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ABSTRACT
Recent studies on fuzzy automata are influenced by algebraic tech-
niques to tackle issues like reduction, minimization and their lan-
guages. Fuzzy automaton homomorphism is one such majorally
discussed technique. This paper is concerned with the group of
(weak) fuzzy automaton automorphisms and constructions of all
(weak) fuzzy automaton automorphisms over arbitrary fuzzy au-
tomaton. It is shown that (1) every arbitrary fuzzy automaton is de-
composed into distinct primaries, (2) primaries are maximal singly
generated fuzzy automata and (3) every weak fuzzy automaton ho-
momorphism on an arbitrary fuzzy automaton is uniquely deter-
mined into weak fuzzy automaton homomorphisms on all its pri-
maries. Therefore, the discussion begun over strongly connected
fuzzy automaton and continue constructions as well as charac-
terizations of (weak) fuzzy automaton homomorphisms, isomor-
phisms, endomorphisms and automorphisms sequentially over per-
fect fuzzy automaton, singly generated fuzzy automaton and pri-
maries of fuzzy automaton. Finally, it is obtained that the group
of weak fuzzy automaton automorphisms and its cardinality over
arbitrary fuzzy automaton.

Keywords:
Fuzzy function, fuzzy automaton (strongly connected, perfect and
singly generated),(Weak) fuzzy automaton automorphism (homo-
morphism, isomorphism), primaries and basis of a fuzzy automa-
ton.

1. INTRODUCTION
In many recent literature ([2],[4],[5],[8],
[10],[13],[14],[15],[16],[17]), researchers have discussed fuzzy
automaton algebraically. It seems that the main motto behind them
was to discuss algebraic properties of fuzzy automata in relation
to their structure (i.e. fuzzy transition function) ([5],[11],[12],
[16],[18], [20]). Structure preserving fuzzy transition functions -
isomorphisms in general and homomorphisms in particular - plays
crucial role for equivalent and reduction of a fuzzy automaton([10],
[11],[12], [14],[15],[16],[17]). The aim of this paper is to construct
all elements of the group of (weak) fuzzy automaton automor-
phisms. We first discuss the nature of (weak) fuzzy automaton
automorphisms through a string of inputs (called h-identifier) and
used it to calculate the cardinality of the group.

It is pointed out, in remark 2.7, that the fuzzy automaton dis-
cussed in ([9],[11],[14],[16],[17]) is unable to derive homomor-
phism between fuzzy automata corresponding to an identifier.
Hence, throughout this paper we used fuzzy automaton, discussed
in [10], based on the notion of fuzzy function. In section 2, it is
shown that the set of all (weak) fuzzy automaton automorphisms
forms a group. It is established that the cardinality of this group
cannot exceed the number of states for a strongly connected fuzzy
automaton. In section 3, we have discussed abelian and weakly
abelian fuzzy automaton. It is proved that a fuzzy automaton is
weakly abelian if and only if every string of inputs is a fuzzy au-
tomaton automorphism identifier (i.e. h-identifier). It is established,
for perfect fuzzy automaton, that the group of weak fuzzy automa-
ton automorphisms is abelian and its cardinality is equal to the
number of states of that fuzzy automaton. It is also proved that
this group is a homomorphic image of the monoid of all strings
of inputs. The section 4 begun by establishing the fact that, every
weak fuzzy automaton isomorphism over a singly generated fuzzy
automaton is determined by its value on the generator. Apart from
various characterizations of existence of (weak) fuzzy automaton
isomorphism over a singly generated and strongly connected fuzzy
automata in terms of state fuzzy equivalence relation, various prop-
erties of weak fuzzy automaton isomorphism between two singly
generated fuzzy automata are also discussed. Then the number of
weak fuzzy automaton isomorphisms from a singly generated fuzzy
automaton to arbitrary fuzzy automaton in terms of the maximal set
of fuzzy state equivalent states is obtained. Also (weak) fuzzy au-
tomaton automorphisms over a singly generated fuzzy automaton
are characterized in terms of the circular path at the generator. Fi-
nally, it is established that the number of (weak) fuzzy automaton
isomorphisms over a singly generated fuzzy automaton cannot ex-
ceed the number of generators of the automaton, but it is equal to
the cardinality of a maximal set of q-fuzzy automorphic set of in-
puts. In section 5, it is established that any weak fuzzy automaton
isomorphism on an arbitrary fuzzy automaton is completely deter-
mined by its value on the basis. Further weak fuzzy automaton iso-
morphism is characterized in terms of an ordered basis. Thus, we
have concluded that the class of fuzzy automaton isomorphism over
arbitrary fuzzy automaton can be determined with the help of weak
fuzzy automaton homomorphisms on strongly connected, perfect,
singly generated fuzzy automaton and primaries of fuzzy automa-
ton.
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2. HOMOMORPHISMS AND STRONGLY
CONNECTED FUZZY AUTOMATON

The aim of this section is to introduce fuzzy automaton homomor-
phism and weak fuzzy automaton homomorphism in the light of
the definition of fuzzy function introduced in [10]. Here, strongly
connected fuzzy automaton and homomorphism on them are intro-
duced. We measure the size of the group of (weak) fuzzy automaton
isomorphisms over a strongly connected automaton.
LetA andB be sets. A fuzzy relation fromA toB is a fuzzy subset
µ of A × B i.e.µ : A × B → [0, 1]. The number µ(a, b) denotes
the degree to which a is related to b. A fuzzy relation µ from A to
B is said to be complete, if for each a ∈ A, there exists b ∈ B such
that µ(a, b) > 0. A fuzzy relation µ is said to be fuzzy function, if
for each a ∈ A, there is unique b ∈ B such that µ(a, b) > 0 [10].
The above definition resembles to that of the definition of the crisp
function, in the sense of unique image for each element of the do-
main. For preliminary notions on crisp automata theory and related
concepts of this paper we refer to ([1],[6],[7],[19]).
Definition 2.1[10] A fuzzy automaton is a triplet A = (Q,Σ, µ),
where Q is a nonempty finite set called set of states, Σ is a
nonempty finite set called set of inputs and µ is a fuzzy function
from Q×Σ to Q i.e. µ : (Q×Σ)×Q→ [0, 1].
The above definition of fuzzy automaton is different from the
definition of ([9],[11],[12],[16]), in the sense of defining µ
only. The above definition 2.1 is, in fact, a generalization of
the crisp deterministic finite state automaton, whereas defini-
tions in ([9],[11],[12],[16]) are generalizations of the crisp non-
deterministic finite state automaton.
If A = (Q,Σ, µ) is a fuzzy automaton then the fuzzy function µ
is extended to a fuzzy function µ∗ from (Q × Σ∗) to Q as : for all
p, q ∈ Q, a ∈ Σ, x ∈ Σ∗, µ∗(p, ax, q) = µ(p, a, r) ∧ µ∗(r, x, q),
where r ∈ Q such that µ(p, a, r) > 0 and

µ∗(p, ε, q) =

{
1, if p = q;
0, otherwise.

Here onwards, in this paper, we write µ for both µ and µ∗ without
any ambiguity.
Definition 2.2 Let A1 = (Q1,Σ1, µ1) and A2 = (Q2,Σ2, µ2) be
two fuzzy automata. A a pair (h, k) of maps, where h : Q1 → Q2 ,
k : Σ1 → Σ2, is called fuzzy automaton homomorphism from
A1 to A2, symbolically (h, k) : A1 → A2 , if ∀(p, x, q) ∈
Q1 ×Σ∗1 ×Q1, µ2(h(p), k(x), h(q)) = µ1(p, x, q).
In case, if Σ1 = Σ2 = Σ and k is the identity function on Σ ,then
we shall denote the homomorphism simply by h : A1 → A2.
A pair of maps (h, k) : A1 → A2 is said to be weak fuzzy automa-
ton homomorphism, if ∀(p, x, q) ∈ Q1 ×Σ∗1 ×Q1, µ1(p, x, q) >
0 ⇒ µ2(h(p), k(x), h(q)) > 0. Every fuzzy automaton homo-
morphism is a weak fuzzy automaton homomorphism, but not con-
versely. A (weak) fuzzy automaton homomorphism (h, k) fromA1

to A2 is said to be (weak) fuzzy automaton isomorphism, if both h
and k are bijective functions.
In this paper the following notations are adopted.
HF (A → B) : The set of all fuzzy automaton homomorphisms
from A to B.
WHF (A → B) : The set of all weak fuzzy automaton homomor-
phisms from A to B.
IF (A → B) : The set of all fuzzy automaton isomorphisms from
A to B.
WIF (A → B) : The set of all weak fuzzy automaton isomor-
phisms from A to B.
EF (A) : The set of all fuzzy automaton endomorphisms on A.
WEF (A) : The set of all weak fuzzy automaton endomorphisms
on A.

GF (A) : The set of all fuzzy automaton automorphisms on A.
WGF (A) : The set of all weak fuzzy automaton automorphisms
on A.
Theorem 2.3. (1) HF (A → B) ⊆ WHF (A → B) (2)IF (A →
B) ⊆WIF (A→ B) (3) EF (A) ⊆WEF (A) and (4) GF (A) ⊆
WGF (A).
Lemma 2.4. Let A = (Q,Σ, µ) and B = (R,Σ, γ) be fuzzy au-
tomata and h ∈WIF (A→ B) then for all (p, x, q) ∈ Q×Σ∗×Q,
we have γ(h(p), x, h(q)) > 0⇒ µ(p, x, q) > 0.

PROOF. Let γ(h(p), x, h(q)) > 0. Since µ is a fuzzy function,
there exists r ∈ Q such that µ(p, x, r) > 0. But then by assumption
γ(h(p), x, h(r)) > 0. This forces that h(q) = h(r), as γ is a fuzzy
function. This gives us r = q. Therefore µ(p, x, q) > 0.

Theorem 2.5. IfA = (Q,Σ, µ) is a fuzzy automaton, thenGF (A)(
WGF (A)

)
forms a group.

Definition 2.6. Let h ∈ WEF (A). An element x0 ∈ Σ∗ is called
h-identifier, if µ(p, x0, q) > 0 , for p, q ∈ Q implies that q = h(p).
We denote it by the symbol ’x0 = hid’.
Remark 2.7. Note that, if µ is just a fuzzy relation fromQ×Σ toQ,
then h can not be a function.(For this µ(p, x0, q)∧µ(p, x0, q

′) > 0
gives that h(p) = q as well as h(p) = q′.)
The following lemma gives an important property of an h-identifier.
Lemma 2.8. Let A = (Q,Σ, µ) be a fuzzy automaton , h ∈
WGF (A) and x0 ∈ Σ∗ an h-identifier. Then µ(p, xn0 y, r) > 0
if and only if µ(p, yxn0 , r) > 0,∀y ∈ Σ∗ and ∀n ∈ N∪{0}, where
x0

0 = ε.
Let A = (Q,Σ, µ) be a fuzzy automaton and M ⊆ Q.Then
the successor of M is the set S(M) = {p ∈ Q|µ(q, x, p) >
0, for some (q, x) ∈ M × Σ∗} and x-successor of M is the set
Sx(M) = {p ∈ Q|µ(q, xk, p) > 0, for some q ∈ M and k ∈
N ∪ {0}}, where x0 = ε. We denote the successor of {q} by S(q)
and the x-successor of {q} by Sx(q).
Definition 2.9. A fuzzy automaton A = (Q,Σ, µ) is said to be
strongly connected, if q ∈ S(p),∀p, q ∈ Q.
The following lemma shows that two fuzzy automaton homomor-
phisms over strongly connected automata are identical, if they have
same image for a single element.
Lemma 2.10. If A = (Q,Σ, µ) is a strongly connected fuzzy au-
tomaton and h1, h2 ∈ EF (A) with h1(q0) = h2(q0), for some
q0 ∈ Q, then h1 = h2.

PROOF. Let q ∈ Q. Since A is strongly connected fuzzy
automaton, we have q ∈ S(q0).Therefore, there exists
x ∈ Σ∗ such that µ(q0, x, q) > 0. Now,
µ(h1(q0), x, h1(q)) = µ(q0, x, q) implies that
µ(h1(q0), x, h1(q)) > 0. Similarly, µ(h2(q0), x, h2(q)) > 0.But
h1(q0) = h2(q0) and µ is a fuzzy function, hence
h1(q) = h2(q).

The above lemma also holds for weak fuzzy automaton homomor-
phism.
Corollary 2.11. IfA = (Q,Σ, µ) is a strongly connected fuzzy au-
tomaton and h1, h2 ∈ EF (A)(WEF (A)) with h1(q0) = h2(q0),
for some q0 ∈ Q, then h1 = h2.
Theorem 2.12. If A = (Q,Σ, µ) is a strongly connected fuzzy
automaton, then |GF (A)| ≤ |Q|.

PROOF. Suppose |GF (A)| > |Q|. Let q0 ∈ Q be any fixed
state. Construct H = {h(q0) : h ∈ GF (A)}. Since H ⊆ Q,
we have |GF (A)| > |H|. Then there must exist distinct h1, h2 ∈
GF (A) such that h1(q0) = h2(q0). Thus, by Lemma 2.10, we have
h1 = h2. This contradicts to the fact that h1 and h2 are distinct.
Therefore, |GF (A)| ≤ |Q|
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Following corollary is then immediate.
Corollary 2.13. If A = (Q,Σ, µ) is a strongly connected fuzzy
automaton, then |WGF (A)| ≤ |Q|.

3. PERFECT FUZZY AUTOMATON
In this section, we introduce perfect fuzzy automaton and discuss
a characterization of weak fuzzy automaton homomorphism (iso-
morphism) in terms of h-identifier. This lead us to find the num-
ber of weak fuzzy automaton homomorphisms on perfect fuzzy au-
tomaton and hence number of identifiers for weak fuzzy automaton
homomorphisms. Here, it is proved that the group of all weak fuzzy
automaton isomorphisms on a perfect fuzzy automaton is abelian as
well as a homomorphic image of monoid of strings of its inputs.
Definition 3.1. A fuzzy automaton A = (Q,Σ, µ) is said
to be abelian, if it satisfies the condition µ(p, xy, q) =
µ(p, yx, q),∀x, y ∈ Σ∗ and p, q ∈ Q.
If µ(p, xy, q) > 0 ⇔ µ(p, yx, q) > 0, for x, y ∈ Σ∗ and
p, q ∈ Q, then A is said to be weakly abelian
Theorem 3.2. A = (Q,Σ, µ) is a weakly abelian fuzzy automa-
ton if and only if every x0 ∈ Σ∗ defines h ∈ WEF (A) such that
x0 = hid.

PROOF. Let x0 ∈ Σ∗. Define h : Q → Q as h(p) = r, where
µ(p, x0, r) > 0. Since µ is a fuzzy function, h is well defined. Let
s ∈ Q and y ∈ Σ∗ such that µ(s, y, t) > 0 for some t ∈ Q. Now by
definition of h, µ(t, x0, h(t)) > 0. Therefore µ(s, yx0, h(t)) > 0.
Since A is weakly abelian, we have µ(s, x0y, h(t)) > 0. Thus,
µ(h(s), y, h(t)) > 0. Therefore h is weak fuzzy automaton ho-
momorphism on A. Clearly x0 = hid,by definition of h. converse
holds by Lemma 2.8.

Remark 3.3. Even though each x0 ∈ Σ∗ defines a weak fuzzy
automaton homomorphism in the above theorem, it does not nec-
essarily define a fuzzy automaton homomorphism whose identifier
is x0. Also, x0 does not necessarily define weak fuzzy automaton
isomorphism.
Definition 3.4. A fuzzy automaton is called perfect, if it is strongly
connected and weakly abelian .
Theorem 3.5. Let A = (Q,Σ, µ) be a perfect fuzzy automaton. If
h ∈WGF (A) then there exists x0 ∈ Σ∗ such that x0 = hid. Con-
versely every x0 ∈ Σ∗, defines h ∈WGF (A) such that x0 = hid.

PROOF. Let h ∈ WGF (A) and q1, q2 ∈ Q be such that
h(q1) = q2. Since A is strongly connected, there is x0 ∈ Σ∗

such that µ(q1, x0, q2) > 0. By Theorem 3.2 there exists g ∈
WEF (A) such that x0 = gid. Since µ(q1, x0, q2) > 0, we have
g(q1) = q2.Then g(q1) = h(q1), which means g = h (by Lemma
2.10).Therefore x0 = hid. Conversely let x0 ∈ Σ∗. By Theo-
rem 3.2, there exists h ∈ WEF (A) such that x0 = hid. Sup-
pose h(p) = h(s) = q (say) . We must have µ(p, x0, q) >
0 and µ(s, x0, q) > 0. Since A is strongly connected, there ex-
ists y ∈ Σ∗ such that µ(p, y, s) > 0.Then µ(p, yx0, q) > 0.
Hence, µ(p, x0y, q) > 0, asA is perfect. This gives us µ(p, x0, q)∧
µ(q, y, q) > 0. Therefore µ(q, y, q) > 0. Then again there is f ∈
WEF (A) such that fid = y. Therefore, f(q) = q. Then f must be
identity function on A ( due to Lemma 2.10). Hencef(p) = p. But
µ(p, y, s) > 0 thus f(p) = s. This gives us p = s. Therefore h is
one - one. Also h is onto, as Q is finite. Hence h ∈WGF (A).

The abelian property of the WGF (A) is an easy consequence of
the above theorem.
Corollary 3.6. IfA = (Q,Σ, µ) is a perfect fuzzy automaton, then
WGF (A) is abelian.

The following corollary is establishing our goal of finding the num-
ber of weak fuzzy automaton homomorphisms on perfect fuzzy au-
tomaton.
Corollary 3.7. IfA = (Q,Σ, µ) is a perfect fuzzy automaton, then
|WGF (A)| = |Q|.

PROOF. Let q0 ∈ Q. Define f : Q → WGF (A) by f(q) = h,
where hid = x and µ(q0, x, q) > 0. We first prove that f is well
defined. Let q1 = q2 with µ(q0, x, q1) > 0 and µ(q0, y, q2) > 0.
Let hid = x and gid = y. Then f(q1) = h and f(q2) = g. Since
µ(q0, x, q1) > 0, we have µ(g(q0), x, g(q1)) > 0. Thus, by defini-
tion of h, h(g(q0)) = g(q1). Similarly, gh(q0) = h(q2). But then
by Corollary 3.6, one has hg = gh. Therefore, g(q1) = h(q2). This
gives us g = h, as q1 = q2. Thus f(q1) = f(q2). Hence, f is well
defined. The one-oneness of f will imply that |Q| ≤ |WGF (A)|.
Thus we prove f is 1-1. Let f(q1) = f(q2). Then µ(q0, x, q1) > 0
and µ(q0, x, q2) > 0, gives q1 = q2. Clearly Corollary 2.13 proves
the other inequality and hence the theorem.

The following theorem establishes the relationship between
WGF (A) and Σ∗ as monoids.
Theorem 3.8. Let A = (Q,Σ, µ) be a perfect fuzzy automaton.
Then WGF (A) is a homomorphic image of Σ∗.

PROOF. Define φ : Σ∗ → WGF (A) by φ(x) = h, if hid = x.
Let φ(x) = h, φ(y) = k and φ(xy) = g. Then g(q) = t1,
whenever µ(q, xy, t1) > 0. Since A is weakly abelian , we have
µ(q, yx, t1) > 0. Thus, µ(q, y, t) > 0 and µ(t, x, t1) > 0, for
some t ∈ Q. Therefore, k(q) = t and h(t) = t1. This gives
h(k(q)) = t1 = g(q). Thus, hk = g. Therefore, φ(xy) = g =
hk = φ(x)φ(y). Hence, WGF (A) is a homomorphic image of
Σ∗.

4. SINGLY GENERATED FUZZY AUTOMATON
The sole aim of this section is to identify weak fuzzy automaton
homomorphisms over singly generated automaton, over primaries
and over any fuzzy automata. Thus in this section we study singly
generated fuzzy automaton. Through primary decomposition the-
orem, we show that every arbitrary finite fuzzy automaton can be
decomposed into its major substructures - i.e. its primaries. There-
fore we can discuss weak fuzzy automaton homomorphism over
arbitrary fuzzy automaton in the next section via primaries. In the
present section we concentrate to find group of weak fuzzy automa-
ton isomorphisms over singly generated fuzzy automata.
Let A = (Q,Σ, µ) be a fuzzy automaton and q ∈ Q. A fuzzy au-
tomaton generated by q is denoted by A(q) and is a triplet A(q) =
(S(q),Σ, µ′) , where µ′ is a restriction of µ to S(q) × Σ × S(q).
A fuzzy automaton A is said to be singly generated, if there exists
q ∈ Q such that A = A(q). The set of generators of A(q) is the set
genA(q) = {r ∈ SA(q)|A(r) = A(q)}.
Every f ∈ WEF (A(q)) is completely determined by its value on
q, in the sense that the value f(p) for any element p ∈ Q is deter-
mined by the value of f(q).
Lemma 4.1. Every f ∈WEF (A(q)) is completely determined by
its value on q.

PROOF. Let t ∈ Q. Then there exists x ∈ Σ∗ such that
µ(q, x, t) > 0. Now, µ(f(q), x, f(t)) > 0 gives f(t) = s , if
µ(f(q), x, s) > 0. This shows that f is completely determined by
its value on q.

The following corollary is an improvement over Lemma 2.10 for
finding an element q0 as its generator.
Corollary 4.2. Let f, g ∈WEF (A(q)). Then f = g if and only if
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f(q) = g(q).
By taking g as the identity function, we have
Corollary 4.3. f ∈ WEF (A(q)) is the identity if and only if it
fixes a generator of A(q) ; i.e. f(q) = q ⇔ ∀r ∈ Q, f(r) = r.
Recall that B = (Q′,Σ, µ′) is a subautomaton of A = (Q,Σ, µ),
if Q′ ⊆ Q,S(Q′) = Q′ and µ′ = µ|Q′×Σ×Q′ [18]. We shall denote
it by B � A.
Definition 4.4. A subautomaton B of A is called a primary of A ,
if (i) there exists q ∈ Q such that B = A(q) and
(ii) for any t ∈ Q, if B � A(t) , then B = A(t).
Definition 4.5. Let A = (Q,Σ, µ) be a fuzzy automaton and
P1 = (Q1,Σ, µ1), P2 = (Q2,Σ, µ2) are primaries of A. Then
define P1 ∪ P2 as a subautomaton (Q1 ∪Q2,Σ, µ1 ∨ µ2) of A.
In case of two distinct singly generated subautomata of a given
fuzzy automaton, the generator of one of them may belongs to the
other. However, we have
Theorem 4.6. Let A = (Q,Σ, µ) be a fuzzy automaton. Two
distinct primaries of A does not have any generator in common.

The following theorem shows that the primaries are the important
substructures of an arbitrary finite fuzzy automaton. Hence, we call
this theorem as primary decomposition theorem.
Theorem 4.7. If A = (Q,Σ, µ) is a fuzzy automaton and π =
{P1, P2, . . . , Pn} is the set of distinct primaries of A , where Pi =
(Qi,Σ, µi), Qi ⊆ Q,µi is the restriction of µ to Qi × Σ×Qi,∀i
, then

(i) A =
n⋃
i=1

Pi. (ii) for any j ∈ {1, 2, . . . , n}, A 6=
n⋃

j 6=i=1

Pi.

PROOF. (i) Let q0 ∈ Q. If A(q0) is not a primary of A , then
there is q ∈ Q − S(q0) such that A(q0) � A(q) and A(q) ∈ π.

Hence Q =
n⋃
i=1

Qi. Also, since each µi is a restriction of µ, we

have µ =
n
∨
i=1
µi. Therefore A =

n⋃
i=1

Pi.

(ii) Let B =
n⋃

j 6=i=1

Pi and let Pj = A(q) , for some j ∈

{1, 2, . . . , n}. If q ∈ QB (the state set of B), then q ∈ Qi for
some i 6= j and Pj = A(q) � Pi (by (i)). This contradicts the
maximality of Pj , since Pi 6= Pj . Therefore, q does not belong to

QB and hence A 6=
n⋃

j 6=i=1

Pi.

Remark 4.8. Tiwari and Srivastava [18] have also introduced pri-
maries and primary decomposition theorem for compact fuzzy au-
tomaton. The approach in [18] was purely topological whereas our
approach is purely algebraic. In the present paper fuzzy automaton
is finite and is based on fuzzy function, this makes our approach
different than that in [18].
The following lemma shows that a singly generated subautomaton
of a fuzzy automaton (or a primary) is preserved under weak fuzzy
automaton homomorphism (or isomorphism).
Lemma 4.9. Let A = (Q,Σ, µ) and B = (R,Σ, γ) be fuzzy au-
tomata and f ∈ HF (A → B), h ∈ IF (A → B) and P � A.
Then
(i) ∀q ∈ Q, f [A(q)] = A[f(q)].
(ii) for any t ∈ Q, we have h(S(t)) = S(h(t)).
(iii) P is a primary of A if and only if h(P ) is a primary of B.

PROOF. (i) f(S(q0)) = f

[ ⋃
x∈Σ∗
{q ∈ Q|µ(q0, x, q) > 0}

]
=

⋃
x∈Σ∗
{f(q) ∈ Q|γ(f(q0), x, f(q)) > 0} (since f is fuzzy au-

tomaton homomorphism.) =
⋃
x∈Σ∗
{t ∈ R|γ(f(q0), x, t) > 0}

(since γ is a fuzzy function.) = γ(f(q0)). Therefore, f [A(q)] =
A[f(q)].
(ii) Proof of this is obvious due to the condition that for h ∈
IF (A→ B) , µ(t, x, p) > 0 if and only if γ(h(t), x, h(p)) > 0.
(iii) Let P be any primary of A. Then A(q) = P , for some q ∈ Q.
Therefore, by (i), h(P ) = h[A(q)] = A[h(q)]. Hence, by The-
orem 4.7, we have h(q) is a state of some primary A(h(t)) of
B and h(q) ∈ S(h(t)). Since h−1 ∈ IF (B → A),we have
q = h−1(h(q)) ∈ h−1(S(h(t))) = S(t). This implies that
A(q) � A(t) ⇒ A(q) = A(t), since A(q) is a primary of A,
thus, by (i), A[h(q)] = A[h(t)]. Therefore A[h(q)] is a primary of
B. The converse of (iii) can be proved similarly.

Definition 4.10. Let A = (Q,Σ, µ) be a fuzzy automaton and
q ∈ Q, y, z ∈ Σ∗. Then y is said to be q-fuzzy equivalent to z ,
if µ(q, y, p) > 0 and µ(q, z, p) > 0, for some p ∈ Q. We shall
denote it by y ≡Fq z.
Remark 4.11. ≡Fq is an equivalence relation of finite index.
The following theorem characterize the weak fuzzy automaton
homomorphism (and isomorphism) in terms of above state-fuzzy
equivalence relation.
Theorem 4.12. Let A = A(q) and B = (R,Σ, γ) be fuzzy au-
tomata. Then
(i) there exists f ∈ WHF (A(q) → B) if and only if ∃ t ∈ R
satisfying ∀y, z ∈ Σ∗, y ≡Fq z ⇒ y ≡Ft z .
(ii) there exists f ∈WIF (A(q)→ B) if and only if ∃ t ∈ gen(B)
satisfying ∀y, z ∈ Σ∗, y ≡Fq z ⇔ y ≡Ft z.
Moreover, f is completely determined by its value on q as follows:
f(q) = t and for all p ∈ A(q), p 6= q with µ(q, w, p) > 0 , for
some w ∈ Σ∗, we have f(p) = r, where γ(t, w, r) > 0 .

PROOF. (i) Suppose there exists t ∈ R such that ∀y, z ∈
Σ∗, y ≡Fq z ⇒ y ≡Ft z . Define f : A(q) → B by f(p) = r
, whenever µ(q, w, p) > 0 and γ(t, w, r) > 0, for some w ∈ Σ∗ .
Let a = b and µ(q, y, a) > 0, µ(q, z, b) > 0. Therefore y ≡Fq z.
Hence y ≡Ft z. Then γ(t, y, s) > 0 and γ(t, z, s) > 0 for some
s ∈ R, which gives f(a) = s = f(b). Therefore, f is well defined.
Since µ(q, ε, q) > 0, we have f(q) = t (as γ(t, ε, t) > 0). Suppose
p, r ∈ Q be such that µ(p, x, r) > 0, for x ∈ Σ∗. Let u ∈ Σ∗ be
such that µ(q, u, p) > 0. Then µ(q, ux, r) > 0.By definition of f ,
f(r) = s whenever γ(t, ux, s) > 0. Hence, γ(t, u, f(p)) > 0 and
γ(f(p), x, s) > 0.
Thus, we conclude that whenever µ(p, x, r) > 0, then
γ(f(p), x, f(r)) > 0. This proves that f is a weak fuzzy automa-
ton homomorphism. Conversely, let f be a weak fuzzy automaton
homomorphism. Then by taking f(q) = t, one proves the result.
Similarly one can prove (ii).

Note that ≡Fq is not a congruence relation. But
Corollary 4.13. There exists f ∈WEF (A(q)) if and only if there
exists x ∈ Σ∗ satisfying ∀y, z ∈ Σ∗, y ≡Fq z ⇒ xy ≡Fq xz.
Moreover, f is completely determined by its value on q as follows
: f(q) = t, if µ(q, x, t) > 0 and for any p ∈ Q, p 6= q , we have
f(p) = r, if µ(q, w, p) > 0 and µ(q, xw, r) > 0,∀w ∈ Σ∗.
Corollary 4.14. There exists f ∈WGF (A(q)) if and only if there
exists x ∈ Σ∗ satisfying ∀y, z ∈ Σ∗, y ≡Fq z ⇔ xy ≡Fq xz.
Corollary 4.15. If A is a strongly connected fuzzy automaton ,
then there is f ∈ WEF (A) if and only if there exists x ∈ Σ∗

satisfying ∀y, z ∈ Σ∗, y ≡Fq z ⇒ xy ≡Fq xz, ∀q ∈ Q.
In the following theorem we use symbols f(S) and S(f) for
fog and gof respectively, for each g ∈ S. (Note that S is set of
functions such that fog and gof are defined).
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Theorem 4.16. If WIF [A(q)→ A(t)] 6= φ then
(i)WIF [A(q)→ A(t)] = f(WGF (A(q))) = (WGF (A(t)))f ,
∀f ∈WIF [A(q)→ A(t)]
(ii)|WIF [A(q) → A(t)]| = |(WGF (A(q)))| =
|(WGF (A(t)))|.

PROOF. Let f ∈ WIF (A(q) → A(t)). For any
g ∈ WGF (A(q)), fg ∈ WIF (A(q) → A(t)).
Therefore f(WGF (A(q))) ⊆ WIF (A(q) → A(t)).
Also for any h ∈ WIF (A(q) → A(t)), we have
f−1h ∈ WGF (A(q)). Then h ∈ f(WGF (A(q))). There-
fore, WIF (A(q) → A(t)) ⊆ f(WGF (A(q))). Sim-
ilarly WIF [A(q) → A(t)] = (WGF (A(t)))f . This
proves WIF [A(q) → A(t)] = f(WGF (A(q))) =
(WGF (A(t)))f,∀f ∈ WIF [A(q) → A(t)]. Since f is one-one,
we have fg1 = fg2 ⇔ g1 = g2,∀g1, g2 ∈WGF (A(q)), follows
|WIF [A(q) → A(t)]| = |(WGF (A(q)))| =
|(WGF (A(t)))|.

Theorem 4.17. Let A = (Q,Σ, µ1) and B = (R,Σ, µ2).
(i) Let q ∈ Q be a fixed state and let P be a maximal set of states of
B such that for each p of P , we have y ≡Fq z ⇒ y ≡Fp z, ∀y, z ∈
Σ∗. Then WHF [A(q) → B] = {fp : p ∈ P} , where fp(s) = t,
whenever µ(q, u, s) > 0 and γ(p, u, t) > 0 ,for some u ∈ Σ∗.
Moreover ,

∣∣WHF [A(q)→ B]
∣∣ = |P |.

(ii) Let T be a maximal set of states of B such that for each t of T
we have y ≡Fq z ⇔ y ≡Ft z, ∀y, z ∈ Σ∗. Then the set of all weak
fuzzy automaton monomorphisms on A(q) toB is the set {ft : t ∈
T}. IfB is a singly generated , thenWIF [A(q)→ B] = {ft : t ∈
T
⋂
genB} . Moreover , |WIF [A(q)→ B]| = |T

⋂
genB|.

PROOF. (i) Let p ∈ P . Then for any y, z ∈ Σ∗, y ≡Fq
z ⇒ y ≡Fp z. Hence by Theorem 4.12, there exists fp ∈
WHF (A(q)→ B) such that fp(q) = p.
Conversely, let f ∈ WHF (A(q) → B). Then there exists p ∈ R
such that ∀y, z ∈ Σ∗, y ≡Fq z ⇒ y ≡Fp z.(By Theorem 4.12).
Hence, p ∈ P . Thus, there is one to one correspondence between
WHF [A(q) → B] and {fp : p ∈ P} and {fp : p ∈ P} ⊆
WHF [A(q) → B]. Therefore, WHF [A(q) → B] = {fp : p ∈
P}. Since P is maximal, we must have |WHF [A(q) → B]| =
|{fp : p ∈ P}|. Similarly one can prove (ii).

Definition 4.18. Let A = (Q,Σ, µ) be any fuzzy automaton
and q ∈ Q, x ∈ Σ∗. Then the x-path of q is the subautoma-
ton Ox(q) = (Sx(q), {x}, µ′), where µ′ is the restriction of µ
to Sx(q) × {x} × Sx(q). The x circle of q is the subautoma-
ton Cx(q) = (Scx(q), {x}, µ′), where Scx(q) = {t ∈ Sx(q) :
µ(q, xk, t) > 0 and µ(q, xm, t) > 0, for some integer m > k}
and µ′ is the restriction of µ to Scx(q)×{x}×Scx(q) . The x - path
of q, Ox(q) is said to be circular, if Ox(q) = Cx(q).
Note : For any x ∈ Σ∗, we have A(x) =

⋃
q∈Q

Ox(q).

Definition 4.19. Let A = (Q,Σ, µ) and f : Q→ Q.
Then the f-path of q ∈ Q is the set Of (q) = {fk(q) for some k ∈
N ∪ {0}}, where f0(q) = q. The f circle of q is the set Cf (q) =
{fk(q) ∈ Of (q) : fk(q) = fm(q), for some integer m > k}.
The f - path of q, Of (q) is said to be circular, if Of (q) = Cf (q).
Lemma 4.20. (1) For some r ∈ Q, r ∈ Cf (r) if and only if
Of (r) = Cf (r).
(2) Of (r) = {r} if and only if f(r) = r.
(3) For some x ∈ Σ∗ and h ∈ WGF (A), if hid = x with
o(h) = k, then Ox(q) = Cx(q).
(4) x ∈ Σ∗, q ∈ Q. If Ox(q) = Cx(q) and t ∈ Sx(q), then
Ox(t) = Cx(t).

Theorem 4.21 Let A = (Q,Σ, µ) be a fuzzy automaton and let
h ∈WGF (A). ThenOh(r) is circular for any r ∈ Q. IfA = A(q)
, then there exists x ∈ Σ∗ such that Ox(q) is circular.

PROOF. Since WGF (A) is a finite group, we have the order
of h is finite. Thus, for any r ∈ Q,hO(h)(r) = r. Therefore,
r ∈ Ch(r). Then Ch(r) = Oh(r). i.e. Oh(r) is circular. Let
A = A(q). Then by Corollary 4.13 , there exists x ∈ Σ∗ such
that h(q) = t1,whenever µ(q, x, t1) > 0, for some t1 ∈ Q.If
µ(q, x2, t2) > 0 for some t2 ∈ Q , then h2(q) = h(h(q)) =
h(t1) = t2. In general for any n ∈ N, if µ(q, xn, tn) > 0,
for some tn ∈ Q, then hn(q) = tn. In particular for n = k
(the order of h), we have tk = q. Then µ(q, xk, q) > 0. Hence,
Ox(q) = Cx(q).

Theorem 4.22. There exists f ∈ WGF (A(q)) such that f 6= id if
and only if there exists x ∈ Σ∗ satisfying :
(i) µ(q, x, q) = 0 (ii)Ox(q) = Cx(q) and (iii) ∀y, z ∈ Σ∗, y ≡Fq
z ⇒ xy ≡Fq xz.
Further, for each u ∈ Σ∗, if x ≡Fq u ,then Ou(q) = Cu(q).

PROOF. Let f ∈ WGF (A(q)) such that f 6= id. Then by
Corollary 4.14 there exists x ∈ Σ∗ such that f(q) = t, when-
ever µ(q, x, t) > 0. Satisfying, (i) and (iii) and by Theorem 4.21,
(ii) also holds . Conversely suppose there exists x ∈ Σ∗ satisfy-
ing the conditions. Define fx(p) = s, whenever µ(q, w, p) > 0
and µ(q, xw, s) > 0 , for some w ∈ Σ∗. Then by Corollary 4.13 ,
fx is a non-identity weak fuzzy automaton homomorphism. Since
Ox(q) is circular, µ(q, xn, q) > 0, for some n ∈ N. Now, for any
r ∈ Q with µ(q, w, r) > 0, let µ(q, xw, r1) > 0 for some r1 ∈ Q,
then f(r) = r1. Let µ(q, x2w, r2) > 0 for some r2 ∈ Q , then
f2(r) = f(f(r)) = f(r1) = r2. Similarly µ(q, x3w, r3) > 0 for
some r3 ∈ Q , then f3(r) = f(f2(r)) = f(r2) = r3. In gen-
eral fn(r) = rn, whenever µ(q, xnw, rn) > 0 for some rn ∈ Q.
This implies that µ(q, w, rn) > 0. Since µ is a fuzzy function, we
have rn = r. Thus, fn(r) = r. i.e. f(fn−1(r)) = r. Therefore,
f is onto. Finiteness of Q implies that f is one one also. Thus,
f ∈ WGF (A(q)). Next x ≡Fq u implies that µ(q, x, p) > 0 and
µ(q, u, p) > 0 for some p ∈ Q. Then by condition (iii) x2 ≡Fq xu.
Therefore µ(q, x2, r) > 0 and µ(q, xu, r) > 0, for some r ∈ Q.
Then µ(p, u, r) > 0. Thus µ(q, x2, r) > 0 and µ(q, u2, r) > 0.
i.e.x2 ≡Fq u2. In general,for any n ∈ N, we have xn ≡Fq un. This
proves that Ou(q) = Cu(q).

Corollary 4.23. There exists f ∈ WGF (A(q)) such that f 6= id
if and only if there exists x ∈ Σ∗ satisfying :
(i) Ox(q) = Cx(q) (ii) ∀y, z ∈ Σ∗, y ≡Fq z ⇒ xy ≡Fq xz.
Theorem 4.24. Let fx ∈ WEF (A(q)), x ∈ Σ∗ be such that
fx(q) = t,whenever µ(q, x, t) > 0.Then Ox(q) = Cx(q) if and
only if t ∈ gen A(q).

PROOF. Suppose Ox(q) = Cx(q). Then µ(q, xn, q) > 0,
for some positive integer n. But then, µ(t, xn−1, q) > 0, since
µ(q, x, t) > 0. This implies that t ∈ genA(q). Conversely suppose
that t ∈ genA(q) i.e. fx(q) ∈ genA(q). Then A[fx(q)] = A(q).
Thus by Lemma 4.9, fx[A(q)] = A(q). Therefore, fx is onto. Also,
fx is one one, as Q is finite. Thus, fx ∈ WGF (A(q)). Hence, by
Theorem 4.22, Ox(q) = Cx(q).

Corollary 4.25. Let f ∈ WEF (A(q)). Then the following are
equivalent
(i) f ∈WGF (A(q)).
(ii)f(q) ∈ gen A(q).
(iii)Of (q) = Cf (q).
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Definition 4.26. Let A = (Q,Σ, µ), let q ∈ Q, and H be a subset
of WGF (A). Then H image of q is IH(q) = {h(q) : h ∈ H}.
If H = WGF (A), then we shall denote H image of q by IG(q).
Note that I{f}(q) ⊆ Of (q).
These H images for different states, in case of strongly connected
fuzzy automaton, forms a partition of Q. This fact follows due to
Lemma 2.10.
Lemma 4.27. Let A = (Q,Σ, µ) be strongly connected fuzzy au-
tomaton. Let p, q ∈ Q, and H be a subset of WGF (A). Then
IH(p) and IH(q) are either disjoint or identical .
Corollary 4.28. For any q ∈ Q , |IH(q)| = |H|.
Theorem 4.29. Let A be a singly generated fuzzy automaton with
generator q. Then |WGF (A(q))| divides |genA(q)|.

PROOF. Let t ∈ genA(q). Due to the Corollary 4.26(ii),
IG(t) ⊆ genA(q). If t1, t2 ∈ genA(q), then IG(t1) and IG(t2) are
either identical or disjoint (by Lemma 4.27). Since t ∈ IG(t) for
every t , we have

⋃
t∈genA(q)

IG(t) = genA(q) . Thus,WGF (A(q))

partitions genA(q) into disjoint subsets of the form IG(t) with
t ∈ genA(q). Also due to the Corollary 4.28, we have |IG(t)| =
|WGF (A(q))| , for every t ∈genA(q). Therefore |genA(q)| =
n|WGF (A(q))|, where n is the number of distinct paths of
gen(A(q)). Hence, |WGF (A(q))| divides |genA(q)|.

Corollary 4.30. If g ∈ WGF (A(q)) , then |Og(q)| divides
|genA(q)|
Corollary 4.31. For any r ∈ Q and g ∈ WGF (A(q)), |Og(r)|
divides |Og(q)|.
The Corollary 4.13(and Corollary 4.14 ) motivates us to collect
x ∈ Σ∗ to determine total number of elements of WEF (A)(and
WGF (A)). Precisely the following definition fulfill our goal (See
Theorem 4.33).
Definition 4.32. Let A = (Q,Σ, µ) be a fuzzy automaton and
q ∈ Q. A subset Xq of Σ is q-fuzzy endomorphic, if (i) For all
x,w ∈ Xq ,if x ≡Fq w then x = w. and (ii) For x ∈ Xq and
y, z ∈ Σ∗ , if y ≡Fq z then xy ≡Fq xz .
Also if Ox(q) = Cx(q),∀x ∈ Xq then Xq is called q-fuzzy auto-
morphic .
Theorem 4.33. Let Xq be a maximal q-fuzzy endomorphic set of
inputs. Then WEF (A(q)) = {fx : x ∈ Xq} , where fx(s) = t,
if µ(q, u, s) > 0 and µ(q, xu, t) > 0, ∀u ∈ Σ∗ . Moreover,
|WEF (A(q))| = |Xq|.
If Xq is a maximal q-fuzzy automorphic set of inputs. Then
WGF (A(q)) = {fx : x ∈ Xq} . Moreover, |WGF (A(q))| =
|Xq|.

PROOF. Let x ∈ Xq . Then by Corollary 4.13, the mapping
fx(q) = p, whenever µ(q, x, p) > 0 defines weak fuzzy automa-
ton endomorphism fx on A(q).
On the other hand, if f ∈ WEF (A(q)), then by corollary 4.13 ,
there exists x ∈ Σ∗ such that f = fx. Therefore WEF (A(q)) =
{fx : x ∈ Xq}. By maximality of Xq we have |WEF (A(q))| =
|Xq|. Similarly by Corollary 4.14,if Xq is a maximal q-fuzzy au-
tomorphic set of inputs, then WGF (A(q)) = {fx : x ∈ Xq} and
|WGF (A(q))| = |Xq|.

5. WEAK FUZZY AUTOMATON ISOMORPHISMS
ON ARBITRARY FUZZY AUTOMATA

As it is pointed out earlier, this section is focused on characteriza-
tion of weak fuzzy automaton isomorphism over arbitrary automata
through primaries, basis, generating set and ordered basis.
Definition 5.1. A subset R of Q is a generating set of a fuzzy au-

tomaton A = (Q,Σ, µ), if A =
⋃
r∈R

A(r).

A minimal generating set of A is called a basis of A. Due to the
primary decomposition theorem 4.7 the following are obvious.
Theorem 5.2. Every fuzzy automaton has a basis.

PROOF. The set R consisting of only one generator from each
primary of A is a basis.

Theorem 5.3. Any two bases of a fuzzy automaton A has same
number of elements.
The number of elements in a basis is called the rank of A.
Therefore rank of A is the number of distinct primaries of A.
The restriction of a weak fuzzy automaton homomorphism of A
to a primary P is a weak fuzzy automaton homomorphism of P .
This homomorphism is completely determined by its value on any
generator of P .(by Lemma 4.1) and by primary decomposition
theorem, each state of A is a state of some primary P of A.
Therefore a weak fuzzy automaton homomorphism on fuzzy
automata A is completely determined by its value on any basis of
A.
Lemma 5.4. A weak fuzzy automaton homomorphism on A is
completely determined by its values on any basis of A.
Definition 5.5. Let Ai = (Qi,Σ, µi) � A and let fi : Ai → B
, for each i ∈ {1, 2, . . . , n}. The extension of fi by fj is the
function fi ∨ fj defined by :
If fi(r) = fj(r), ∀r ∈ Qi

⋂
Qj , then

(fi ∨ fj)(q) =

{
fi(q) if q ∈ Qi ,
fj(q) if q ∈ Qj .

Otherwise , fi ∨ fj is the empty function.
Note that fi is extendable to Aj by fj , if fi ∨ fj is a nonempty
function. Further, fi is extendable toAj , if there exists g : Aj → B
such that fi ∨ g is a nonempty function.
Theorem 5.6. If f1, f2 ∈WEF (A), then f1 ∨ f2 ∈WEF (A).
Lemma 5.7. The extension ∨ , taken as a binary operation, is both
commutative and associative; composition of extensions is the ex-
tension of respective compositions; the inverse of a fuzzy isomor-
phic extension is the extension of the respective inverses.
The following theorem decompose a weak fuzzy automaton homo-
morphism fromA toB into weak fuzzy automaton homomorphism
from primaries of A to B. Hence we call it as a weak homomor-
phism decomposition theorem.
Theorem 5.8. Let A and B be fuzzy automata and let f ∈
WHF (A → B). If {A1, A2, . . . An} is a primary decomposition
of A. Then f has a unique decomposition
f =

n
∨
i=1
fi, where fi ∈WHF (Ai → B).

PROOF. Take fi = f |Ai
,∀i. Then fi ∈ WHF (Ai → B), ∀i.

By Theorem 5.6 , f =
n
∨
i=1
fi. Note that by Theorem 4.7, the de-

composition of f is unique (upto appearance).

Theorem 5.9. Let {A1, A2, . . . , An} and {B1, B2, . . . , Bm} be
primary decompositions of A and B respectively. Let πn denotes
the set of permutations of {1, 2, . . . , n}. Then
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1 WHF (A→ B) =
{

n
∨
i=1
fi : fi ∈WHF (Ai → B)

}+

=

{
n
∨
i=1
fi : fi ∈

m⋃
j=1

WHF (Ai → Bj)

}+

2 WEF (A) =
{

n
∨
i=1
fi : fi ∈WHF (Ai → A)

}+

=

{
n
∨
i=1
fi : fi ∈

n⋃
j=1

WHF (Ai → Aj)

}+

3 WIF (A→ B) =
⋃

σ∈πn

{
n
∨
i=1
fi : fi ∈WIF (Ai → Bσ(i))

}+

4 WGF (A) =
⋃

σ∈πn

{
n
∨
i=1
fi : fi ∈WIF (Ai → Aσ(i))

}+

where E+ denotes the subset of all nonempty members of E,
where E is a set of extensions.

PROOF. (1) By Theorem 5.8, any weak fuzzy automaton homo-
morphism on A to B is of the form

n
∨
i=1
fi, fi ∈ WHF (Ai → B).

Conversely a nonempty extension
n
∨
i=1
fi, fi ∈ WHF (Ai → B),

is a weak fuzzy automaton homomorphism from A to B as it pre-
serves transitions on each primary and hence on the entire automa-
ton.
By similar arguments we can prove other equalities.

We now return back, from deviation, to characterization of weak
fuzzy automaton isomorphism.
Theorem 5.10. Let f ∈ WEF (A). Then f ∈ WGF (A) if and
only if Of (p) = Cf (p), for each p in a generating set of A.

PROOF. Suppose f ∈ WGF (A), then by Theorem 4.21,
Of (p) = Cf (p) ,∀p ∈ Q and hence for all p in generat-
ing set of A. Conversely let R be a generating set of A and
Of (p) = Cf (p) ,∀p ∈ R where f ∈ WEF (A). Let s, t ∈ Q.
Then there exist p, q ∈ R and x, y ∈ Σ∗ such that µ(p, x, s) >
0 and µ(q, y, t) > 0. Let |Of (p)| = m and |Of (q)| = n.
Then f(s) = f(t) ⇒ fmn(s) = fmn(t) = r,say. Therefore
µ(fmn(p), x, r) > 0 and µ(fmn(q), y, r) > 0. By circularity of
orbits µ(p, x, r) > 0 and µ(q, y, r) > 0. Therefore r = s = t, as
is µ a fuzzy function. Thus, f is 1-1. Since Q is finite, f is onto.
Hence f ∈WGF (A).

Theorem 5.11. Let f ∈ WEF (A). Then f ∈ WGF (A) if and
only if f maps basis of A onto basis of A.

PROOF. Suppose f maps basis of A onto basis of A. Let R be a
basis of A and let r ∈ Q. Then by Theorem 4.7, r ∈ QS for some
primary S ofA. Let q ∈ genS∩f(R) and let µ(q, x, r) > 0. Then
there exists p ∈ R such that f(p) = q and hence f(s) = r where
µ(p, x, s) > 0. Thus f is onto. SinceQ is finite,f is one one. Hence
f ∈WGF (A). Conversely suppose f ∈WGF (A). Since any two
bases of A has same number of elements and f ∈ WGF (A), f
maps basis onto basis of A.

Theorem 5.12. If there is a weak fuzzy automaton isomorphism f ,
between A and B, then
(i)WIF (A → B) = f(WGF (A)) = (WGF (B)f,∀f ∈
WIF [A→ B]
(ii)|(WGF (A))| = |WIF (A→ B)| = |(WGF (B))|.

PROOF. By Theorem 4.16 and decomposition theorem 5.8, the
proof follows.

Thus we have
WGF (A) = f−1(WIF (A→ B)) and

WGF (B) = (WIF (A→ B))f−1,∀f ∈WIF (A→ B).
Theorem 5.13. LetA = (QA,Σ, µ) andB = (QB ,Σ, γ) be fuzzy
automata. (i)There exists f ∈ WHF (A → B) if and only if ,
for any ordered basis R = (p1, p2, . . . , pn) of A, there exists an
ordered n-tuple T = (q1, q2, . . . , qn) of states of B satisfying

∀pi, pj ∈ R, ∀y, z ∈ Σ∗, µ(pi, y, p) > 0 and µ(pj , z, p) > 0,

for some p ∈ QA ⇒ γ(qi, y, q) > 0 and γ(qj , z, q) > 0,

for some q ∈ QB . (1)

Moreover, f(pi) = qi,∀i ∈ {1, 2, . . . , n} defines f on QA, where
f(s) = t, if µ(pi, w, s) > 0 and γ(qi, w, t) > 0, for some pi ∈ R,
and w ∈ Σ∗.
(ii) There exists f ∈WIF (A→ B) if and only if , for any ordered
basisR = (p1, p2, . . . , pn) ofA, there exists an ordered basis T =
(q1, q2, . . . , qn) of B satisfying

∀i, j ∈ {1, 2, . . . , n}, ∀y, z ∈ Σ∗, µ(pi, y, p) > 0 and µ(pj , z, p) > 0,

for some p ∈ QA ⇔ γ(qi, y, q) > 0 and γ(qj , z, q) > 0,

for some q ∈ QB . (2)

f(pi) = qi,∀i ∈ {1, 2, . . . , n} defines f on QA.

PROOF. (i) Let R and T exists and satisfy (1). Define f : A →
B by f(si) = ti, if µ(pi, w, si) > 0 and γ(qi, w, ti) > 0,
for some w ∈ Σ∗. Since (1) is satisfied, µ(pi, y, p) > 0 and
µ(pj , z, p) > 0, for some p ∈ QA, we have γ(qi, y, q) > 0 and
γ(qj , z, q) > 0,for some q ∈ QB . Thus f(p) = q. i.e. f is well
defined. Let µ(pi, u, r) > 0 for some pi ∈ R and u ∈ Σ∗. Let
r1 ∈ T and x ∈ Σ∗ with µ(r, x, r1) > 0. Then µ(pi, ux, r1) > 0
implies that γ(qi, x, t1) > 0 for some t1 ∈ QB . Hence f is weak
fuzzy automaton homomorphism. By Lemma 5.4,it is immediate
that f(pi) = qi,∀i ∈ {1, 2, . . . , n} defines f onQA. Converse can
be proved by using Theorem 5.8. Similarly (ii) can be proved.

Conclusion
Apart from introduction of various concepts such as perfect fuzzy
automaton, singly generated fuzzy automaton, primaries, state
fuzzy equivalent relation, state fuzzy endomorphic (automorphic)
set and basis of a fuzzy automaton, precisely following conclusions
are drawn.

(1) The set WGF (A), of all fuzzy automaton isomorphisms of a
fuzzy automaton A, forms a group.

(2) In the case of strongly connected fuzzy automaton, if two fuzzy
automaton homomorphisms coincides at a state, then they are
identical.Further, |WGF (A)| ≤ |Q|.

(3) We have characterized weak fuzzy automaton homomorphisms
(and isomorphisms) on perfect fuzzy automata and obtained
the equality between |WGF (A)| and |Q|. In fact, WGF (A)
is homomorphic image of a monoid Σ∗ over any perfect fuzzy
automaton A = (Q,Σ, µ).

(4) Arbitrary fuzzy automaton is decomposed into its distinct pri-
maries, that are maximal singly generated fuzzy automaton.

(5) Therefore, we have characterized the weak fuzzy automaton
homomorphism (and isomorphism) in terms of the state-fuzzy
equivalence relation over singly generated fuzzy automata.

(6) Every weak fuzzy automaton homomorphism on an arbitrary
fuzzy automaton is determined by its values on any of its basis.

(7) A weak fuzzy automaton homomorphism is an isomorphism if
and only if it maps basis onto basis.
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(8) Every weak fuzzy automaton homomorphism on an arbitrary
fuzzy automaton is obtained by join (∨) of weak fuzzy automa-
ton homomorphisms on its all primaries.
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