nse

Figure 1: Job Coordination Model Architecture

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 13, December 2013

20

Figure 2: Overall algorithm of Job coordination

threshold level in the event of constant reduction of power. It

takes checkpoints at increasing intervals and sends the last

updated checkpoint to the level coordinator when the

available battery powers is at or lower than the permissible

minimum. In this work, a worker node could move from one

network to another while it is still running its scheduled

programs. It is also assumed that the mobile host is lost only if

couldn’t return results of a scheduled program within the time

frame allocated and couldn’t communicate with the host; the

level coordinator.

When this happens, the level coordinator reschedules the

remaining part of same program to available mobile host to

continue from the last checkpoints received from the lost host.

On the other hand, if the mobile worker node is on another

network, its agent sends its checkpoint, and address of the

new mobile hosts to the host coordinator using Mobile IP.

This happens only when it has finished execution of the

program or the allocated time for the program has elapsed. It

does not send checkpoints to the level coordinator after every

hop from one wireless node to the other. The mobile agents

employ uncoordinated checkpointing by recording individual

checkpoint independently. The mobile agent has the full

autonomy in deciding when to take checkpoint. This

eliminates coordination overhead all together and forms a

consistent global state on recovery

The level coordinators employ the bus-based shared memory

model to coordinate the tasks employing Objective Linda data

structure. They are used as the intermediate servers that

handle processes distributed on the virtual network set up to

solve a specific problem on the grid. They connect with the

chief coordinator.

input: λ:job in form of computing cycles

output: result: result of completed job

12.1 The function receives job and data from a grid user submits result after completion of computation.

12.2 User submits job in form of computing cycles λ

12.3 Chief coordinator receives job, create tasks and submits to scheduler create()

12.4 scheduler assigns tasks(1,................., n) to coordinators 1,.................,n

12.5 each level coordinator Ali receives tasks Piλ, i=1,......, n; 1
1

 i

n

i
P

12.6 local scheduler on level coordinator breaks tasks Piλ, i=1,......, n; 1
1

 i

n

i
P , into processes

P(i,1)Piλ,, P(i,j)Piλ; j≤m, m= maximum number of mobile hosts scheduled per level coordinator and

assigns them to mobile hosts mhost(i,j) through the mobile agent.

12.7 mobile hosts receive programs and data for execution receive()

12.8 mhost(i,j) starts executing the program

12.8.1 while mhost(i,j) not timed out

12.8.2 {

12.8.3 monitor ← SignalStrength ()

12.8.4 update ← UpdateIp

12.8.5 }end do

12.8.6 if power ← BatteryPower () ≤ preset minimum

12.8.7 { Update Checkpoint chkpt()

12.8.8 migrate and update registry

12,8.9 } else

12.8.10 update chkpt ()

12.8.11 if (mhost(i,j) timed out and SignalStrength (i,j) =0 then { terminate mhost(i,j)

12.8.12 reschedule process on mhost(i,j) to another mobile host

12.8.13 update registry of level coordinator

12.8.14 }

12.9 for level = 1 to number of mobile hosts {

12.9.1 level collector receives partial results result(i,j) from mobile hosts mhost(i,j)}

12.9.2 level collector receives results of executed task(k), k≤n from other Al(k) for cooperating dependent

 computation

12.9.3 level scheduler takes checkpoints

12.9.4 if (level coordinator(k) timed out) then {

12.9.5 reschedule Pkλ to another level coordinator Al(w) w > n

12.9.6 Chief coordinator updates its registry

12.10 level coordinator sends results of completed task task(i) to chief coordinator

12.11 Chief coordinator accepts results from other level coordinators Al(1,........,n)

12.12 Chief coordinator performs final computation

12.13 chief coordinator submits result to grid job owner

12.14 end

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 13, December 2013

21

A level coordinator keeps records of checkpoints of all mobile

hosts on its cell and has the capability to perform migration

operations within its cell network. It performs increasing

interval backup and update of checkpoints from all active

hosts and executes the task after receiving results of

completed programs from all the mobile hosts as well as from

the other level coordinators if necessary. It also keeps records

of:

i. Scheduled processes stored as a database.

ii. active mobile hosts assigned to execute each

process stored as an array of numbers.

iii. Variables (input, output and intermediate

variables) of processes and task allocated

stored as an array of characters,

iv. Expected completion time of each scheduled

process as array of numbers and characters.

v. Available mobile hosts as an array of numbers

vi. Current checkpoints of each mobile host as a

database

vii. routing information of the network as a linked

list

It consists of the registry, local scheduler, level checkpointer,

level collector, level shared memory and migration unit.

a. The Registry

This is made up of:

i. List of all the mobile hosts and their properties

stored as a database; and

ii. database of available mobile hosts in events of

the need for migration with their current status

(processor capacity available, IP address,

physical memory available, current battery

power, signal strength)

b. Local Scheduler

This is the module that outlines plan of work to be done,

showing the order in which processes are to be carried out and

the amounts of time allocated to each of them. It schedules

processes to available mobile hosts by obtaining records of

available resources from the registry and allocate processes to

them depending on the ones that meet the requirements for the

process.

c. Level Checkpointer

This segment keeps records of the mobile nodes’ checkpoints

within its cell. When a checkpoint file arrives from a mobile

node through its agent, it is downloaded and saved on the

level coordinator storage. Checkpoints can potentially be very

large, so a check is made for the entire checkpoint file and

only the most current checkpoint is kept.

d. Level Collector

This module gathers and keeps the results returned by the

agents from different mobile hosts, performs the final

computations (if necessary), then sends results to the chief

coordinator through level schedulers. It also monitors the

status of the processes and resources in each node, checks for

the conditions for migration before initiating migration

procedures.

e. Level Shared–memory

The shared memory is a common, content-addressable data

structure. It contains tuples which are sequences of typed

fields consisting of basic data items like numbers and

character strings. Level coordinators communicate with the

chief coordinator by writing or reading tuples into or out of

the shared memory. The basic communication acts are:

creating a tuple, and removing or reading tuple from the

shared memory. Synchronization is performed by letting

level coordinators tasks wait until a tuple to be read has been

inserted into the shared memory. Tuples are sent into the

shared memory by means of templates and retrieved by

providing templates which matches certain tuples (associative

pattern matching). The template itself has a tuple structure

and hence determines arity, types of the elements, and

optionally constant values for the elements of a matching

tuple. These elements are specified by type and value

(actuals) and/or typed placeholders (without a value, called

formals).

For a tuple to be read, the requesting worker node specifies a

template for a tuple it wishes to obtain. The shared memory

performs a matching operation in order to find an appropriate

tuple. A tuple matches a given template if the arities of both

correspond and if each actual field matches one of the same

type and value or a formal field of the corresponding type.

The shared memory keeps dependent tuples for other level

coordinators to access. Each level coordinator can observe

the state of the shared memory and check for tuple requests of

the shared memory. When one node makes reference to a

tuple that is contained in another node’s memory, the other

nodes can see the request and respond with the required data.

The tuple is only placed in the shared memory only if it will

be used by more than one node or if it is ready before any

request is made of it. The in statement removes the matching

tuples from the shared memory. This is applied when the

tuple is no longer needed by any worker node. The rd

statement makes a copy of the tuple, having the original in the

shared memory.

The chief coordinator dynamically constructs an application-

specific logical network over a network of available grid

resources. Multiple logical coordinators can be mapped on to

the same chief coordinator. Each link of the logical network

has a grid determined name and several (optional) weights.

These integer variables are what the chief coordinator uses for

navigation. Each allocated node has a grid- assigned name

and a system-wide address. It also contains node variable

area, which can be accessed by other coordinators for the

purpose of coordinating among themselves. The chief

coordinator supports three types of variables referred to as

checkpoint values of the level coordinators, node-values on

the grid architecture (node id), and network-variables (node

name, node address, link-names, link–weights). It employs

the registry, scheduler, checkpointer, collector and shared

memory, all of these performing similar functions as in the

level coordinator. It also performs migration operations in

event of failures of scheduled level coordinators. Figure 2

shows the overall algorithm of the job coordination model.

The simulation program was written in MATLAB 7.10.0. The

workload was simulated as a number of computing cycles

required to complete a job using random numbers. Ten

workloads were used to test the simulation program.

Different instructions were also incorporated into the program

to measure the response time and latency performance metrics

for the workload. The processing powers, in form of

computing cycles were set between1MHZ and 3GHZ for

mobile nodes and between 3GHZ and 100GHZ for the level

coordinators using random numbers. The simulation programs

were run for different number of level coordinators n = (10,

25, 50, 75, 100), and mobile nodes m= (1000, 2500, 5000,

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 13, December 2013

22

7500, 10000). The workload for each run was increased

gradually from 1020 to 1021 computing cycles with a step of 2.

Random numbers using the linear multiplicative congruential

pseudo random number generator were generated to simulate

all the system parameters and workload parameters. The

simulation experiments were carried out eight times (arbitrary

value) for the same set of jobs. The geometric means of these

results were taken because a single extreme value has less of

an impact on the geometric mean of a series than on the

arithmetic mean [10]. Using the geometric mean makes it

harder for a system to achieve a high score on the benchmark

suite by achieving good performance on just one of the

programs in the suite, making the system’s overall score a

better indicator of its performance on most programs. The

geometric mean of n values is calculated by multiplying the n

values together and taking the nth root of the product. The

results were plotted as graphs. The performances of the model

were tested by varying a set of conditions while keeping the

others constant. This was done in order to analyze the

sensitivity of the model [11] with respect to response time and

latency performances as the number of mobile nodes per level

coordinator and number of level coordinators vary for

different workloads.

4. DISCUSSION OF RESULTS
The performance metrics of response time and latency were

used to specify the performance of the model formulated for

coordinating jobs on the wireless computational grid. The

metrics were measured relative to the first and lowest

workload; 1020 cycles, n=10 and m=1000 as the cases may be.

n stands for number of level coordinators and m implies

number of mobile nodes per level coordinator. Workload and

job are used interchangeably. The results are as presented in

the following section.

4.1 Response Time versus Latency

Performances at Fixed Points
This section examined the response time and latency

performances of the system when operated at arbitrarily

chosen levels for all the workloads. The graphs of response

time and latency for fixed values of n and m were plotted

together for easy assessment. Figure 3 shows variation of

response time and latency for the different jobs taken at

arbitrary points n=10, m=5000. From the graph there is a

reduction by 18.75% in response time for workload 2x1020

cycles. Workload 3x1020 cycles recorded 59.38% reduction in

processing time over the first. The third workload’s response

time obviously the highest is about 59.38% lower than the

expected value relative to the first job. The latency

performance showed that latency reduced by 12.5% when

workload increased from 1020 to 2x1020 cycles. A further

reduction by 87.5% was observed when the workload was

increased to 3x1020 cycles. The system performed optimally

on workload 1021 cycles with reduction in latency by 97.22%.

By observation, latency reduced as the workload increased,

though at some points, for example workload 7x1020 cycles

for possible reasons of checkpointing and migration due to

failure of mobile nodes, it relatively increased compared to

the heaviest workload.

Figure 3: Graph of response time and latency against

workloads for n=10, m=5000

Figure 4 shows the graphs of response time and latency taken

at n=10 for workload 1020 cycles varying m. The purpose is to

investigate the variation of response time and latency with

various number of mobile nodes per level coordinator m and

fixed number of level coordinator n for an arbitrarily chosen

workload. From the results, the response time increased from

1000 to 2500, by 200% at m=5000, by 400% at m=7500 and

by 500% at m=10000. This showed that the response time

increased as the number of mobile nodes per level coordinator

increases for fixed number of level coordinator while

processing a job. This implies that the system responded faster

when operated at a lower number of mobile nodes per

coordinator.

From the same figure, the results showed that latency

increased by 150% from m=1000 to 2500, by 300% at

m=5000, by 400% at m=7500 and 420% at m=10000. There

was a significant drop in the percentage of increase of latency

form m=5000. For example the increase in latency from m=

5000 to m= 7500 was 100%, while it was 20% between

m=7500 and 10000. The results showed that the latency

increased as the number of mobile nodes per level coordinator

increases for fixed number of level coordinator while

processing a job. This implies that the system performed best

in latency when operated with fewer mobile nodes per

coordinator.

Figure 4: Graph of response and latency for 1020 cycles

workload at n=10

1 2 3 4 5 6 7 8 9 10

x 10
20

2

4

6

8

10

12

14
x 10

-5

job (cycles)

re
s
p
o
n
s
e
 t

im
e
 /

la
te

n
c
y
 (

s
e
c
o
n
d
s
)

response time

latency

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.5

1

1.5
x 10

-4

mobile nodes per level coordinator

re
s
p
o
n
s
e
 t

im
e
 /

la
te

n
c
y
 (

s
e
c
o
n
d
s
)

response time

latency

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 13, December 2013

23

Figure 5 shows the graph of response times for all the

workloads with m=1000. From the results, for workload

1020cycles, response time increased with increase in number

of n; for example there was an increase in response time by

108.70%, 160.87%, 421.74% and 856.52% respectively as n

increased from 10 to 25, 50, 75 and 100. Similarly, for

workload 8x1020cycles, there was an increase in response time

by 571.53%, 542.86%, 1471.43% and 937.71% respectively

when n was increased from 10 to 25, 50, 75 and 100. For n=

10, the response time for workloads 3x1020, 4x1020 and 7x1020

cycles reduced by 120%, 441.18% and 762.50% respectively.

Similar trends were observed for n=25, 50,75 and 100, where

for instance response time reduced by 71.43%, 620%, and

620% correspondingly for workloads 3x1020, 6x1020 and 9

x1020 with n=75. The results suggested that response time

increases as the number of level coordinators on similar job

increases and decreases as the workload increases irrespective

of the number of level coordinators.

Figure 6 shows the graph of latency of workloads operated at

n=10, 25, 5, 75 and 100 for m=2500. Table 5.6 and figure 5.9

show similar results for m= 5000. The values m= 2500 and

m= 5000 were chosen arbitrarily in order to investigate the

impact of changing n on each workload with fixed m. The

results showed that the latency at n=10, m=2500 for example,

latency reduced by 16.67% from workload 1020 to 2x1020

cycles, increased by 8.33% on workload 5x1020 cycles, and

reduced by 16.67% at 1021cycles workload. Also at n=50,

latency reduced by 62.5%, 50%, 60% and 67.5% respectively

on workloads 4x1020, 5x1020, 6x1020 and 1021cycles and

reduced by 40% only on workload 2x1020cycles. For same

workload 1020 cycles, latency increased by 3325%, 8166.67%,

629.17% and 3566.67% when n increased from 10 to 25, 50,

75 and 100 respectively. For workload 9x1020 cycles, it

increased by 2150%, 100%, 650% and 550% respectively as n

increased from 10 to 25, 50, 75 and 100 accordingly. These

results suggested that latency reduces as the workload

increases for fixed number of level coordinator and increases

as the number of level coordinator increases for a fixed

workload at m=2500.

Figure 5: Graph of response time for jobs at m=1000

Figure 6: Graph of latency for workloads at m=2500

Generally it was observed that response time increases with

increasing number of level coordinators on same job and

decreases with increasing number of workloads irrespective of

the number of level coordinators and number of mobile nodes

per level coordinator. Also latency reduces as the workload

increases for a fixed number of level coordinator and

increases as the number of level coordinator increases

irrespective of the workload and number of mobile nodes per

level coordinator.

5. CONCLUSION

In this study, a hierarchical load balancing paradigm

facilitating the reliability of mobile wireless computational

grid was developed. The proposed architecture suggests

solutions to resource and network failure by application of

modified checkpointing and migration protocol. On receiving

a job, the chief coordinator splits in into tasks for level

coordinators which also split them into processes to be

executed by mobile hosts. The mobile agents were the carriers

of data and instructions over these hierarchically structured

nodes. From the results of the simulation it could be shown

that the proposed load balancing approach enhances the

reliability and efficiency of the mobile wireless computational

grid system in that the response and delay times are

predictably lower compared with the expected theoretical

values.

6. REFERENCES

[1] Agarwal, A., Norman, D. O. and Gupta, A. 2004

Wireless Grids: Approaches, Architectures, and

Technical Challenges. A working paper 4459-04, MIT

Sloan School of Management.

[2] Manvi, S. and Birje, M. 2010. A Review on Wireless

Grid Computing. International Journal of Computer and

Electrical Engineering, 2(3): 469-473.

[3] Kurkovsky, S., Bhagyavati and Arris, R. 2004 Emerging

Issues in Wireless Computational Grids for Mobile

devices. In Proceedings of the 8th Multiconference on

Systemic, Cybernetics, and Informatics, Seattle, WA

[4] McKnight, L.W. and Howison, J. 2003. Towards a

Sharing Protocol for Wireless Grids.Proceedings of

International Conference on Computer Communication

and Control Technologies (CCCT ’03), Orlando FL.

[5] Kurkovsky, S. and Bhagyavati 2003a. Modelling a

Computational Grid of Mobile Devices as a Multi-Agent

1 2 3 4 5 6 7 8 9 10

x 10
20

0

1

2

x 10
-4

job (cycles)

re
s
p
o
n
s
e
 t

im
e
(s

)

 10 coordinators

25 coordinators

50 coordinators

75 coordinators

100 coordinators

1 2 3 4 5 6 7 8 9 10

x 10
20

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
x 10

-3

job (cycles)

la
te

n
c
y
 (

s
)

10 coordinators

25 coordinators

50 coordinators

75 coordinators

100 coordinators

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 13, December 2013

24

System. In proceedings of the 2003 International

Conference on Artificial Intelligence (IC-AI’03), Las

Vegas, NV.

[6] Kurkovsky, S., Bhagyavati and Arris, R. 2004a.

Modelling a Grid-Based Problem-Solving Environment

for Mobile Devices. Journal of Digital Information

Management, 2 (2): 109-114.

[7] Kurkovsky, S., Bhagyavati and Arris, R. 2004b. A

Collaborative Problem Solving Framework for Mobile

Device. In Proceedings of ACMSE ’04, Huntsville,

Alabama USA.

[8] Fukuda M., Tanaka Y., Suzuki N., Bic L.F. and

Kobayashi S. 2003. A Mobile-Agent based PC Grid.

Proceedings of the 5th Annual International Workshop on

Active middleware services (AMS2003), Seattle, WA.

[9] Kuang, H., Bic, L. and Dillencourt, M. 2002. Iterative

Grid-Based Computing Using Mobile Agents. In

Proceedings of the 2002 International Conference on

Parallel Processing, Vancouver, B.C. Canada.

[10] Carter, N. 2002. Computer Architecture. Schaums

Outline Series, Tata McGraw- Hill, New Delhi :279-287.

[11] Banks, J. 1998. Handbook of Simulation: Principles,

Methodology, Advances, Applications and Practice,

Engineering and Management Press, USA: 23-25.

IJCATM : www.ijcaonline.org

