
International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 11, December 2013

38

A Character Recognition Approach using Freeman

Chain Code and Approximate String Matching

Samit Kumar Pradhan
Lecturer in Computer Science

& Engineering
RGUKT, Basar

Andhra Pradesh, India

Sujoy Sarkar
Lecturer in Computer Science

& Engineering
RGUKT, Basar

Andhra Pradesh, India

Suresh Kumar Das
M. Tech in Computer Science

University of Hyderabad
Hyderabad, India

ABSTRACT

This paper deals with a syntactic approach for character

recognition using approximate string matching and chain

coding of characters. Here we deal only with the

classification of characters and not on other phase of the

character recognition process in a Optical character

Recognition. The character image is first normalized to a

specified size then by boundary detection process we detect

the boundary of the character image. The character now

converted to boundary curve representation of the characters.

Then the curve is encoded to a sequence of numbers using

Freeman chain coding. The coding scheme gives a sequence

of numbers ranges from 0 to 7. Now the characters are in form

of strings. For training set we will get a set of strings which is

stored in the trie. The extracted unclassified character is also

converted to string and searched in the trie. As we are dealing

with the character which can be of different orientation so the

searching is done with approximate string matching to support

noisy character that of different orientation. For approximate

string matching we use Look Ahead Branch and Bound

scheme to prune path and make the approximation accurate

and efficient. As we are using trie data structure, so it take

uniform time and don't dependent on the size of the input.

When we performed our experimentation for noiseless

character that is printed character it successfully recognize all

characters. But when we tested with the different variation of

the character then it detect most of the character except some

noisy character.

General Terms

Pattern Recognition, Character Recognition, OCR.

Keywords

Syntactic Pattern Recognition, Freeman Chain Coding, trie,

Character Recognition, Approximate string matching,

Boundary detection.

1. INTRODUCTION
Character recognition is an area of research in image

processing of Pattern Recognition domain. There are Optical

Character Recognition (OCR) for recognition of characters of

different scripts. The OCR research of English character is in

matured state where the OCR for Indian scripts still in

evolution stage for efficient recognition. Generally the

character recognition contain various stages like, line

segmentation, word segmentation, character segmentation,

binarization, feature extraction, classification. From all the

stages classification of characters plays an important role in

the accuracy of character recognition. Generally for

classification statistical pattern recognition are used. Here we

proposed one syntactic PR method for classification[1][2] of

characters. Our method involves string encoding, approximate

string matching[3] and trie data structure.

Each character is converted to a string for the classification.

String matching is used to compare training characters and the

extracted unclassified character. Let X[1 ... n] be a string of

length n from the training set to be compare with Y[1 … m]

of length m is a string encoded from a unclassified character.

The string Y may contain string error with respect to training

characters. The string errors are deletion, insertion,

substitution. The approximation matching is there to compare

the string with certain number of above error in the string.

Here we use one approximation string matching scheme for

matching of training characters with extracted characters.

For storing of the training characters string, we use trie data

structure. The search complexity in a trie data structure

depends on the longest string present in the trie and

independent of the number of input to the trie. The benefit of

using trie is to reduce the complexity in matching.

The organization of this paper as follows. Section 2 presents

some background concepts that are used in this paper, such as

Freeman chain encoding, Trie data structure, and

Approximate string matching. Section 3 presents the details of

the proposed approach, the character recognition procedure

using this proposed method. Section 4 presents the results and

discussion related to this approach and section 5 concludes the

paper.

2. BACKGROUND
All material on each page should fit within a rectangle of 18 x

Here we are only dealing with the character recognition not

with the extraction of the character from document image.

Here we first use the boundary of the image to encode that to

a string. The boundary detection[4] process gives the

boundary of the character image. That means the character

image now represented with boundary line of the image.

Going in the direction of the curve starting from a point until

we reached again to that point. We will get a chain of code as

defined in freeman chain encoding process. We are generally

developing this classification method for the Indian script and

we are operating on the basic Telugu scripts. The encoding

and string representation of the character image which we

describe in later section. There are many approaches in

previous work[5][6] for character recognition, with different

strategies such as using fringe distance, template matching[7]

and wavelet analysis [8]. Now we build up some essential

background for our approach.

2.1 Freeman Chain Encoding
Freeman chain code[4][9] is a code obtained by following the

boundary in an assigned direction (clockwise or anti-

clockwise). We start following the boundary from a fixed

point and move along the boundary of the image until we

reached to the starting point again.

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 11, December 2013

39

While following the path depending upon the location of the

next pixel from the current pixel as shown in fig. 1,

Fig 1. The Freeman chain coding direction.

The P is the current black pixel and there are 8 possible

neighbor of P. Depending on the eight direction we will get

one code number 1 to 7. While moving in total path we get

number of code and that form one string which represent the

image. From the Fig. 2, using freeman coding, starting from

the point 'S' and move in anticlockwise direction gives

'5555011077033334'.

Fig 2. An example showing the coding of an image.

2.2 Trie Data Structure
Trie data structure generally used in dictionary build up as its

search time complexity not depends on the size of the input

rather on the longest string present in the trie. It starts search

from the start node to depth reading single input symbol at a

time and rejecting all path except the symbol. Here the string

is stored in the path between start node to an accepting node.

Each accepting node represents one String. Shang and

Merrettal[10] used the trie data structure for exact and

approximate string searching. They presented a trie based

method whose cost is independent of the number of the words

in the document. Trie indexes combine suffixes and so are

compact in storage.

2.3 Approximate String Matching
Consider two strings of text T [1 ... n] and P [1 ... m], and a

distance function ed(). The problem is to match the two

strings with an error bound of 'K'. The edit distance ed()

between two strings is defined as the minimum number of

character insertions, deletions and substitutions needed to

convert one to another. The problem of approximate string

matching[11] is typically divided into two sub-problems first

one is, finding approximate sub string matches inside a given

string and second one is finding dictionary strings that match

the pattern approximately[12]. We are dealing with the second

type of the approximate string matching problem.

Here we are storing all the string in the trie data structure and

finding a approximate string with respect to searched string.

The main approach of the approximate string matching is to

prune some path while searching approximate match in the

trie. There are some heuristic for pruning the path in the trie

so that the search path will reduce and the approximate match

will be faster. In our approach we are using Look Ahead

Branch and Bound method to prune path while doing

approximate matching in the trie.

2.4 Look Ahead Branch and Bound
Look Ahead Branch and Bound is an Artificial Intelligence

concept in which we will go ahead only when there is a hope

of finding a solution. Here in trie we travel only those path

where there is a hope to get the matching string. Here in trie

we store one number in each node and along with this we

need some other value for the heuristic. We store one field

'key' to differentiate between accepting node and the non

accepting node. We store the key value as non zero to mark as

accepting node and key is zero for non accepting node. Also at

every node we store some value defined below,

Let the training data for a character set that is stored in the trie

is denoted as X[1 ... n] and the extracted character string

representation is Y[1 ... m]. In the reference to the paper[3], In

trie we will not traverse the subtrie(c) unless there is a hope of

determining a suitable string in it, the expected suitable string

is the string that contains less than K edit distance with the

searched string. For pruning some conditions are needed to

checked before proceeding to check whether there is a hope of

finding a string or not.

Let N - be the length of the prefix calculated so far.

K - be the maximum permissible error in the string.

M - length of the searched string.

MAXL - A value stored at a node which indicates the length of

the path between this node and the most distant node

representing an element of the trie.

MINL - A value stored at a node which indicates the length of

the path between this node and the least distant node

representing an element of the trie.

At each node of the trie, before we do any further

computations, we test the following conditions refer to as

Look Ahead Branch and Bound conditions:

1. MINL > m - N + K

2. MAXL < m - N – K

If any of the above two equations satisfy then there is no hope

of finding a solution within the present subtrie, so prune the

subtrie from the searched space. While searching if we

reached at a accepting node that is with non zero key value

and the distance of the string represented by accepting node

and searched string is in error bound K, accept that string.

There is a chance that for a given error bound K two or more

string may result, here the string with less distance with the

searched string is the resulted string.

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 11, December 2013

40

3. OUR APPROACH
We have proposed an effective syntactic character recognition

method. The flow of our approach is given in fig. 3. The solid

lines define the flow of the training character and the dotted

lines define the extracted character, which is unclassified

character.

For training data set we first normalize the binarize character

image into a specified size, let it be 32 X 32. The

normalization step is required for getting a valid encoded

string. The extracted image can be of any size, so the

normalization stage convert the image into a fixed size as the

one taken in the training character. After the size

normalization we detect the boundary of the character image

as shown in fig. 4 and fig. 5. So for a character now we have

only the boundary of the image and ready to encode the

boundary curve to a string.

The boundary of the character is now encoded to a string

using freeman chain coding as shown in fig. 1 and fig. 2. For

each character we will get one sequence of numbers between

0 to 7. The strings obtained from a training character set is

stored in a trie. When an extracted unclassified string is

matched against the trie, we use approximate string matching.

The main reason of the using approximate string matching not

exact string matching is the noise, the unclassified character

string may contain some noise. For slightly changed shape

character also give different string than the original string. So

to overcome this problem we use approximate string matching

with some error bound instead of exact string matching. The

error bound should enough large to uniquely classify the

characters. While matching we are using levenshtein edit

distance to compare string. We build a confusion matrix by

finding the distance among the strings obtained from

characters. Here we have given an example of 10 Telugu

characters and the confusion matrix among them is shown in

fig. 6.

Fig. 3. The flow chart of our approach

Fig. 4. Character 'ba' of Telugu

Fig 5. Character 'ba' (Telugu) after boundary detection

From the confusion matrix it is clearly stated that the distance

among the string obtained from each character is very high, so

by string matching we can classify the characters. Once the

character string are stored in the trie the approximate

matching is needed to match the character.

There are many approaches for the approximate string

matching. Here we are considering Look Ahead Branch and

Bound method of approximate string matching. The main aim

of the approximate matching is to prune path by a heuristic, so

that the search space will reduce and search will be faster.

Here we approximately match the extracted string against the

trie containing strings from training data set. We fix an error

bound for approximate match depending on the error bound

we get a set of approximate match strings. There is a chance

of getting more than one approximate matched string for a

given searched string. In this case we calculate the distance

between searched string with all resulted string and the string

with least distance with searched string is the result.

4. ANALYSIS AND RESULTS
We performed the experiment to get the encoded string. We

performed the test on basic Telugu character which is scanned

at 300 dpi. All the characters are normalized to a specified

size of 32X32. We have generated all the characters boundary

and performed freeman chain encoding to represent as a string

using Open CV library. We have tested for the 44 Telugu

basic characters and the distance between characters are

calculated. Some part of the distance table that is confusion

matrix shown in fig. 6, which shows the distance between the

string representation of the characters and has large value, it

says the method can be used to classify the characters. The

bold letter in the fig. 6 shows some character that are similar

to each other having less distance. We have tested all 44 basic

character and implemented with K value 5. This method

uniquely classify all the character.

To check the efficiency of the method for different orientation

of characters, we checked the method for 15 variation with K

value 50 of all character. We have shown the example of

character 'a' of Telugu script in fig. 7 and table 1.

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 11, December 2013

41

Fig. 6. Confusion matrix.

Fig 7 . Different orientation of character 'a' of Telugu.

Table 1. Distance among the different variation of

character 'a'.

Image 2 3 4 5 6 7 8 9

1 95 89 83 104 101 74 91 83

Image 10 11 12 13 14 15

1 94 89 53 85 81 100

From the confusion matrix shown in fig.6 and from the table

1, the distance among the character is very large and among

its own variation it is less. Although some of the entry in the

confusion matrix in fiq. 6 are more than some of the entry in

the fig. 8. It stated that some variation of the character is

accurately classified but if the orientation is more that certain

level for some character it is unclassified but if the error is not

there then it can accurately classify all. So this method can be

used to classify the printed character and character with

certain level of variation. But extensive study in this area may

be useful for accurate classification of all character.

5. DISCUSSION AND FURTHER WORK
As this method is based on the approximate string matching

and string encoding and it is showing promising result for the

printed character and some small variation of the character it

can be used for the hand written character recognition. It is

not a method for a specified language dataset. It can be easily

used for the other Indian scripts basically efficiently those

whose size are circular in shape like Telugu and Oriya. Here

we only considered the basic character of the Telugu script

but we can also consider all the characters of the Telugu

script. As it uses the pruning strategy to reduce the search

space the disadvantage of excess training character can be

avoided where we have to compare with all the set of

characters.

6. CONCLUSION
We have presented one syntactic approach for the character

recognition. The new approach that we introduced here are

approximate string matching and the string comparison for the

character recognition. We also used trie for the efficient

search and also of less complexity. As this result giving

promising result for without noise and also some variation of

the character image so further study in this field may result

more efficient result.

7. REFERENCES
[1] S. K. Pradhan and S. Sarkar, “Article: Character

recognition using discrete curve with the use of

approximate string matching,” IJCA Proceedings on

International Conference in Distributed Computing and

Internet Technology 2013, vol. ICDCIT, pp. 17–22,

January 2013,.

[2] S. K. Pradhan and A. Negi, “A syntactic pr approach to

telugu handwritten character recognition,” in Proceeding

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 11, December 2013

42

of the workshop on Document Analysis and

Recognition, ser. DAR ’12. New York, NY, USA: ACM,

2012, pp. 147–153.

[3] G. Badr and B. Oommen, “A novel look-ahead

optimization strategy for trie-based approximate string

matching,” Pattern Analysis & Applications, vol. 9, pp.

177–187, 2006, 10.1007/s10044-006-0036-8.

[4] H. Bunke and P. Wang, Handbook of Character

Recognition and Do.World Scientific, 1997.

[5] N. Kato, M. Suzuki, S. Omachi, H. Aso, and Y. Nemoto,

“A handwritten character recognition system using

directional element feature and asymmetric mahalanobis

distance,” Pattern Analysis and Machine Intelligence,

IEEE Transactions on, vol. 21, no. 3, pp. 258 –262,

mar1999.

[6] H. Liu and X. Ding, “Handwritten character recognition

using gradient feature and quadratic classifier with

multiple discrimination schemes,” in Document Analysis

and Recognition, 2005. Proceedings. Eighth International

Conference on, aug.-1 sept. 2005, pp. 19 – 23 Vol. 1.

[7] A. Negi, C. Bhagvati, and B. Krishna, “An ocr system for

telugu,” in ICDAR, 2001, pp. 1110–1114.

[8] A. K. Pujari, C. D. Naidu, M. S. Rao, and B. C. Jinaga,

“An intelligent character recognizer for telugu scripts

using multiresolution analysis and associative memory,”

Image Vision Comput., vol. 22, no. 14, pp. 1221–1227,

2004.

[9] R. E. W. Rafael C. Gonzalez, Digital Image Processing.

New Delhi, India: Pearson/Prentice Hall, 2008.

[10] H. Shang and T. Merrettal, “Tries for approximate string

matching,” Knowledge and Data Engineering, IEEE

Transactions on, vol. 8, no. 4, pp. 540 –547, aug 1996.

[11] B. J. Oommen and R. K. S. Loke, “Pattern recognition of

strings with substitutions, insertions, deletions and

generalized transpositions,” Pattern Recognition, vol. 30,

pp. 30–5, 1995.

[12] R. Baeza-yates and G. Navarro, “Fast approximate string

matching in a dictionary,” in In Proc. SPIRE’98. IEEE

Computer Press, 1998, pp. 14–22.

IJCATM : www.ijcaonline.org

