
International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 12, December 2013

7

Hybrid based Self-Test Solution for Embedded System

on Chip

Sherif I. Morsy
Egyptian Armed Forces

Cairo, Egypt

Mohamed H. El-Mahlawy
Egyptian Armed Forces

Cairo, Egypt

Gouda I. Mohamed
Egyptian Armed Forces

Cairo, Egypt

ABSTRACT

Microcontrollers have become a widely accepted architecture

for highly complex embedded systems on a single chip (SoC).

It consists of deeply embedded heterogeneous components

with poor accessibility makes their testing process a difficult

task using hardware based self-test (HBST). Software-based

self-test (SBST) is considered to be a promising testing

technology for these systems. Almost every SoC contains at

least one embedded processor, SBST utilize this processor for

test pattern generation (TPG) and test response compaction

(TRC) based on its instruction set, then test response will be

unloaded and evaluated using external automatic test

equipment (ATE). In this paper, SBST strategy disadvantages

in microcontroller testing will be identified. Then, a new

testing approach that combines both the HBST and the SBST,

called hybrid-based self-test (HYBST) will be introduced.

Based on a divide-and-conquer approach, HYBST identify

microcontroller's components and their corresponding

component operations. Feasibility and effectiveness of

HYBST and SBST methodologies will be assessed by

applying them to a Microchip® PIC16F877A and PIC18F452

in terms of memory usage, time consumption and number of

tested modules found in microcontrollers.

General Terms

Embedded systems, Digital circuits testing

Keywords

Software-based self-test, Hybrid-based self-test,

Microcontroller testing, Divide and conquer.

1. INTRODUCTION
Almost every complex System-on-Chip (SoC) consists of at

least one embedded processor core. Such processor are

surrounded by a number of heterogeneous components with

poor accessibility makes their testing process a difficult task.

Built-in self-test (BIST) mechanism provides significant

advantages in SoC testing. The use of self-test methodologies

for processor testing reduces yield loss and drives down the

overall test cost of the SoC [1]. In addition, the use of self-test

reduces the design cycle and thus improves time-to-market.

When a self-test methodology is based on hardware

mechanisms, special parts must be added to the system design

for test pattern generation and output data evaluation. Recent

applications of hardware-based commercial logic BIST

techniques in large industrial designs and microprocessors

[2-4], revealed that extensive design changes have to be

performed (most of them manually).

These changes have a negative impact on the circuit area,

performance and power consumption, which can be

considered of limited practical value. An alternative to HBST

techniques is SBST techniques, which have the advantage that

they utilize the processor functionality and instruction set for

creating both TPG and TRC routines and thus do not add

hardware or performance overheads in the optimized design.

Figure 1 illustrates the embedded software-based self-testing

concept, where test program is resided in microcontroller’s

flash memory. During the application of the tests, the on-chip

test generation program emulates a test pattern generator to

generate required test patterns. The test patterns are applied to

each of the microcontroller by the on-chip test application

program. The test application program also collects the test

responses and saves them to the memory after being

compressed into response signatures using the test response

compaction program. Test responses can later be unloaded

and analyzed by an external ATE. At the final stage, the

external ATE will give a decision about the microcontroller

under test either to go or no go.

Microcontroller

 Memory

CPU

TPG

USART

Test controller

program

ADC CCP EEPROM Timers

GPIO

External ATE

Test

Response

Evaluation

Test

Controller

ALU SHUMultiplier

TRC

Fig 1: System environment of SBST for microcontrollers

Considerable work had been done in the field of

microprocessor testing using either functional or structural

SBST that will be discussed in the following literature.

1.1 Functional software-based self-testing

techniques
According to [5], there are various functional SBST

approaches, which can be classified into the following two

categories:

1. Tests based upon prior functional fault models.

2. Tests based on the checking of experiment principle,

without assuming any prior fault model.

1.1.1 Functional tests based on prior fault models
During the late 70‘s and early 80‘s, a microprocessor

functional model and test algorithm based on the functional

fault modeling was presented by Abraham, Thatte and

Brahme [6, 7].

Based on that model many microprocessor functional testing

methods were presented like Hunger et al. [8], Klug [9] and

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 12, December 2013

8

Van de Goor et al. [10]. However, most of these methods

were not automated, and there was no reported fault coverage

at the structural level for complex processors. The aim of test

generation that is common feature in these approaches is to

minimize the instruction sequence and to detect all functional

faults. However, such a test suppresses certain instruction

sequences, and it does not necessarily result in the highest

structure-level fault coverage.

1.1.2 Functional tests derived without prior fault

models
J. Shen, J. A. Abraham [5] and Bellon et al. [12] proposed a

testing strategy that does not depend on a prior functional

model. These methodologies conclude functional testing of

embedded microprocessors achieves low fault coverage

because it does not consider the RTL structure and it is not

based on the fault models. Therefore, functional test could not

provide an alternative to structure-level test and

manufacturers still had to resort to gate level test generation.

Limitations of the functional SBST arises the need of the

structural SBST.

1.2 Structural software-based self-testing

techniques
In 2001, Li Chen Presented structural SBST methodology [4]

that targets specific components and fine tuning the test

development to gate-level details of the PARWAN® processor

core. This approach does not consider the regular structure of

critical processor components and, hence, leads to large self-

test code, large memory requirements, and excessive test

application time, even when applied to a small processor

model.

Kranitis et al. [13] presented promising techniques in 2003 for

efficient testing of a Plasma/MIPS processor deeply

embedded in an embedded system. Based on a divide-and-

conquer test strategy, processor components and their

corresponding component operations are firstly identified.

Then, for every CUT within the processor and for every

operation of the CUT, test patterns are generated targeting

structural faults. After that, the test patterns are transformed to

self-test routines (consisting of processor instruction

sequences) which are used to apply test patterns to the inputs

of the CUT and collect test responses from the outputs of the

CUT. This approach also uses regular deterministic TPG.

Kranitis et al. [14] presented a structural SBST methodology

in 2005, that define a processor‘s component based test

strategy with different test priorities. They presented a SBST

methodology that can be applied when just an RT-level

description and the instruction set architecture of the

processor are available. The key characteristics of this SBST

methodology for complex embedded processors are the

following:

 A divide-and-conquer test strategy is applied using

component-based test development.

 Test development is based only on the ISA of the

processor and its RTL description, which is, in

almost all cases, available without the need of low

gate-level fine tuning.

Kranitis et al. [15] introduces a hybrid-SBST methodology in

2008 for efficient testing of commercial processor cores that

effectively uses the advantages of various SBST

methodologies. Self-test programs based on deterministic

structural SBST methodologies (using high-level test

development and gate-level-constrained ATPG test

development) combined with verification based self-test code

development and directed Random TPG (RTPG) constitute a

very effective H-SBST test strategy. This methodology

applies directed RTPG as a supplement to improve overall

fault coverage results after component-based self-test code

development has been performed. An advantage of this

strategy is that it avoids the use of large RTPG programs that

result in an excessive number of cycles and prohibitive test

application time during manufacturing test. This methodology

has applied fully pipelined benchmark that has been used for

industrial applications (OpenRISC® 1200). Experimental

results showing test coverage of more than 92% demonstrate

the effectiveness of the presented methodology.

In 2009 J. Zhou [16] presented the SBST methodology for the

automatic test program generation that based on the divide-

and-conquer test strategy. This methodology decomposes the

processor into modules and then realizes effective module-

level tests with instructions, which in turn ensure high

module-level fault coverage. Then, the ISA describes the links

between the modules and their related instructions. In other

words, it is comparably easy to identify the instructions

necessary to realize the test for the module under

consideration. This methodology worked on three kinds of

microprocessors as case studies, covering the architectures

from the non-pipelined, the pipelined to the configurable core.

Compared with the presented functional testing

methodologies, structural testing methodology is more

efficient in terms of fault coverage, test code size and test

application time.

Despite the significant advantages of SBST techniques, it was

found that, Pure SBST methodologies is practically not the

optimum solution to test on shelf microcontrollers with small

memory because, it cannot test all microcontroller internal

modules like timers, GPIO and CCP modules. In addition,

SBST uses a large space of memory for the software code that

simulates TPG, BCU and TRC modules of the BIST system.

Finally SBST methodologies need an external ATE to load

response signatures from microcontroller memory resulted

from test to compare them with reference signatures from

good system to indicate if there is a fault or not. All these

challenges make the necessity to introduce a hybrid test

methodology that can come over those challenges.

2. PROPOSED HYBRID BASED

SELF-TEST
The key characteristics of the proposed HYBST methodology

for microcontroller testing are the following:

 A divide-and-conquer approach is applied using

component-based test development to divide

microcontroller structurally into a number of main

modules.

 The Test development is based on the Instruction

Set Architecture (ISA) of the microcontroller, in

order to test functionality of each of these modules

exhaustively.

During the application of the tests, the on-chip test generation

program emulates exhaustive test pattern generator to

generate required test patterns. The test patterns are applied to

each of the microcontroller by the on-chip test application

program. The external ATE collects the test responses through

microcontroller’s GPIO and compress them into response

signatures using the test response analysis technique. The

responses are then compared with reference signatures stored

into external tester memory. External ATE will then give a

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 12, December 2013

9

decision about tested microcontroller to go/no go. Figure 2

illustrates the proposed Hybrid-based self-testing concept,

where test program is resided in the microcontroller’s flash

memory.

Microcontroller

Memory

CPU

TPG

USART

Test controller

program

ADC CCP EEPROM Timers

GPIO

External ATE

TRC

Test Response

Evaluation

Test

Controller

ALU SHUMultiplier

Fig 2: System environment of HYBST for

microcontrollers

Development of the HYBST is divided into four phases to

build test subroutines for each of the microcontroller modules:

Phase A: Information extraction and modules identification.

Phase B: Modules operations, as well as instructions that

excite component operations and instructions (or instruction

sequences) for controlling or observing microcontroller

registers.

Phase C: Operand selection.

Phase D: Test routines Development.

2.1 Information extraction and component

identification phase
This phase studies core features of two Microchip PIC

microcontrollers carefully and divide it structurally into a

number of main modules (CPU – Memory – Timers – Serial

Port – Capture/ Compare/Pulse Width Modulation modules –

GPIO – A/D converter) as shown in Table 1. Then it collects

all available information on every module to be effectively

tested. Microcontroller memories can be divided into (RAM –

EEPROM – Flash Memory).

Table 1. Microcontroller key features

Key Features
Microchip®

PIC16F877

Microchip®

PIC18F452

CPU
High performance 8bit RISC

CPU

FLASH Memory

(14-bit Word)
8K Word 32K Word

Data Memory (Byte) 368 1536

EEPROM (Byte) 256 256

I/O Ports 5 I/O Port 5 I/O Port

Timers 3 4

Capture/Compare/PWM 2 2

Serial Communications USART USART

Multiplier - 8 × 8

ISA 35 inst. 75 inst.

2.2 Instruction selection phase
Based on the ISA of the microcontroller family, every module

M has a set of operations OM that module M performs. IM,O

was denoted to be the set of microcontroller instructions that,

causes module M to perform operation O. It is evident that,

for each module M, has at least one microcontroller

instruction that, causes module M to perform operation O, i.e.

IM,O ≠ Ø. Instructions that belong to the same set IM,O:

 Have different observability properties since, when

operation O is performed, the outputs of module M

drive internal microcontroller registers with

different observability characteristics.

 Have different controllability properties since, when

operation O is performed, the inputs of module M

are driven by internal microcontroller registers with

different controllability characteristics.

After identification of the set IM,O for every module operation

an instruction I was selected from the set IM,O according to the

following criteria:

Criterion 1: Discard instructions belonging to IM,O that, when

operation O is performed, the outputs of module M do not

propagate to an internal microcontroller register.

Criterion 2: Between instructions IA and IB belonging to IM,O,

IA is ranked higher priority than IB if it requires a smaller

instruction sequence to propagate the outputs of module M

through the related internal microcontroller register to GPIO

pins. This means that instruction IA is easily more observable

than IB and it should be preferred over IB.

Criterion 3: If Criterion 2 ranks two different instructions IA

and IB belonging to IM,O, have the same priority, then IA is

ranked higher than IB if it requires a smaller instruction

sequence to generate a specific test pattern at the internal

processor register that drives the inputs of module M. This

means that instruction IA is easily more controllable than IB

and it should be preferred over IB. The above three criteria aim

to the efficiency of test routines for single module. After

completing this phase, test instructions were selected to

construct an efficiently test subroutines to test each

microcontroller module.

2.3 Operand selection phase
In this phase, based on brute force technique test pattern

generation technique was chosen to test microcontroller

modules exhaustively in order achieve high fault coverage and

to avoid the using of high cost fault simulator. After selection

of the appropriate Operands or test pattern generation

technique, test program subroutines will be developed then

will be downloaded to microcontroller's flash memory for

testing with respect to both critical issues; memory utilization

and test application time.

As it was said before that test subroutines will be used to test

microchip microcontroller modules and emulate the TPG

module of the HYBST scheme. Test response will be sent to

an external ATE for test response compaction and evaluation

through GPIO pins of the microcontroller. This external ATE

is based on signature analysis technique, presented in [17, 18].

The effectiveness of this methodology is evaluated on two

different families of Microchip® microcontrollers

(PIC16F87X – PIC18F4X2).

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 12, December 2013

10

2.4 Test program development phase
Before beginning of the development phase, it must be noted

that this methodology was proposed in order to be used for in

field test. This restriction makes the program should go either

two ways (Normal mode or test mode). Figure 3 shows the

flow chart of the complete test program of the proposed

methodology. As shown in Figure 3, the proposed

methodology asks first, if the system is going to work in

normal mode or in test mode. If normal mode was chosen then

the system will do it predefined operation, and if it works in

test mode the system will be prepared to work in test mode. In

test mode the microcontroller need to receive an input

selection from one of the microcontroller ports which will be

used to select specific module to be tested. Other

microcontroller ports are set to be output port to propagate test

response to external ATE.

Every test subroutine has its own strategy as will be

illustrated.

The overall test process is outlined in the following:

Extract information about microcontroller modules, then

for (each microcontroller module M) {

for (every operation o∈ OM) {

Determine IM,O

Select I ∈ IM,O , using controllability and observability criteria

Using instruction I, apply Exhaustive test patterns

Drive test response to propagate to GPIO

Collect and compact test response using external ATE

}

}

Evaluate compacted test response using external ATE

List 1: overall test process

Start

End

PORTA =

0x02

Test GPIO

Test mode or

Normal mode?

Set A/D off

Disable Interrupts

Set PORTB,C and D as Output

Set PORTA as Input

Read PORTA

Yes

PORTA =

0x04

PORTA =

0x06

Test CPU Test USART

Yes

No No
PORTA =

0x08

Test Timers

Yes

No
PORTA =

0x0A

Test Capture/Compare

module

Yes

No

PORTA =

0x0C

Test PWM

Yes

No
PORTA =

0x0E

Test Flash Memory

Yes

No
PORTA =

0x10

Test EEPROM

Yes

NoPORTA =

0x12

Test RAM

Yes

No

Normal Mode

Run normal application

program

No

No

Yes

Yes

Fig 3: Complete flow chart of the HYBST methodology for Microchip PIC microcontrollers

2.4.1 Memory Test
Information extraction phase shows that microchip

microcontroller memories can be divided into (RAM –

EEPROM – Flash Memory). Each one of these has its own

test strategy.

2.4.1.1 Flash Memory Test
Flash memory test subroutine has been designed and

implemented for both HYBST and SBST in order to check if

the program has been downloaded successfully to the flash

memory or not. Flash memory is tested by reading its data

word by word and compact them using software MISR with

primitive polynomial (X8+X6+X5+X4+1), shown in Figure 4.

The resulted signature from the MISR is compared with the

reference signature stored in EEPROM. The reference

signature was generated by another C++ program (written on

Visual Studio 2010 package). This program generates

signature by reading Hex file data generated from the mikroC

compiler for the test program and compact it using the same

MISR. If both signatures are equal then program is

successfully downloaded and memory is tested as well and

pass test.

+ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8

X1 X2 X3 X4 X5 X6 X7 X8

+ + +

Fig 4: MISR using primitive polynomial

(X8+ X6+ X5+X4+1)

2.4.1.2 RAM Test
RAM test subroutine has been implemented here for both

HYBST and SBST test methodologies based on (March AB

algorithm) for memory testing, which was introduced by J. V.

de Goor and Z. Al-Ars[19] in 2000. The March test can be

defined as a sequence of March elements, where a March

element is a sequence of memory operations performed

sequentially on all memory cells. In a March element, the way

from one cell to the next is specified by the address order,

which can be increasing or decreasing. In a March element, it

is possible to perform a write 0 operation (W0), write one

(W1), read zero (R0) and read one (R1) operation. An

example of a March element is ↑ (R0; W1), where all memory

cells are accessed in an increasing address order while

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 12, December 2013

11

performing R0 then W1 on each cell, before continuing to the

next cell. By arranging, a number of March elements one after

the other, a March test is constructed. Because of their

simplicity and linearity with the memory size, all of them are

in a complexity of O (n). March test AB sequence is {↨(W0);

↑(R0;W1;R1;W1;R1);↑(R1;W0;R0;W0;R0);

↓(R0;W1;R1;W1;R1); ↓(R1;W0;R0; W0;R0); ↨(R0)}.

2.4.1.3 EEPROM Test
EEPROM test subroutine has been implemented here for both

HYBST and SBST test techniques based on modified

algorithmic test sequence (MATS) algorithm that detects all

combination of stuck-at faults (SAF) in RAMs [20]. MATS

test sequence is {↑(W0); ↑(R0,W1); ↑(R1)} where EEPROM

is tested and the test response is sent to a certain GPIO pin to

indicate if it pass test or not.

2.4.2 USART Test
Test subroutine for the Universal Synchronous Asynchronous

Receiver Transmitter (USART) has been designed and

implemented for both HYBST and SBST test methodologies.

It sets the baud rate of the USART to 1200 bps first. Then, the

test patterns (0x00 – 0xFF – 0x33 – 0xCC – 0x0F – 0xF0) are

sent to the transmitter of USART (TX) and loop it back again

through MAX232 chip or through short circuit to receive it

from receiver of USART (RX). These test patterns are output

to the PORTD and the signatures on each pin in the PORTD

and the signatures on USART (TX) and USART (RX) (PIN

RX and TX in PORTC) are measured using the external ATE.

The USART test process is outlined in the following:

Configure USART, then

Loop {

 Send data through transmitter pin

 Check for received data from receiver pin

 If (received data = sent data) then

 Send received data to GPIO

 Else

 Error and exit test

Change data and continue loop until test patterns are all

 Sent through transmitter pin

Collect and compact test response using external ATE

}

Evaluate compacted test response using external ATE

List 2: USART test process

2.4.3 GPIO pins Test
GPIO allow the microcontroller to monitor and control other

devices. To add flexibility and functionality to a device, some

pins are multiplexed with an alternate function(s).In this test,

GPIO pins are set to be output ports. The test subroutine sends

exhaustive test patterns (zero (min) to 255 (max)) (all possible

combinations) to these ports.

The GPIO test process is outlined in the following:

Configure GPIO pins to be output

Data = 0

Loop {

 Send data through all GPIO ports

 Collect and compact test response using external ATE

 Data = Data + 1

 If (Data = 255) then

 Exit loop

 }

Evaluate compacted test response using external ATE

List 3: GPIO test process

2.4.4 Timer Test
Information extraction phase shows that most of the

microchip microcontroller families have more than one timer.

These timers have different sizes (8 or 16 bits) and different

presale. Each timer is tested in two different presale to ensure

timer functionality.

The Timer test process is outlined in the following:

Configure Timer presale

Enable timer interrupt

Start timer

Set GPIO pin to high

Loop {

Watch timer interrupt to check if over flow or not

If (timer over flow)

 Exit loop

 Reset GPIO pin to low

 }

Evaluate ON time window on GPIO pin using external ATE

Repeat this process but using different presale and apply it to

all timers

List 4: Timers test process

2.4.5 CPU Test
The CPU is the brain of the device. It is responsible for

fetching the correct instruction for execution, decoding that

instruction, and then executing it. Test subroutine has been

designed and implemented to test microcontroller's CPU for

both HYBST and SBST test strategies based on divide and

conquer test strategy as in [21] but using exhaustive TPG.

Here, the test subroutine divides the CPU structurally into

(ALU – SHU – Multiplier) and test each of these components

functionally. Moreover, the instructions are not randomly

chosen, but carefully crafted in order to deliver all test sets to

the desired components. Control unit will not be tested as

previous approaches, because it is already tested during CPU

test.

The CPU test process is outlined in the following:

Extract information about CPU modules (ALU – SHU –

Multiplier if exist), then

for (each CPU module MCPU) {

for (every operation o∈OMCPU) {

 Determine IMCPU,O

 Select I ∈ IMCPU,O, using controllability and observability

criteria

Apply Exhaustive test patterns for all IMCPU,O

Drive test response to GPIO

 Collect and compact test response using external ATE

 }

}

Evaluate compacted test response using external ATE

List 5: CPU test process

2.4.6 Capture/Compare/PWM Test
Both microchip PIC16F87X and PIC18F4X2 microcontroller

families contain two CCP modules. Each CCP has a 16-bit

register, which can operate as a 16-bit capture register, as a

16-bit compare register or as a 10-bit PWM master/slave Duty

Cycle register. The CCP modules are identical in operation,

with the exception of the operation of the special event

trigger. Different CCP modes depend on timers in the

microcontroller. Test subroutine has been designed and

implemented to test microchip microcontroller's CCP modules

in both Compare and PWM mode.

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 12, December 2013

12

Period 5KHz

50%

Duty cycle

Fig 5: PWM

The Capture/Compare/PWM test process is outlined in the

following:

Configure CCP1 registers to work in compare mode

Initialize timer1value and enable interrupt

Start timer

Loop {

 Watch timer1until reaching compare value

 If (timer1 = compare value)

 Exit loop

 }

Evaluate CCP pin output using external ATE

Repeat this process for CCP2

Configure CCP1 registers to work in PWM mode

Initialize PWM1 duty cycle to 50% of 5 KHz clock

Start PWM1

 Watch PWM1 output using external ATE

 Delay for 2ms

Stop PWM2

Repeat this process for PWM2

List 6: CCP test process

3. EXPERIMENTAL RESULTS
In order to compare between the proposed testing strategy and

previous testing strategies, pure SBST techniques using both

linear feedback shift register (LFSR) and multiple input shift

register (MISR) as the software TRC techniques will be

implemented. The effectiveness of the proposed methodology

and the pure SBST methodologies will be evaluated on two 8-

bit high performance RISC Microchip® microcontrollers

(PIC16F877A and PIC18F452).

Microchip® PIC microcontroller instruction set includes most

common instructions like load and store, arithmetic and

logical operations, jump and branch instructions. It includes

the following components: CPU which consists of (ALU,

SHU and Multiplier), Timers, I/O ports, serial port, pulse

width modulation modules and memory which include (Flash

memory, Data memory and EEPROM). These components

are fully controllable and observable data inputs and outputs.

Test programs were prepared for testing all of these

components individually and collected together into one

program.

An exhaustive test patterns were used to increase fault

coverage and to come over the problem of high cost fault

simulator. Test program statistics such as Memory utilization

(Data memory – Flash memory), Time consumption (number

of clock cycles taken to finish test) and Testability of

microcontroller modules (number of modules that can be

tested) are presented in Table 1 and Table 2. These tables

compare between the proposed methodology and SBST test

strategy using two different compaction techniques on both

Microchip® PIC16F877A and PIC18F452.

The proposed methodology achieves a significant amount of

reduction on key test program statistics like the program size

(Data memory – Flash memory) and test time consuming.

Also, it should be noted fault coverage of the proposed

methodology is greater than other SBST methodology due to

the use of exhaustive test patterns also due to the increase of

modules that can be tested. Performance enhancement can be

shown in Table 3 and Table 4.

Table 2. Test Program Statistics for Microchip®

PIC18F452

Microchip®
PIC18F452

Unit HYBST

SBST

TRC using
MISR

TRC
using
LFSR

RAM
utilization

Byte 30
1.95
%

47 3.06% 94
6.12
%

Flash
Memo.
utilization

Word
232
6

7.09
%

559
2

17.06
%

668
2

20.4
%

Clk
cycles

count 21,112,792 70,023,259
112,101,59

5

Tested Modules All Passed
Timers, GPIO and

CCP Failed
Resulted
Signature

23 bit

Table 3. Test Program Statistics for Microchip®

PIC16F877

Microchip®
PIC16F877

Unit HYBST
SBST

TRC using
MISR

TRC using
LFSR

RAM
utilization

Byte 27
7.33
%

44
11.95
%

93
25.27
%

Flash
Memo.
utilization

Word
166
3

20.3
%

356
8

43.55
%

389
7

47.57
%

Clk
cycles

count 25,600,168 78,348,171
114,734,09

9

Tested Modules All Passed
Timers, GPIO and CCP

Failed
Resulted
Signature

23 bit

Table 4. Performance enhancement using HYBST for

Microchip® PIC18F452

Microchip® PIC 16F877

SBST

TRC using

LFSR

TRC using

MISR

RAM reduction 68.08% 36.17%

Flash memory reduction 65.19% 58.40%

Clock cycle reduction 81.16% 69.84%

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 12, December 2013

13

Table 5. Performance enhancement using HYBST for

Microchip® PIC16F877

Microchip® PIC 16F877

SBST

TRC using

LFSR

TRC using

MISR

RAM reduction 70.96% 38.63%

Flash memory reduction 57.32% 53.40%

Clock cycle reduction 77.68% 67.32%

It is evident that the proposed HYBST methodology is

superior when compared to SBST methodologies with respect

to:

 RAM utilization.

 Flash memory utilization.

 Time consumption.

 Number of tested modules where SBST cannot test

all internal microcontroller modules, and cannot

make sure that GPIO pin of the microcontroller

work probably without using the external ATE.

Finally, it was found that the SBST is practically not suitable

for the microcontroller testing, and the HYBST is more

suitable for the microcontroller testing. In the next chapter,

the integrated methodology of the microcontroller testing on

the printed circuit board for fault detection and fault location

(fault diagnosis) will be presented to indicate a real practical

point of view of this method

4. CONCLUSION
SBST has been proposed as an effective testing methodology

for embedded systems with low or poor accessibility. But

despite the significant advantages of SBST methodologies, it

was found that, pure SBST methodologies is practically not

the optimum solution to test on shelf microcontrollers with

small memory because, it cannot test all microcontroller

internal modules like timers, GPIO and CCP modules. Also,

SBST uses a large space of memory for the software code that

simulates TPG, BCU and TRC modules of the BIST system.

HYBST methodology has been proposed for on-shelf

microcontroller devices that achieves high fault coverage with

low hardware overhead and performance degradation. The

methodology targets microcontroller components and applies

exhaustive test patterns (operands) for every component

operation. When compared with existing SBST

methodologies, it requires much less computational effort

while it achieves guaranteed high fault coverage.

Effectiveness of HYBST methodology has been demonstrated

on both Microchip® PIC16F877A and PIC18F452

microcontrollers. The superiority of the proposed

methodology in terms of test program size, memory

requirements, and fault coverage is significant over SBST.

Also, SBST methodology was demonstrated to be practically

not suitable for in-field microcontroller testing, and the

HYBST is more suitable for this process.

5. REFERENCES
[1] International Technology Roadmap for Semiconductors,

1999 Edition.

[2] T.G.Foote, D.E.Hoffman, W.V.Huott, T.J. Koprowski,

B.J. Robbins and M.P. Kusko, “Testingthe 400 MHZ

IBM Generation-4 CMOS Chip”, in Proceedings of the

International Test Conference 1997, Washington DC.,

pp.106-114.

[3] G.Hetherington, T.Fryars, N.Tamarapalli, M.Kassab,

A.Hassan and J.Rajski, “Logic BIST forlarge industrial

designs: Real issues and case studies”, in Proceedings of

the International Test Conference 1999, Atlantic City,

NJ, pp.358-367

[4] Li Chen, S.Dey, “Software-Based Self-Testing

Methodology for Processor Cores”, IEEE Transactions

on CAD of Integrated Circuits and Systems, vo.20, no.3,

pp. 369-380, March 2001.

[5] J. Shen and J. A. Abraham, "Native Mode Functional

Test Generation for Processors with Applications to Self

Test and Design Validation," Proceedings of the

International Test Conference (ITC), pp. 990 – 999,

1998.

[6] D. Brahme and J. A. Abraham, "Functional Testing of

Microprocessors," Proceedings of the IEEE Transactions

on Computers, pp. 475 - 485, 1984.

[7] S. M. Thatte and J. A. Abraham, "Test Generation for

Microprocessors," Proceedings of the IEEE Transactions

on Computers, pp. 429 - 441, 1980.

[8] A. Hunger and A. Gaertner., "Functional

Characterization of Microprocessors," Proceedings of the

International Test Conference (ITC), pp. 794-803, 1984.

[9] H. Klug, "In Microprocessor Testing by Instruction

Sequences Derived from Random Patterns," Proceedings

of the International Test Conference (ITC), pp. 73-80,

1988.

[10] J. V. De-Goor, and O. Jansen, "Self Test for the Intel

8085," Proceedings of the Microprocessing and

Microprogramming, pp. 165-175, 1990.

[11] J. V. De-Goor and Th. J. W. Verhallen, "Functional

Testing of Current Microprocessors (applied to the Intel

i860TM)," Proceedings of the International Test

Conference (ITC), pp. 684 - 695, 1992.

[12] R. Velazco, C. Bellon, and H. Ziade, "Analysis of

Experimental Results on Functional Testing and

Diagnosis of Complex Circuits," Proceedings of the

International Test Conference (ITC), pp. 64-72, 1988.

[13] G. Xenoulis, N. Kranitis, A. Paschalis, D. Gizopoulos,

and Y. Zorian, "Application and Analysis of RT-level

Software-Based Self-Testing for Embedded Processor

Cores," Proceedings of the IEEE International Test

Conference, pp. 431-440, 2003.

[14] A. Paschalis, N. Kranitis, D. Gizopoulos, and G.

Xenoulis, "Software-Based Self-Testing of Embedded

Processors," IEEE Transactions on Computers, vol. 54,

pp. 461 – 475, 2005.

[15] A. Merentitis, N. Kranitis, G. Theodorou, D. Gizopoulos,

and A. Paschalis, "Hybrid-SBST Methodology for

Efficient Testing of Processor Cores," IEEE Design &

Test of Computers, pp. 64-75, 2008.

[16] J. Zhou, "Software-Based Self-Test under Memory, Time

and Power Constraints," PhD, Institute of Technology

Computer Science, University of Stuttgart, 2009.

[17] A. Abd El-Wahab, M. H. El-Mahlawy, and A.S. Ragab,

"FPGA Implementation of the Portable Automatic

Testing System for Digital Circuits," Proceedings of the

6th ICEENG Conference, Military Technical College,

Cairo, Egypt, 2008.

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 12, December 2013

14

[18] M. H. El-Mahlawy, "A Novel Testing Method for

Monostable Multivibrators," Proceedings of the 5th

ICEENG Conference, Military Technical College, Cairo,

Egypt, 2006.

[19] J. V. De-Goor and Z. Al-Ars, "Functional Memory

Faults: A Formal Notation and a Taxonomy"

Proceedings of the 18th IEEE VLSI Test Symp., PP.

(281) - (289), 2000.

[20] M. S. Hamed, M. H. El-Mahlawy, M. H. Abd-El-Zeem,

and I. Yossef, "FPGA Implementation of the BIST IP

For SRAM Chips", Proceedings of the 6th ICEENG

Conference, Military Technical College, Cairo, Egypt,

2008.

[21] J. Zhou, "Software-Based Self-Test under Memory, Time

and Power Constraints", PhD, Institute of Technology

Computer Science, University of Stuttgart, 2009.

IJCATM : www.ijcaonline.org

