
International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 11, December 2013

25

A Practical Approach to the Performance Analysis of

Software Components using Calibrated Software

Reliability Growth Models

S. Charles Ilayaraja
Assistant Professor

Sethu Institute of Technology,
Virdhunagar, India.

M. Ganaga Durga, Ph.D
Assistant Professor

Government Arts College for Women,
Sivagangai, India.

ABSTRACT
Many software tools have been proposed for the purpose of

performance analysis and measurement on software executables.

The results produced by such tools are visually displayed based

on run-time characteristics of software executables without

suggesting the fitness of executables at the operational

environment. This is because run-time characteristics of an

executable are not static for every running instance even in the

same platform and same machine configuration. In this paper, an

efficient method has been introduced to estimate fitness of

software executables to the operational environment by

incorporating Software Reliability Growth Models. The objective

of this new method is to suggest the level of fitness of software

applications based on reliability measures. For this purpose,

existing reliability growth models are calibrated and run-time

attributes of executables have been employed instead of failure

data. The estimation of fitness at the operational environment of

software executables will reduce the complexities in both

performance analysis and maintenance.

KEY WORDS
Application fit, process calling structure, run-time characteristics,

operational environment, instrumentation process

ACRONYM & NOTATIONS
SRGM Software Reliability Growth Model

MVF Mean Value Function

FD Function and its descendant’s time

NHPP Non Homogeneous Poisson Process

m(t) mean value function with respect to time

fm(t) mean value function with delay factor

a initial parameter estimate

b proportionality constant

min(fd) minimal function time

min(∆fd) minimal differenced function time

max(fd) maximal function time

max(∆fd)maximal differenced function time

avg(fd) average function time

avg(∆fd) average differenced function time

 delay factor to be incorporated in time

1. INTRODUCTION
The performance of executables in windows environment can be

evaluated by their run-time characteristics such as time elapsed at

CPU, processing time for memory profiling, function and its

descendant’s time of application calling structure. In Microsoft

Windows environment, the run process of software executables is

initiated with instrumentation process and followed by memory

profiling. Instrumentation is the special process of loading and

executing the DLLs that are required for the successful run at the

current instant of the given application [11]. The run-time

characteristics of the same application (software executables that

run at stand alone) at different instant are not same due to the

variation in the instrumentation process at the every instant of

application run. As a result of such variation, the calling structure

of running application is also varying with respect to its running

instance.

The calling structure that is created for an application is used to

determine time elapsed at CPU for both callers and called

modules and the time spent from a specific calling function to its

descendants. The calling structure is represented visually as call

graph where thicker edges represent the bottlenecks in the calling

sequence. In call graph, nodes represent the calling module and

the edges represent the calling sequence mechanism. The

bottleneck or load is identified by means of the thickness of the

edge. The edges having more thickness have to be resolved to

tune up the application performance. Thin edges within calling

structure can be achieved by optimizing three attributes: elapsed

time, function and descendant time and processing time [11].

In this paper, the possibility of thin edges within calling structure

is estimated using SRGMs. The mean value function generated on

the three attributes can be used to suggest the fitness of

application at the operational environment. The application fit is

characterized by people, data, tool and environment. The values

of first two attributes have been recorded by using IBM Rational

Quantify and the third attribute has been recorded by using IBM

Rational Purify. The observed data set have been employed on s-

shaped delay SRGM model [3]. The unknown parameters of the

model have been estimated using (Statistical Modeling and

Estimation of Reliability Functions) SMERFS 2.0 package. The

plots of mean value function and other numerical computations

for each data set have been done using MATLAB 2012

environment.

1.1 Motivation
A Study has been made on calling structure of code attributes and

their applicability to fault prediction models for the improvement

in the accuracy of prediction. The results indicated that the

attributes yield better improvement at use of individuals and no

improvement when they are used in mixture [4]. An efficient

technique has been presented to detect unsafe loadings of libraries

or modules. The run-time information was collected at both static

and dynamic instrumentation. Implementation of this technique

on both Microsoft Windows and Linux revealed that some of the

unsafe loadings can lead to remote code execution on windows

platforms than linux [5].

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 11, December 2013

26

An adaptive framework has been proposed to address the

difficulty in the analysis of inter-component interactions of

modular software systems by incorporating path testing. This

framework suggests estimating path reliability of each software

component based on common programming constructs such as

sequence, branching and looping and then system reliability is

estimated. The work on this framework shows that the path testing

has high correlation to the actual software reliability. It can be

used for early stages of software development with certain

assumptions [6].

Software architecture knowledge has been taken into account to

assess the system reliability by considering correlated component

failures. This approach is suitable for component based software

applications whose dependency is high [7]. The role of residual

faults in the estimation of reliability has been analyzed and a

filtering approach is proposed to determine the actual fault load.

By using fault injection method the residuals that are not useful

for the estimation of system reliability have been ignored. This

approach is effective on component based software system whose

architecture is complex and components are tightly coupled [8].

The usage of generic reliability models is difficult because of the

variability in the failure process. Even though many models have

been proposed in the unified approach, no one is suited for all the

cases. To address this problem a normalized development metrics

are suggested to separate domain knowledge from the process to

achieve generic predictive models [9].

The estimation of both faults and vulnerabilities on software

applications helps to improve its reliability. The similarities of

both fault and vulnerability prediction models have been analyzed

and common metrics proposed to use both models

interchangeably for the estimation of reliability [10].

1.2 Software Reliability Growth Models
Software reliability is one of the quality attributes that can be

defined as the probability of failure free operation within specified

period of time and operational environment. The estimation of

software reliability improves the effectiveness of test process and

hence the life time of the product [3]. Many SRGMs have been

proposed for the estimation of reliability and they have been

classified into three broad groups: error seeding models, data

domain models and the time domain models. The time domain

models have been widely adopted due to the usage of statistical

techniques and the estimation is based on curve fitting on the

observed data [1].

The models are called as growth models because the system

reliability grows with respect to the time as the test progresses.

Most of the SRGMs use failure data which can be obtained during

test phase of software development. The estimation process

begins at the proportionality constant that indicates failure rate

and next at the initial number of failures at the start of testing. The

estimation progresses through the specified time interval by

computing cumulative number of failures [3]. Then system

reliability at the specified point of time can be estimated by using

 (1)

The selected SRGM is based on unified approach and allows

imperfect debugging. The failure process is described by using

NHPP with the necessary assumptions and unified SRGM has

been defined as in [1] [2]

 (2)

The generalized distribution is converted to specific distribution

as two staged er-lang distribution and we obtain yamada s-shape

delayed model by using certain assumptions as in [12]

 (3)

1.3 Model Calibration
SRGMs can be incorporated with performance analysis and

measurement on the performance of an executables by including

additional parameters with respect to the characteristics of

operational environment. For our experiment, two core

applications and two user defined applications have been selected

in 32-bit Microsoft windows environment. Each application that is

running is characterized by the following run-time attributes:

1. Function and its Descendant time

2. Time elapsed at CPU

3. Processing time for memory profiling

These attributes are employed as the parameters of the existing

SRGMs to estimate better calling structure of running applications

[4].The selected model (3) is incorporated with a delay factor to

suggest the fitness of the running application to the operational

environment. The delay factor is defined as the ratio of threshold

of variation in FD time to the threshold in FD time of all instances

of application run. It is proposed by

 (4)

Where

 (5)

 (6)

By using the delay factor in (3) the s-shaped model is slightly

modified as

 (7)

The calibrated model as in (7) is modified version of s-shape

delayed model. The delay factor is observed due to the abnormal

variation at some of the running instances.

The MVFs of both CPU elapsed time and memory profiling time

are more practical in the calibrated model than the fundamental

model because of the consideration of abnormal variation. This

abnormal situation is experienced by the platform due to the

problems in resource allocation and scheduling [5].

2. DATA ANALYSES
The selected SRGM (3) and its calibrated version (7) have been

used with four data sets DS-I, DS-II, DS-III and DS-IV. The first

two are recorded by running core applications of Windows

operating system and remaining of two is recorded by running

user defined applications. The four data sets for both CPU elapsed

time and processing time of memory profiling about 15 running

instances are presented in Table 1 and Table 2.

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 11, December 2013

27

Table 1. Time elapsed at CPU

Run

DS-I DS-II DS-III DS-IV

1 4313 657 6711 9047

2 1969 328 4719 5500

3 2078 328 4093 7844

4 2406 203 5478 4766

5 1829 297 4469 5234

6 1922 218 4953 4515

7 1984 391 4360 5500

8 1937 219 5766 7219

9 1860 938 4281 4438

10 1953 328 6875 4703

11 1844 203 6641 4188

12 1734 188 7078 3906

13 2734 312 5672 4047

14 2766 313 6093 4391

15 2579 344 6157 4657

Table 2. Processing time for memory profiling

Run

DS-I DS-II DS-III DS-IV

1 874 374 765 561

2 702 515 436 546

3 718 561 484 687

4 515 515 546 671

5 562 405 483 514

6 764 515 452 609

7 749 343 625 499

8 734 515 499 530

9 484 374 593 562

10 499 327 593 546

11 690 296 499 483

12 687 343 671 530

13 608 390 452 687

14 530 514 687 640

15 500 359 531 686

The four data sets are described as follows

 DS-I have been observed by running a text editor

(notepad)within Microsoft windows operating system

 DS-II have been observed by running a file system

interface (explorer)within windows operating system

 DS-III have been observed by running an user defined

code that has been written in VC++ 6.0 with

fundamental constructs: sequence, branching and

looping

 DS-IV have been observed by running an another user

defined code that has been written in Visual C++ 6.0

with the programming constructs: sequence, branching

and recursion

By observing Table 1 and Table 2, processing time of memory

profiling has more variation than CPU elapsed time. This

variation is due to the memory management policy of the

windows operating system. The calling structure that was created

at the time of independent application run is used to record FD

time. On 15 running instances, its variation is recorded by

comparing its current instance with the previous instance. These

observations are used to compute delay factor as in (4), (5) and

(6).

The plots of four data sets for CPU elapsed time and processing

time of memory profiling are presented in Fig. 1 and Fig. 2.

Figure 1. CPU time elapsed for running instances of

applications

Figure 2. Processing time of memory profiling for running

instances of applications

The unknown parameters of the selected SRGM are estimated

using four data sets for both time elapsed at CPU (Telapsed) and

processing time of memory profiling (Tprocess) using a specialized

statistical tool SMERFS with maximum likelihood estimation.

The estimated values, delay factor values for each data set are

presented in Table 3

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 11, December 2013

28

Table 3. Estimation of parameters for both elapsed time and

processing time

 B a

DS-I
Telapsed 0.213 40944

0.6363
Tprocess 0.214 11636

DS-II
Telapsed 0.221 6246

1.2952
Tprocess 0.215 7627

DS-III
Telapsed 0.165 117800

0.7294
Tprocess 0.183 10951

DS-IV
Telapsed 0.254 89488

0.6466
Tprocess 0.191 11223

3. EXPERIMENT RESULTS
The selected SRGM is one of the fundamental time domain

reliability models whose reliability grows as the test process

progress. The selected SRGM (3) and its calibrated version (7) are

incorporated with data sets DS-I, DS-II, DS-III and DS-IV for

both Telapsed and Tprocess for fifteen number of running instances of

windows applications. The MVF plot for Telapsed of both SRGMs

(3) and (7) for each data set is presented in Fig. 3 to Fig. 6.

Similarly the MVF plot for Tprocess of SRGMs (3) and (7) for each

data set is presented in Fig. 7 to Fig. 10. When comparing plots of

each MVF from Fig. 3 to Fig. 10, the cumulative time estimate is

lower in calibrated SRGM model than the estimation in

fundamental model. This variation illustrates the inabilities of

SRGMs to incorporate environmental factors that are influence on

the estimation of reliability.

Figure 3. Comparative plots of MVF on time elapsed at CPU

for DS – I

Figure 4. Comparative plots of MVF on time elapsed at CPU

for DS – II

Figure 5. Comparative plots of MVF on time elapsed at CPU

for DS – III

Figure 6. Comparative plots of MVF on time elapsed at CPU

for DS – IV

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 11, December 2013

29

Figure 7. Comparative plots of MVF on processing time of

memory profiling for DS – I

Figure 8. Comparative plots of MVF on processing time of

memory profiling for DS – II

Figure 9. Comparative plots of MVF on processing time of

memory profiling for DS – III

Figure 10. Comparative plots of MVF on processing time of

memory profiling for DS – IV

The percentage of variation in cumulative estimate of CPU

elapsed time and processing time is not more than 10% in all

cases. This percentage of variation may be helpful in suggesting

the fitness of software executables at the operational environment.

From Table 4 and Table 5, DS-I have lowest percentage of

variation and DS-II, have highest percentage. This is because of

the complexity in the calling structure. It is observed that the

software applications having less dependency to its running

platform may have good level of fitness at the operational

environment.

Both Telapsed and Tprocess are affected by the calling structure of the

specific application run. The variation is observed for all cases

because of dynamic nature of calling structure of running

applications at every instance. Without considering this variation,

the SRGM may not estimate reliability of the application with

respect to the practical environment. The difference in MVFs with

and without delay factor is illustrated in Table 4 and Table 5.

Table 4. MVFs variation in CPU elapsed time estimate with θ

m(t)

Without

fm(t)

with

Percentage

of variation

DS-I 33908 32887 3.01

DS-II 5267 4942 6.16

DS-III 83346 78940 5.29

DS-IV 79955 78253 2.13

Table 5. MVFs variation in processing time estimate with θ

m(t)

Without

fm(t)

with

Percentage

of

variation

DS-I 9659 9371 2.98

DS-II 6346 5935 6.48

DS-III 8316 7940 4.52

DS-IV 8751 8426 3.71

The calling structure can be can be optimized by controlling

certain parameters with respect to the operational environment.

One such parameter is FD time that creates practical limitations to

achieve software reliability. For this reason, a threshold values on

International Journal of Computer Applications (0975 – 8887)

Volume 84 – No 11, December 2013

30

both FD time and ∆FD time have been set as in (5) and (6) to

compute delay factor.

The delay factor is used to identify practical constraints on each

instances of the independent application run. In practical

situations, some of running instances of have maximum variation

which is indicated by the threshold values. These variations are

considered for achieving reliability so that an efficient calling

structure can be created. This calling structure may be studied to

suggest the fitness of applications within the specified operational

environment.

4. CONCLUSION
In this paper, a new method of analysis and measurement on

performance of software executables was presented. Run time

attributes of software executables were incorporated into SRGMs

to estimate fitness of software executables within the specified

operational environment. The time elapsed at CPU, processing

time of memory profiling and function time, were employed as

parameters of SRGMs instead of failure data as in the traditional

reliability estimation. The fundamental SRGM is calibrated with a

delay factor to extend practical applicability of the estimation

process. The delay factor was computed by using the calling

structure of executables which is obtained at the time of running

instance. The MVF of selected SRGM was adjusted by means of

delay factor into the exponential time scale parameter.

Considerable variation was observed on both MVFs that were

generated with and without delay factor. This level of variation

can be used to identify the level of dependency of software

executables to the running platform. The experiment results

indicate that the variation between two MVFs is not more than ten

percent and hence the selected executables are having 90% of

fitness to the operational environment. By increasing the number

of running instances of same application within same platform,

the data may fit into more SRGMs and hence more dimensions

may be suggested for the estimation of application fitness at the

operational environment.

5. REFERENCES
[1] P. K. Kapur, H. Pham, Sameer Anand, Kalpana Yadav, “A

Unified Approach for developing Software Reliability

Growth Models in the presence of Imperfect Debugging and

Error Generation”, IEEE trans. on Reliability, Vol. 60, No.

1, 2011,pp:331-340

[2] Chin-Yu Huang, M.R. Lyu, Sy-yen Kuo, “A Unified Scheme

of some NHPP models for Software Reliability Estimation”,

IEEE trans. on Software Engineering, Vol. 29, No. 3, 2003,

pp:261-269

[3] Razeef Mohd, Mohsin Nazir, “Software Reliability Growth

Models: Overview and Applications”, Journal of Emerging

Trends in Computing and Information Sciences, Vol. 3, No.

9, 2012, pp: 1309-1320

[4] Yonghee Shin, Robert M. Bell, Thomas J. Ostrand, and Elaine

J. Weyuker, “On the Use of Calling Structure Information to

improve Fault Prediction”, Emprical Software Engg., vol.17,

2012, pp.390-423

[5] Tacho kwon and Zhen dong Su, “Automatic Detection of

Unsafe Dynamic Component Loadings”, IEEE trans.

Software Engg., vol. 38, No.2, 2012, pp.293-313

[6] Chao Jung Hsu and Chin yu Huang, “An Adaptive Reliability

Analysis using Path Testing for Complex Component based

Software Systems”, IEEE trans. Reliability,Vol.60, No.1,

2011, pp.158-170

[7] Lance Fiondella, Sanguthevar Rajasekaran, and Swapna S.

Gokhale, “Efficient Software Reliability Analysis with

Correlated Component Failures”, IEEE trans. Reliability,

vol.62, no.1, 2013, pp.244-255

[8] Roberto Natella, Domenico Cotrono, Joao A- Duraes, and

Henrique S. Madeira, “On Fault Representativeness of

Software Fault Injection”, IEEE trans. Software Engg.,

vol.39, no.1, 2013, pp. 80-96

[9] Brendan Murphy, “The Difficulties of Building Generic

Reliability Models for Software”, Empirical Software Engg.,

vol.17, 2012, pp. 18-22

[10] Yonghee Shin, and Laurie Williams, “Can Traditional Fault

Prediction Models be Used for Vulnerability Prediction?”,

Empirical Software Engg., 2013, vol.18, pp.25-59

[11] Rational Suite Tutorial, IBM-Rational e-development

company, April 2000, Part No: 800-023316-000, Product

Version: Rational Suite 2000.02.10

[12] S. Charles Ilayaraja, M. Ganaga Durga, “Comparative Study

of Failure Data for Software Reliability Estimation”, IJCST,

2013, vol. 4, pp. 173 – 177

IJCATM : www.ijcaonline.org

