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ABSTRACT 

Microcontrollers have become a widely accepted architecture 

for highly complex embedded systems on a single chip (SoC). 

It consists of deeply embedded heterogeneous components 

with poor accessibility makes their testing process a difficult 

task using hardware based self-test (HBST). Software-based 

self-test (SBST) is considered to be a promising testing 

technology for these systems. Almost every SoC contains at 

least one embedded processor, SBST utilize this processor for 

test pattern generation (TPG) and test response compaction 

(TRC) based on its instruction set, then test response will be 

unloaded and evaluated using external automatic test 

equipment (ATE). In this paper, SBST strategy disadvantages 

in microcontroller testing will be identified. Then, a new 

testing approach that combines both the HBST and the SBST, 

called hybrid-based self-test (HYBST) will be introduced. 

Based on a divide-and-conquer approach, HYBST identify 

microcontroller's components and their corresponding 

component operations. Feasibility and effectiveness of 

HYBST and SBST methodologies will be assessed by 

applying them to a Microchip® PIC16F877A and PIC18F452 

in terms of memory usage, time consumption and number of 

tested modules found in microcontrollers.   
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1. INTRODUCTION 
Almost every complex System-on-Chip (SoC) consists of at 

least one embedded processor core. Such processor are 

surrounded by a number of heterogeneous components with 

poor accessibility makes their testing process a difficult task. 

Built-in self-test (BIST) mechanism provides significant 

advantages in SoC testing. The use of self-test methodologies 

for processor testing reduces yield loss and drives down the 

overall test cost of the SoC [1]. In addition, the use of self-test 

reduces the design cycle and thus improves time-to-market. 

When a self-test methodology is based on hardware 

mechanisms, special parts must be added to the system design 

for test pattern generation and output data evaluation. Recent 

applications of hardware-based commercial logic BIST 

techniques in large industrial designs and microprocessors   

[2-4], revealed that extensive design changes have to be 

performed (most of them manually). 

These changes have a negative impact on the circuit area, 

performance and power consumption, which can be 

considered of limited practical value. An alternative to HBST 

techniques is SBST techniques, which have the advantage that 

they utilize the processor functionality and instruction set for 

creating both TPG and TRC routines and thus do not add 

hardware or performance overheads in the optimized design. 

Figure 1 illustrates the embedded software-based self-testing 

concept, where test program is resided in microcontroller’s 

flash memory. During the application of the tests, the on-chip 

test generation program emulates a test pattern generator to 

generate required test patterns. The test patterns are applied to 

each of the microcontroller by the on-chip test application 

program. The test application program also collects the test 

responses and saves them to the memory after being 

compressed into response signatures using the test response 

compaction program. Test responses can later be unloaded 

and analyzed by an external ATE. At the final stage, the 

external ATE will give a decision about the microcontroller 

under test either to go or no go. 
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Fig 1: System environment of SBST for microcontrollers 

Considerable work had been done in the field of 

microprocessor testing using either functional or structural 

SBST that will be discussed in the following literature. 

1.1 Functional software-based self-testing 

techniques 
According to [5], there are various functional SBST 

approaches, which can be classified into the following two 

categories:  

1. Tests based upon prior functional fault models.  

2. Tests based on the checking of experiment principle, 

without assuming any prior fault model. 

1.1.1 Functional tests based on prior fault models 
During the late 70‘s and early 80‘s, a microprocessor 

functional model and test algorithm based on the functional 

fault modeling was presented by Abraham, Thatte and 

Brahme [6, 7].  

Based on that model many microprocessor functional testing 

methods were presented like Hunger et al. [8], Klug [9] and 



International Journal of Computer Applications (0975 – 8887)  

Volume 84 – No 12, December 2013 

8 

Van de Goor et al. [10]. However, most of these methods 

were not automated, and there was no reported fault coverage 

at the structural level for complex processors. The aim of test 

generation that is common feature in these approaches is to 

minimize the instruction sequence and to detect all functional 

faults. However, such a test suppresses certain instruction 

sequences, and it does not necessarily result in the highest 

structure-level fault coverage. 

1.1.2 Functional tests derived without prior fault 

models  
J. Shen, J. A. Abraham [5] and Bellon et al. [12] proposed a 

testing strategy that does not depend on a prior functional 

model. These methodologies conclude functional testing of 

embedded microprocessors achieves low fault coverage 

because it does not consider the RTL structure and it is not 

based on the fault models. Therefore, functional test could not 

provide an alternative to structure-level test and 

manufacturers still had to resort to gate level test generation. 

Limitations of the functional SBST arises the need of the 

structural SBST.  

1.2 Structural software-based self-testing 

techniques 
In 2001, Li Chen Presented structural SBST methodology [4]  

that targets specific components and fine tuning the test 

development to gate-level details of the PARWAN® processor 

core. This approach does not consider the regular structure of 

critical processor components and, hence, leads to large self-

test code, large memory requirements, and excessive test 

application time, even when applied to a small processor 

model.  

Kranitis et al. [13] presented promising techniques in 2003 for 

efficient testing of a Plasma/MIPS processor deeply 

embedded in an embedded system. Based on a divide-and-

conquer test strategy, processor components and their 

corresponding component operations are firstly identified. 

Then, for every CUT within the processor and for every 

operation of the CUT, test patterns are generated targeting 

structural faults. After that, the test patterns are transformed to 

self-test routines (consisting of processor instruction 

sequences) which are used to apply test patterns to the inputs 

of the CUT and collect test responses from the outputs of the 

CUT. This approach also uses regular deterministic TPG.  

Kranitis et al. [14] presented a structural SBST methodology 

in 2005, that define a processor‘s component based test 

strategy with different test priorities. They presented a SBST 

methodology that can be applied when just an RT-level 

description and the instruction set architecture of the 

processor are available. The key characteristics of this SBST 

methodology for complex embedded processors are the 

following:  

 A divide-and-conquer test strategy is applied using 

component-based test development.  

 Test development is based only on the ISA of the 

processor and its RTL description, which is, in 

almost all cases, available without the need of low 

gate-level fine tuning.  

Kranitis et al. [15] introduces a hybrid-SBST methodology in 

2008 for efficient testing of commercial processor cores that 

effectively uses the advantages of various SBST 

methodologies. Self-test programs based on deterministic 

structural SBST methodologies (using high-level test 

development and gate-level-constrained ATPG test 

development) combined with verification based self-test code 

development and directed Random TPG (RTPG) constitute a 

very effective H-SBST test strategy. This methodology 

applies directed RTPG as a supplement to improve overall 

fault coverage results after component-based self-test code 

development has been performed. An advantage of this 

strategy is that it avoids the use of large RTPG programs that 

result in an excessive number of cycles and prohibitive test 

application time during manufacturing test. This methodology 

has applied fully pipelined benchmark that has been used for 

industrial applications (OpenRISC® 1200). Experimental 

results showing test coverage of more than 92% demonstrate 

the effectiveness of the presented methodology.  

In 2009 J. Zhou [16] presented the SBST methodology for the 

automatic test program generation that based on the divide-

and-conquer test strategy. This methodology decomposes the 

processor into modules and then realizes effective module-

level tests with instructions, which in turn ensure high 

module-level fault coverage. Then, the ISA describes the links 

between the modules and their related instructions. In other 

words, it is comparably easy to identify the instructions 

necessary to realize the test for the module under 

consideration. This methodology worked on three kinds of 

microprocessors as case studies, covering the architectures 

from the non-pipelined, the pipelined to the configurable core. 

Compared with the presented functional testing 

methodologies, structural testing methodology is more 

efficient in terms of fault coverage, test code size and test 

application time. 

Despite the significant advantages of SBST techniques, it was 

found that, Pure SBST methodologies is practically not the 

optimum solution to test on shelf microcontrollers with small 

memory because, it cannot test all microcontroller internal 

modules like timers, GPIO and CCP modules. In addition, 

SBST uses a large space of memory for the software code that 

simulates TPG, BCU and TRC modules of the BIST system. 

Finally SBST methodologies need an external ATE to load 

response signatures from microcontroller memory resulted 

from test to compare them with reference signatures from 

good system to indicate if there is a fault or not. All these 

challenges make the necessity to introduce a hybrid test 

methodology that can come over those challenges. 

2. PROPOSED HYBRID BASED      

SELF-TEST 
The key characteristics of the proposed HYBST methodology 

for microcontroller testing are the following: 

 A divide-and-conquer approach is applied using 

component-based test development to divide 

microcontroller structurally into a number of main 

modules. 

 The Test development is based on the Instruction 

Set Architecture (ISA) of the microcontroller, in 

order to test functionality of each of these modules 

exhaustively. 

During the application of the tests, the on-chip test generation 

program emulates exhaustive test pattern generator to 

generate required test patterns. The test patterns are applied to 

each of the microcontroller by the on-chip test application 

program. The external ATE collects the test responses through 

microcontroller’s GPIO and compress them into response 

signatures using the test response analysis technique. The 

responses are then compared with reference signatures stored 

into external tester memory. External ATE will then give a 
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decision about tested microcontroller to go/no go. Figure 2 

illustrates the proposed Hybrid-based self-testing concept, 

where test program is resided in the microcontroller’s flash 

memory. 
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Fig 2: System environment of HYBST for 

microcontrollers 

Development of the HYBST is divided into four phases to 

build test subroutines for each of the microcontroller modules:  

Phase A: Information extraction and modules identification. 

Phase B: Modules operations, as well as instructions that 

excite component operations and instructions (or instruction 

sequences) for controlling or observing microcontroller 

registers. 

Phase C: Operand selection. 

Phase D: Test routines Development. 

2.1 Information extraction and component 

identification phase  
This phase studies core features of two Microchip PIC 

microcontrollers carefully and divide it structurally into a 

number of main modules (CPU – Memory – Timers – Serial 

Port – Capture/ Compare/Pulse Width Modulation modules – 

GPIO – A/D converter) as shown in Table 1. Then it collects 

all available information on every module to be effectively 

tested. Microcontroller memories can be divided into (RAM – 

EEPROM – Flash Memory).  

Table 1. Microcontroller key features 

Key Features 
Microchip® 

PIC16F877 

Microchip® 

PIC18F452 

CPU 
High performance 8bit RISC 

CPU 

FLASH Memory 

(14-bit Word) 
8K Word 32K Word 

Data Memory (Byte) 368 1536 

EEPROM (Byte) 256 256 

I/O Ports 5 I/O Port 5 I/O Port 

Timers 3 4 

Capture/Compare/PWM 2 2 

Serial Communications USART USART 

Multiplier - 8 × 8 

ISA 35 inst. 75 inst. 

2.2 Instruction selection phase  
Based on the ISA of the microcontroller family, every module 

M has a set of operations OM that module M performs. IM,O 

was denoted to be the set of microcontroller instructions that, 

causes module M to perform operation O. It is evident that, 

for each module M, has at least one microcontroller 

instruction that, causes module M to perform operation O, i.e. 

IM,O ≠ Ø. Instructions that belong to the same set IM,O:  

 Have different observability properties since, when 

operation O is performed, the outputs of module M 

drive internal microcontroller registers with 

different observability characteristics.  

 Have different controllability properties since, when 

operation O is performed, the inputs of module M 

are driven by internal microcontroller registers with 

different controllability characteristics.  

After identification of the set IM,O for every module operation 

an instruction I was selected from the set IM,O according to the 

following criteria:  

Criterion 1: Discard instructions belonging to IM,O that, when 

operation O is performed, the outputs of module M do not 

propagate to an internal microcontroller register. 

Criterion 2: Between instructions IA and IB belonging to IM,O, 

IA is ranked higher priority than IB if it requires a smaller 

instruction sequence to propagate the outputs of module M 

through the related internal microcontroller register to GPIO 

pins. This means that instruction IA is easily more observable 

than IB and it should be preferred over IB. 

Criterion 3: If Criterion 2 ranks two different instructions IA 

and IB belonging to IM,O, have the same priority, then IA is 

ranked higher than IB if it requires a smaller instruction 

sequence to generate a specific test pattern at the internal 

processor register that drives the inputs of module M. This 

means that instruction IA is easily more controllable than IB 

and it should be preferred over IB. The above three criteria aim 

to the efficiency of test routines for single module. After 

completing this phase, test instructions were selected to 

construct an efficiently test subroutines to test each 

microcontroller module. 

2.3 Operand selection phase 
In this phase, based on brute force technique test pattern 

generation technique was chosen to test microcontroller 

modules exhaustively in order achieve high fault coverage and 

to avoid the using of high cost fault simulator. After selection 

of the appropriate Operands or test pattern generation 

technique, test program subroutines will be developed then 

will be downloaded to microcontroller's flash memory for 

testing with respect to both critical issues; memory utilization 

and test application time.  

As it was said before that test subroutines will be used to test 

microchip microcontroller modules and emulate the TPG 

module of the HYBST scheme. Test response will be sent to 

an external ATE for test response compaction and evaluation 

through GPIO pins of the microcontroller. This external ATE 

is based on signature analysis technique, presented in [17, 18]. 

The effectiveness of this methodology is evaluated on two 

different families of Microchip® microcontrollers 

(PIC16F87X – PIC18F4X2). 
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2.4 Test program development phase 
Before beginning of the development phase, it must be noted 

that this methodology was proposed in order to be used for in 

field test. This restriction makes the program should go either 

two ways (Normal mode or test mode). Figure 3 shows the 

flow chart of the complete test program of the proposed 

methodology. As shown in Figure 3, the proposed 

methodology asks first, if the system is going to work in 

normal mode or in test mode. If normal mode was chosen then 

the system will do it predefined operation, and if it works in 

test mode the system will be prepared to work in test mode. In 

test mode the microcontroller need to receive an input 

selection from one of the microcontroller ports which will be 

used to select specific module to be tested. Other 

microcontroller ports are set to be output port to propagate test 

response to external ATE.  

Every test subroutine has its own strategy as will be 

illustrated.  

The overall test process is outlined in the following: 

Extract information about microcontroller modules, then 

for (each microcontroller module M) { 

for (every operation o∈  OM) { 

Determine IM,O 

Select I ∈  IM,O , using controllability and observability criteria 

Using instruction I, apply Exhaustive test patterns 

Drive test response to propagate to GPIO  

Collect and compact test response using external ATE 

} 

} 

Evaluate compacted test response using external ATE 

List 1: overall test process 
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Fig 3: Complete flow chart of the HYBST methodology for Microchip PIC microcontrollers 

 
2.4.1 Memory Test 
Information extraction phase shows that microchip 

microcontroller memories can be divided into (RAM – 

EEPROM – Flash Memory). Each one of these has its own 

test strategy. 

2.4.1.1 Flash Memory Test 
Flash memory test subroutine has been designed and 

implemented for both HYBST and SBST in order to check if 

the program has been downloaded successfully to the flash 

memory or not. Flash memory is tested by reading its data 

word by word and compact them using software MISR with 

primitive polynomial (X8+X6+X5+X4+1), shown in Figure 4. 

The resulted signature from the MISR is compared with the 

reference signature stored in EEPROM. The reference 

signature was generated by another C++ program (written on 

Visual Studio 2010 package). This program generates 

signature by reading Hex file data generated from the mikroC 

compiler for the test program and compact it using the same 

MISR. If both signatures are equal then program is 

successfully downloaded and memory is tested as well and 

pass test. 

+ X1 + X2 + X3 + X4 + X5 + X6 + X7 + X8

X1 X2 X3 X4 X5 X6 X7 X8

+ + +

 

Fig 4: MISR using primitive polynomial                         

(X8+ X6+ X5+X4+1) 

2.4.1.2 RAM Test 
RAM test subroutine has been implemented here for both 

HYBST and SBST test methodologies based on (March AB 

algorithm) for memory testing, which was introduced by J. V. 

de Goor and Z. Al-Ars[19] in 2000. The March test can be 

defined as a sequence of March elements, where a March 

element is a sequence of memory operations performed 

sequentially on all memory cells. In a March element, the way 

from one cell to the next is specified by the address order, 

which can be increasing or decreasing. In a March element, it 

is possible to perform a write 0 operation (W0), write one 

(W1), read zero (R0) and read one (R1) operation. An 

example of a March element is ↑ (R0; W1), where all memory 

cells are accessed in an increasing address order while 
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performing R0 then W1 on each cell, before continuing to the 

next cell. By arranging, a number of March elements one after 

the other, a March test is constructed. Because of their 

simplicity and linearity with the memory size, all of them are 

in a complexity of O (n). March test AB sequence is {↨(W0); 

↑(R0;W1;R1;W1;R1);↑(R1;W0;R0;W0;R0); 

↓(R0;W1;R1;W1;R1); ↓(R1;W0;R0; W0;R0); ↨(R0)}. 

2.4.1.3 EEPROM Test 
EEPROM test subroutine has been implemented here for both 

HYBST and SBST test techniques based on modified 

algorithmic test sequence (MATS) algorithm that detects all 

combination of stuck-at faults (SAF) in RAMs [20]. MATS 

test sequence is {↑(W0); ↑(R0,W1); ↑(R1)} where EEPROM 

is tested and the test response is sent to a certain GPIO pin to 

indicate if it pass test or not. 

2.4.2 USART Test 
Test subroutine for the Universal Synchronous Asynchronous 

Receiver Transmitter (USART) has been designed and 

implemented for both HYBST and SBST test methodologies. 

It sets the baud rate of the USART to 1200 bps first. Then, the 

test patterns (0x00 – 0xFF – 0x33 – 0xCC – 0x0F – 0xF0)  are 

sent to the transmitter of USART (TX) and loop it back again 

through MAX232 chip or through short circuit to receive it 

from receiver of USART (RX). These test patterns are output 

to the PORTD and the signatures on each pin in the PORTD 

and the signatures on USART (TX) and USART (RX) (PIN 

RX and TX in PORTC) are measured using the external ATE. 

The USART test process is outlined in the following: 

Configure USART, then 

Loop { 

         Send data through transmitter pin 

        Check for received data from receiver pin 

        If (received data = sent data) then 

 Send received data to GPIO 

       Else  

 Error and exit test 

Change data and continue loop until test patterns are all  

       Sent through transmitter pin 

Collect and compact test response using external ATE 

} 

Evaluate compacted test response using external ATE 

List 2: USART test process 

2.4.3 GPIO pins Test 
GPIO allow the microcontroller to monitor and control other 

devices. To add flexibility and functionality to a device, some 

pins are multiplexed with an alternate function(s).In this test, 

GPIO pins are set to be output ports. The test subroutine sends 

exhaustive test patterns (zero (min) to 255 (max)) (all possible 

combinations) to these ports. 

The GPIO test process is outlined in the following: 

Configure GPIO pins to be output 

Data = 0 

Loop { 

         Send data through all GPIO ports 

        Collect and compact test response using external ATE 

        Data = Data + 1 

        If (Data = 255) then 

 Exit loop 

  } 

Evaluate compacted test response using external ATE 

List 3: GPIO test process 

2.4.4 Timer Test 
Information extraction phase shows that most of the 

microchip microcontroller families have more than one timer. 

These timers have different sizes (8 or 16 bits) and different 

presale. Each timer is tested in two different presale to ensure 

timer functionality. 

The Timer test process is outlined in the following: 

Configure Timer presale 

Enable timer interrupt 

Start timer 

Set GPIO pin to high 

Loop { 

Watch timer interrupt to check if over flow or not  

If (timer over flow) 

 Exit loop 

 Reset GPIO pin to low 

  } 

Evaluate ON time window on GPIO pin using external ATE 

Repeat this process but using different presale and apply it to 

all timers 

List 4: Timers test process 

2.4.5 CPU Test 
The CPU is the brain of the device. It is responsible for 

fetching the correct instruction for execution, decoding that 

instruction, and then executing it. Test subroutine has been 

designed and implemented to test microcontroller's CPU for 

both HYBST and SBST test strategies based on divide and 

conquer test strategy as in [21] but using exhaustive TPG. 

Here, the test subroutine divides the CPU structurally into 

(ALU – SHU – Multiplier) and test each of these components 

functionally. Moreover, the instructions are not randomly 

chosen, but carefully crafted in order to deliver all test sets to 

the desired components. Control unit will not be tested as 

previous approaches, because it is already tested during CPU 

test. 

The CPU test process is outlined in the following: 

Extract information about CPU modules (ALU – SHU – 

Multiplier if exist), then 

for (each CPU module MCPU) { 

for (every operation o∈OMCPU) { 

       Determine IMCPU,O 

       Select I ∈ IMCPU,O, using controllability and observability  

criteria 

Apply Exhaustive test patterns for all IMCPU,O 

Drive test response to GPIO  

       Collect and compact test response using external ATE 

       } 

}  

Evaluate compacted test response using external ATE 

List 5: CPU test process 

2.4.6 Capture/Compare/PWM Test 
Both microchip PIC16F87X and PIC18F4X2 microcontroller 

families contain two CCP modules. Each CCP has a 16-bit 

register, which can operate as a 16-bit capture register, as a 

16-bit compare register or as a 10-bit PWM master/slave Duty 

Cycle register. The CCP modules are identical in operation, 

with the exception of the operation of the special event 

trigger. Different CCP modes depend on timers in the 

microcontroller. Test subroutine has been designed and 

implemented to test microchip microcontroller's CCP modules 

in both Compare and PWM mode. 
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Fig 5: PWM 

The Capture/Compare/PWM test process is outlined in the 

following: 

Configure CCP1 registers to work in compare mode 

Initialize timer1value and enable interrupt 

Start timer 

Loop { 

        Watch timer1until reaching compare value 

        If (timer1 = compare value) 

 Exit loop 

  } 

Evaluate CCP pin output using external ATE 

Repeat this process for CCP2 

Configure CCP1 registers to work in PWM mode 

Initialize PWM1 duty cycle to 50% of 5 KHz clock 

Start PWM1 

        Watch PWM1 output using external ATE 

       Delay for 2ms 

Stop PWM2 

Repeat this process for PWM2 

List 6: CCP test process 

3. EXPERIMENTAL RESULTS 
In order to compare between the proposed testing strategy and 

previous testing strategies, pure SBST techniques using both 

linear feedback shift register (LFSR) and multiple input shift 

register (MISR) as the software TRC techniques will be 

implemented. The effectiveness of the proposed methodology 

and the pure SBST methodologies will be evaluated on two 8-

bit high performance RISC Microchip® microcontrollers 

(PIC16F877A and PIC18F452).  

Microchip® PIC microcontroller instruction set includes most 

common instructions like load and store, arithmetic and 

logical operations, jump and branch instructions. It includes 

the following components: CPU which consists of (ALU, 

SHU and Multiplier), Timers, I/O ports, serial port, pulse 

width modulation modules and memory which include (Flash 

memory, Data memory and EEPROM). These components 

are fully controllable and observable data inputs and outputs. 

Test programs were prepared for testing all of these 

components individually and collected together into one 

program.  

An exhaustive test patterns were used to increase fault 

coverage and to come over the problem of high cost fault 

simulator. Test program statistics such as Memory utilization 

(Data memory – Flash memory), Time consumption (number 

of clock cycles taken to finish test) and Testability of 

microcontroller modules (number of modules that can be 

tested) are presented in Table 1 and Table 2. These tables 

compare between the proposed methodology and SBST test 

strategy using two different compaction techniques on both 

Microchip® PIC16F877A and PIC18F452.   

The proposed methodology achieves a significant amount of 

reduction on key test program statistics like the program size 

(Data memory – Flash memory) and test time consuming. 

Also, it should be noted fault coverage of the proposed 

methodology is greater than other SBST methodology due to 

the use of exhaustive test patterns also due to the increase of 

modules that can be tested. Performance enhancement can be 

shown in Table 3 and Table 4. 

Table 2. Test Program Statistics for Microchip® 

PIC18F452 

Microchip® 
PIC18F452 

Unit HYBST 

SBST 

TRC using 
MISR 

TRC 
using 
LFSR 

RAM 
utilization 

Byte 30  
1.95
% 

47 3.06% 94 
6.12
% 

Flash 
Memo. 
utilization 

Word 
232
6  

7.09
% 

559
2 

17.06
% 

668
2 

20.4
% 

# Clk 
cycles 

count 21,112,792 70,023,259 
112,101,59

5 

Tested Modules All Passed 
Timers, GPIO and 

CCP Failed 
Resulted 
Signature 

23 bit 

 

Table 3. Test Program Statistics for Microchip® 

PIC16F877 

Microchip® 
PIC16F877 

Unit HYBST 
SBST 

TRC using 
MISR 

TRC using 
LFSR 

RAM 
utilization 

Byte 27 
7.33
% 

44 
11.95
% 

93 
25.27
% 

Flash 
Memo. 
utilization 

Word 
166
3 

20.3
% 

356
8 

43.55
% 

389
7 

47.57
% 

# Clk 
cycles 

count 25,600,168 78,348,171 
114,734,09

9 

Tested Modules All Passed 
Timers, GPIO and CCP 

Failed 
Resulted 
Signature 

23 bit 

 

Table 4. Performance enhancement using HYBST for 

Microchip® PIC18F452 

Microchip® PIC 16F877 

SBST 

TRC using 

LFSR 

TRC using 

MISR 

RAM reduction 68.08% 36.17% 

Flash memory reduction 65.19% 58.40% 

Clock cycle reduction 81.16% 69.84% 
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Table 5. Performance enhancement using HYBST for 

Microchip® PIC16F877 

Microchip® PIC 16F877 

SBST 

TRC using 

LFSR 

TRC using 

MISR 

RAM reduction 70.96% 38.63% 

Flash memory reduction 57.32% 53.40% 

Clock cycle reduction 77.68% 67.32% 

 

It is evident that the proposed HYBST methodology is 

superior when compared to SBST methodologies with respect 

to: 

 RAM utilization. 

 Flash memory utilization. 

 Time consumption. 

 Number of tested modules where SBST cannot test 

all internal microcontroller modules, and cannot 

make sure that GPIO pin of the microcontroller 

work probably without using the external ATE. 

Finally, it was found that the SBST is practically not suitable 

for the microcontroller testing, and the HYBST is more 

suitable for the microcontroller testing. In the next chapter, 

the integrated methodology of the microcontroller testing on 

the printed circuit board for fault detection and fault location 

(fault diagnosis) will be presented to indicate a real practical 

point of view of this method 

4. CONCLUSION 
SBST has been proposed as an effective testing methodology 

for embedded systems with low or poor accessibility. But 

despite the significant advantages of SBST methodologies, it 

was found that, pure SBST methodologies is practically not 

the optimum solution to test on shelf microcontrollers with 

small memory because, it cannot test all microcontroller 

internal modules like timers, GPIO and CCP modules. Also, 

SBST uses a large space of memory for the software code that 

simulates TPG, BCU and TRC modules of the BIST system. 

HYBST methodology has been proposed for on-shelf 

microcontroller devices that achieves high fault coverage with 

low hardware overhead and performance degradation. The 

methodology targets microcontroller components and applies 

exhaustive test patterns (operands) for every component 

operation. When compared with existing SBST 

methodologies, it requires much less computational effort 

while it achieves guaranteed high fault coverage. 

Effectiveness of HYBST methodology has been demonstrated 

on both Microchip® PIC16F877A and PIC18F452 

microcontrollers. The superiority of the proposed 

methodology in terms of test program size, memory 

requirements, and fault coverage is significant over SBST. 

Also, SBST methodology was demonstrated to be practically 

not suitable for in-field microcontroller testing, and the 

HYBST is more suitable for this process. 
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