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ABSTRACT 
In this paper a novel de-noising method based on directionlet 

transform and on sub band adaptive Bayesian threshold is 

presented. The denoising scheme used in wavelet domain has 

been extended to the directionlet domain to make the image 

features to concentrate on fewer coefficients so that more 

effective thresholding is possible. Here the directionality of 

the spatially segmented image is first computed using a 

parameter called directional variance for selecting the 

optimum direction for decomposing the image using 

undecimated directionlet transform. The decomposed images 

with directional energy are used for threshold computation 

using Bayes scheme. This threshold is then applied to the sub-

bands except the LLL subband. The threshold corrected sub-

bands with the unprocessed first sub-band are given as input 

to the inverse directionlet algorithm for getting the de-noised 

image. Experimental results show that the proposed method 

outperforms the standard wavelet-based denoising methods in 

terms of perceptual and numerical estimates.  
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1. INTRODUCTION 
An image is often corrupted by noise in its acquisition and 

transmission. The goal of image denoising is to remove noise 

while retaining the important signal features. There are linear 

and non-linear methods for image denoising. The linear 

processing methods include classical Wiener filtering. The 

non-linear techniques are mostly based on multi resolution 

analysis using wavelets [1, 2]. The merit of denoising based 

on wavelet transform is multi scale frequency filtering 

characteristic, without using the statistical distribution of 

image. The classical wavelet based denoising method was 

proposed by Donoho and Johnstone [3]. It involves wavelet 

decomposition of the noisy image, classification of each 

wavelet coefficient as signal or noise and reconstruction of the 

image estimate using only signal coefficients. The simplest 

and common classification procedure is thresholding of 

wavelet coefficients. Here a wavelet coefficient is compared 

with a given threshold and is set to zero if its magnitude is 

less than the threshold; otherwise it is kept or modified based 

on hard or soft thresholding rules. Different approaches were 

proposed to estimate the proper threshold based on some 

optimisation criteria. The Bayesian threshold proposed by 

Chang et al [4] is based on an empirical observation in which 

the wavelet coefficients in each subband are modeled as 

independent and identically distributed random variables with 

Generalised Gaussian Distribution (GGD). 

Wavelet coefficient thresholding scheme of de-noising is 

based on the idea that the energy of the signal to be defined 

concentrates on some of the wavelet coefficients, while the 

energy of noise spreads throughout all wavelet coefficients. 

Similarity between the basic wavelet and the signal to be 

defined plays a very important role, making it possible for the 

signal to concentrate on fewer coefficients.. 

Since the standard 2-D wavelet transform (WT) is a tensor 

product of 1-D WT, it has only three directions, viz. vertical, 

horizontal and diagonal. The 2-D WT is effective at 

approximating point singularities than line singularities like 

edges and boundaries due to isotropic scaling of its basis 

functions. Therefore a more effective basis for real-world 

images with edges and curves is required for making the 

signal to concentrate on fewer coefficients after 

transformation. Recently many multi-scale transforms with 

directional selectivity were developed for image 

representations. Some examples are curvelet [5], contourlet 

[6, 7] bandlet [8], shearlet [9] etc. Owing to the fact that 

multi-scale transforms with directivity provide image 

representations of high-energy concentration, the image 

denoising methods based on these transforms generally 

outperform WT based methods. However, these transforms 

often require oversampling, have higher complexity when 

compared to the standard WT, and require non-separable 

convolution and filter design. Also in some of these schemes 

the transform directions are not adaptive to the dominant 

directions and filtering is done in continuous domain making 

it difficult to use them on discrete images.  

 

A special member of the emerging family of multi-scale 

geometric transforms is the directionlet transform (DT) which 

was proposed by V. Velisavljevi´c et al as an anisotropic, 

perfect reconstruction and critically sampled basis functions 

with directional vanishing moments along any two directions 

[10]. It retains the computational efficiency and the simplicity 

of 1-D processing and filter design from the standard 

separable 2-D WT. It has good approximation properties as 

compared to the approximation achieved by other over 

complete transform constructions and is superior to the 

performance of the standard separable 2-D WT while having 

the same complexity. 

The directionlet transform is not shift - invariant due to the 

presence of down samplers and up-samplers in it. The 

undecimated directionlet transform which provides a shift 

invariant multidirectional image representation solves this 

problem. Here the Bayesian wavelet shrinkage scheme 

proposed by Chang et al [4] has been extended to the 

directionlet domain to better utilize the image specific 

directional features for image denoising.  

The paper is organized as follows. In section 2, the theoretical 

concepts of directionlet transform and adaptive Bayes 

threshold are described. In section 3, the proposed 

directionally adaptive image denoising algorithm using Bayes 
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shrinkage rule is discussed. The experimental results are 

presented in section 4 and the conclusions in section 5. 

2. REVIEW OF BACKGROUND WORK 
Here a short review of the basic concepts of directionlet 

transform proposed by V. Velisavljevi´c et al [10] and 

adaptive Bayes threshold scheme proposed by S. G. Chang et 

al. [4] are given. 

 

2.1 Directionlet Transform  

The standard Wavelet Transform (WT) is an efficient tool for 

analysing one dimensional signal. However, for 2-D signals 

like images it is inefficient due to the spatial isotropy of its 

construction. In 2-D WT the number of 1-D transforms 

including filtering and sub-sampling operations along the 

horizontal and vertical directions is the same at each scale 

(Figure 1(a)). This isotropic transform cannot properly capture 

the anisotropic discontinuities present in images. This is 

because the directions of the transforms and discontinuities in 

images are not matched and the transforms fail to provide a 

compact representation of two dimensional signals. The 

standard WT considers only vertical and horizontal directions 

and number of filtering in both these directions is equal. 

Because of this, a separable 2D wavelet transform applied on 

natural images with edges in orientations other than horizontal 

and vertical, results in too many non-zero coefficients. Here 

the 1-D discontinuities like edges or contours of highly 

anisotropic objects cannot be properly captured by the 

isotropic WT. Many wavelets intersect the discontinuity and 

this leads to many large magnitude coefficients (see Figure 

1(c)).  

In the anisotropic wavelet transform (AWT(n1,n2)), the 

number of transforms applied along the horizontal and vertical 

directions is unequal, that is there are n1 horizontal and n2 

vertical transforms at a scale, where n1 is not necessarily equal 

to n2. The iteration process is continued in the low sub-band, 

like in the standard wavelet transform (Figure 1(b)). As 

opposed to the 3-band 2-D wavelet Transform, anisotropic 

wavelet transform produce three high-pass sub-bands per 

scale denoted as HL, LH and HH according to the order of 

low-pass and high-pass filtering in the two transform steps. 

The anisotropic ratio ρ = n1/n2 determines elongation of the 

basis functions of the AWT (n1, n2). When n1 = 2, n2 = 1, the 

AWT (2, 1) produces eight bands viz. HHH, HHL, HLH, 

HLL, LHH, LHL, LLH, LLL as shown in Figure2. The 

skewed AWT can trace the discontinuity efficiently with 

fewer significant coefficients compared with standard WT 

(see Figure 1(d)). 

The main problem with AWT is directional interaction. The 

lattice based transform can avoid the directional interaction. 

Here the discrete space is first partitioned using integer 

lattices before performing 1-D filtering along lines across the 

lattice. Any integer lattice Ʌ is a sub-lattice of the cubic lattice 

Z2. Here the lattice Ʌ can be represented by a non-unique 

generator matrix MΛ.  

MΛ   
    

    
  =  

  

  
    (1) 

where, a1, b1, a2, b2 ∈ Z. 
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Figure 1. Frequency decomposition of (a) Standard 2-D 

Wavelet Transform (b) Anisotropic Wavelet Transform 

Basis functions of (c) 2-D Wavelet Transform (d) 

Anisotropic Wavelet Transform.  

 

 

 

 

Figure 2. Filtering scheme for the AWT (2, 1), where one 

step of iteration is shown. 

The linear combination of two linearly independent integer 

vectors d1 and d2 will form the points of the lattice Ʌ. The 

cubic lattice Z2 can be partitioned into      cosets of the 

lattice Λ. The filtering and sub sampling operations are 

applied on the pixels along the vector d1 (transform direction) 

in each of the cosets separately. Since these operations are 

applied in each cosets separately, the pixels retained after this 

are clustered along the vector d2 (alignment direction). This 

type of lattice based transform, which will avoid directional 

interaction, is called Skewed AWT, S-AWT (MΛ, n1, n2). The 

basis functions of S-AWT are called directionlets, which can 

be effectively used for directional analysis of images. An 

example of construction of directionlets based on integer 

lattices is shown in Fig. 3 for pair of direction (45º, -45º). Here 

there are two cosets corresponding to the shift vectors S0 & S1. 
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Figure 3. An example of construction of directionlets 

based on integer lattices for pair of directions (45º, -45º). 

The directionlet transform is not shift invariant due to the 

presence of down sampling operation involved. The down 

sampling operation results in a time-variant translation and 

has difficulties preserving original image discontinuities in the 

directionlet domain. So shift invariance is a desirable property 

for image denoising applications. The Undecimated 

Directionlet Transform (UDT) can be constructed by avoiding 

the down sampling operation in the decomposition level. Thus 

the approximation and detail coefficients at each 

decomposition level are having the same length as the original 

signal. Here in the proposed scheme UDT was used for 

decomposition of the SAR image. 

 

2.2 Adaptive Bayes Threshold 

The Generalised Gaussian Distribution (GGD) has been used 

to model the coefficients in many wavelet based denoising 

applications. For most of the natural images, the WT 

coefficients from each subband (except LL) can be well 

described by the zero mean GGD. Based on this distribution 

many attempts were made to find out the best threshold for 

denoising applications The Bayes threshold based on GGD 

was first proposed by Chang et al [4] in the wavelet domain. 

The same scheme can be extended to the directionlet domain 

as DT is an extended version of WT. The threshold estimation 

problem in directionlet domain can be formulated as follows. 

Suppose that the image x is polluted by independent and 

identically distributed white Gaussian noise   with zero mean 

and σ2 variance, the observed image is described as: 

                        (2) 

Since the directionlet transform is a linear operator, we can 

get the corresponding observation model in the directionlet 

domain as  

                                                      (3) 

where           are the directionlet transforms of           

respectively.  

The GGD is  

      
                                                     

Where, 

                      

           
   

      

      
 

 
  

 

        
         

       
 

and              

 
        is the gamma function. The 

parameter    is the standard deviation and   is the shape 

parameter. For a given set of parameter the objective is to find 

a soft threshold T which minimises the Bayes risk     , 

which is defined as 

                                                 

The optimal threshold     can be obtained by minimising the 

Bayes risk       

                                                             

This is a function of    and   . There is no closed form 

solution for          for this chosen pair. Chang et al [4], 

proposed a numerical calculation to find its value.   

       
σ 

  
                                                                 

3. SPATIALLY ADAPTIVE IMAGE 

DENOISING  
The directionlet based denoising scheme proposed here is an 

extension of the wavelet based denoising techniques. The 

undecimated version of directionlet transform is used here to 

have better denoising performance. The directionlet has 

directional vanishing moments along two directions only. So 

for identifying the best pair of directions, directionlet 

transform has to be taken along multiple directions. This is 

computationally intensive and data expansive. Thus if the 

texture direction is known, the construction of directionlet can 

be limited to two dominant directions only. However the 

image can have different texture at different areas. This 

restriction implies a need for spatial segmentation of image 

and adaptation of the pair of directions in each segment based 

on the dominant direction of image. Here we propose a 

scheme by which the directional information of the spatially 

segmented image is first identified and the directionlet 

transform is computed for each spatial segment along two 

dominant directions. Bayesian subband adaptive thresholding 

is then applied to the decomposed image before 

reconstruction. Here we assume that the image is corrupted 

with independent and identically distributed (iid) Gaussian 

noise of zero mean and σ2 variance. The resulting estimates 

will indeed consist of block artifacts as shown in figure 6. A 

simple procedure to reduce these artifacts is to apply a moving 

average filter in a small neighborhood of each block 

boundary. Here we have used the algorithm proposed in 

[11] for deblocking.  This considerably reduces the block 

artifacts present in the processed image.  

3.1 Undecimated Directionlet Transform 

Unlike the discrete version of directionlet transform, which 

down samples the approximation coefficients and detail 

coefficients at each decomposition level, the Undecimated 

Directionlet Transform (UDT) does not incorporate the down 

sampling operations. Thus, the approximation coefficients and 

detail coefficients at each level are having the same length as 

the original signal. Denoising with the UDT is shift-invariant. 
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The denoising result of the undecimated directionlet transform 

has a better balance between smoothness and accuracy than its 

discrete version. Oversampling is imposed in the same way as 

in the case of the undecimated wavelet transform, that is, by 

discarding the sub-samplers in the filter-banks of figure 2. The 

filters used for DT are up sampled across scales. Thus, if the 

LP filter        is used in the corresponding 1-D wavelet 

filter-bank, then the equivalent LP filter at the jth scale is 

     
   

 , where j = 1….J, corresponds to the scale index 

sweeping from the finest to the coarsest scale. Such a 

construction results in a shift-invariant transform with a 

preserved number of coefficients in each subband.  

 

3.2 Directional variance  

Edge information in image has great influence on human 

visual effect. The information on the dominant direction of 

texture in an image can improve the precision of estimation of 

correct threshold for denoising. Thus it is important to identify 

the dominant direction of texture before thresholding.  In this 

paper, the input image is first divided into spatial segments of 

smaller size. Then we construct a local texture-direction 

detector by measuring a parameter called directional variance 

to identify the pair of transform directions.  

The directional variance, which measures the resulting 

residues when the signal is approximated with zero order 

polynomials along discrete lines in a given direction, was 

proposed by D. Jayachandra and A. Makur [12]. 

Given any rational slope r, the digital line L(r, n) where n Є Z, 

is defined as the set of pixels (i, j) such that 

           ∈                               (8) 

   
 

 
      ∈                                              

For every rational slope r, the set of digital lines L(r, n): n Є Z 

completely partitions the 2D discrete space Z2, meaning every 

pixel (i, j) Є Z2 is associated to only one of the digital lines 

with slope r. 

As explained by D. Jayachandra and A. Makur [11], given the 

definition of digital line L(r, n) with rational slope r, the 

directional variance for a given image segment X, along the 

lines with rational slope r, is defined as 

            
 

               
   

   
 
   

             

where,         is the mean of the digital line with slope r and 

offset i, and    is the pixel in the same line. N is the total 

number of pixels in the segment X, n is the total number of 

lines, and    is the number of pixels in line i. 

            measures the normalized sum of variances 

along each digital line with the given slope r and hence is very 

sensitive to content directionality.        measures spatial 

activity along the given direction. Here in the proposed 

method we have computed the directional variance along the 

rational directions (i, j) = (1, 0), (2, 1), (1, 1), (1, 2), (0, 1), (-1, 

1), which corresponds to 0º, 30º, 45º, 60º, 90º and -45º.  This 

was carried out for each spatial segment of the image and the 

directions corresponding to the two minimum directional 

variances were identified and these were selected as the 

optimal pair of directions (transform direction and alignment 

direction) for computing the directionlet transform. For 

segments with no apparent dominant directions (where the 

directional variance for all the directions comes within 5%), 

the pair (0, 90) is assigned by default to smooth the segments 

for the reason of simplicity of implementation of the 

directionlet. 

 

3.3 Bayes threshold computation in directionlet 

domain 

The directionlet coefficients of image show a strong non-

Gaussian statistical properties, whose probability density 

function can be modeled with the use of Generalized Gaussian 

Distribution. Thus the Bayesian threshold as given in equation 

(7) can be applied to the directionlet coefficients also. Zhang 

Wei et al. (2009), showed that the Bayesian threshold        

which is a function of GGD parameters    and   is adaptive 

to different subband characteristics. Here the parameter   

doesn’t explicitly enter into the equation. The noise 

variance   σ   can be computed from the high frequency sub 

band coefficients at level1 (      in the directionlet 

decomposition as: 

   
              

      
          ∈                           

The next parameter to be estimated is   . From the image 

noise model as given in equation (3) and assuming that X and 

V are independent of each other, 

 σ 
   σ 

     σ
 
                                                               

where  σ 
  is the variance of the noisy image. Since noisy 

image is modelled as zero mean, σ 
  can be computed using 

the following empirical formula:- 

  
  

 

      
 

 

     

                                                             

Where n x n is the size of the sub band under consideration. 

    can now be computed as  

          
   σ                                                

From the computed values of    and   the threshold can be 

calculated using equation (7). The computed threshold is data 

driven and subband dependent.  

 

3.4 Thresholding functions 

Normally hard thresholding and soft thresholding functions 

are used for denoising process. Hard thresholding is "keep or 

kill" procedure and is more intuitively appealing but it 

introduces artifacts in the recovered images. The soft 

thresholding operation sets the coefficients smaller than the 

threshold to zero and shrinks the others toward zero. Soft 

thresholding is more efficient and it is also found to yield 

visually more pleasing images. Here in the proposed work the 

subband specific thresholds were applied to the coefficients 

using soft thresholding rule. The following illustration shows 

soft and hard thresholding operations.  
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Figure 4. Soft & Hard thresholding operations 

 

3.5 Denoising algorithm 

The image denoising algorithm developed in the paper can be 

summarized as follows:- 

Step 1: The noisy image is first divided into spatial segments 

of smaller size, say 64 by 64.  

Step 2: The        along six directions 0º, 30º, 45º, 60º, 90º 

and -45º are computed using equation (9) for each segment 

and the first two minimum        directions are chosen as 

the pair of transform and alignment directions. 

Step 3: The image segments are decomposed into sub-bands 

using directionlet transform along the chosen pair of 

directions. 

Step 4: The noise variance is computed from the      

subband using equation (10) 

Step 5: For each subband, except the LLL subband, compute 

the Bayes threshold using the equation (7). 

Step 6: Apply the computed threshold to the subbands using 

soft thresholding rule to estimate the best value for the noise-

free coefficients. 

Step 7: Reconstruct the image from the above processed sub-

bands and the low-pass residual (LLL) to obtain the denoised 

image. 

Step 8: Apply deblocking algorithm to remove the block 

artifacts. 

4. RESULTS AND DISCUSSIONS 
Standard grey images of size 512 x 512 were used for 

evaluating the performance of the developed algorithm. The 

test images were contaminated with zero mean white 

Gaussian noise with σ = 10, 15, and 20. The performance of 

the proposed method was compared with Bayeshrink in [4]. In 

our method we used the popular Haar wavelet for the 

decomposition of the image. The performance improvement 

was quantified in terms of Peak Signal to Noise Ratio 

(PSNR). PSNR was obtained by using the following formula: 

             
  

   
                                            

where R is the maximum fluctuation in the denoised image. 

For an 8 bit gray scale image the value of R is 255. MSE is 

representing the Mean Square Error between the denoised 

image Iden and the original image (before adding noise) Iorg, 

which was computed using the following equation: 

    
                      

 
   

   
                            

where M and N are the size of the images.  

The directions estimated by minimizing the directional 

variance for the Lena image is shown in Figure 5. Here the 

image was segmented into small patches of size 32x32 and the 

directional variance was computed along eight different 

directions. It is evident from this figure that the directional 

variance has correctly identified the directions that are close 

to the content directionality of the image. The blocking effect 

due to the block processing as explained earlier is shown in 

Figure 6 for Lena image.  

 

Figure 5: Directions estimated by minimizing Directional 

Variance for Lena image. 

 

 

Figure 6: The denoised images of Lena before applying the 

deblocking algorithm. The sharp artificial edges are 

visible at the segment boarders. 

The PSNR comparison of Lena, Boat and Barbara images is 

given in Table 1 and a visual comparison of Lena and Barbara 

images in Figure 7 for σ = 20. The PSNR values provided 
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are the average of 10 different noise realisations for 

each standard deviation. The proposed method outperforms 

the other ones for both the test images. Also the visual quality 

of the denoised images is evidently better because of sharper 

edges and texture. The PSNR difference for Barbara image is 

more due to the fact that it has more high frequency content 

and so more directional features. It is evident from the result 

that the DT has effectively captured the directional features in 

Barbara image.  

 

 

Figure.7. Image denoising using the new method for Lena 

and Barbara images. These images are presented in the 

order from top to bottom: Noise free image, noisy image 

with σ = 20, denoised image using wavelet, denoised image 

using directionlet. 

 

 

Table.1. PSNR (dB)* values for the different denoising 

algorithms of Lena & Barbara (512x512) images 

Image Method 
σ 

10 15 20 

Lena 

Noisy Image 28.15 24.63 22.11 

BayesShrink 33.31 31.39 30.14 

Directionlet 34.38 32.48 31.20 

Boat 

Noisy Image 28.15 24.63 22.11 

BayesShrink 31.80 29.87 28.48 

Directionlet 32.46 30.61 29.19 

Barbara 

Noisy Image 28.15 24.64 22.11  

BayesShrink 30.85 28.50 27.13 

Directionlet 32.29 30.11 28.45 

* Average of ten readings 

5.   CONCLUSIONS 
The paper has proposed a new image denoising technique 

based on skewed anisotropic wavelet transform called 

directionlets. The new method suitably adjusts the transform 

directions based on dominant directions of each segment of 

image and successfully captures the oriented features. Here 

the dominant directions of the segmented image are first 

identified by computing the directional variance and those 

were selected as the suitable transform directions for taking 

the directionlet transform. The method is more 

computationally efficient than the method which takes the 

directionlet transform along multiple directions to identify the 

dominant directions. The Bayes Shrink method is used for 

setting subband adaptive thresholds to the decomposed image. 

The proposed technique has been tested on well-known 

benchmark images, where their PSNR and visual results show 

the superiority of the proposed technique over the 

conventional image denoising techniques. The performance 

improvement is basically due to the adaptation of the 

transform directions along the dominant directions of the 

spatially segmented image. 
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