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ABSTRACT 
The hydromagnetic Couette flow of a viscous incompressible 

electrically conducting fluid bounded by two infinite parallel 

non-conducting plates in the presence of a uniform transverse 

magnetic field is studied on taking Hall currents into account. 

The relevant equations are solved analytically. The solution 

obtained shows that the inclusion of Hall currents gives some 

interesting results. It is found that the Hall currents tend to 

retard the primary velocity in the region near the stationary 

plate and accelerates the primary velocity in the region near the 

moving plate. It has reverse effect on the secondary velocity in 

the presence of Hall currents. It is observed that the induced 

magnetic field components are radically influenced by the Hall 

currents. On the other hand, the shear stresses at the moving 

plate decreases with an increase in the Hall parameter. It is 

interesting to note that both for large squared-Hartmann number 

and rotation parameter there exists a single-deck boundary layer 

in the region near the stationary plate. The boundary layer 

thickness increases with an increase in Hall parameter whereas 

it decreases with an increase in either squared-Hartmann 

number or rotation parameter. The asymptotic behavior of the 

solutions are discussed for large values of squared-Hartmann 

number and rotation parameter. 

Keywords: Hydromagnetic, Couette flow, Hall current, 

Hartmann number, rotation parameter, steady flow and induced 

magnetic fields.  

 

1. INTRODUCTION 

MHD Couette flows find widespread applications in 

geophysics, planetary sciences and also many areas of industrial 

engineering. For many decades engineers have studied such 

flows with or without rotation and also for both the steady and 

unsteady cases. Such studies have entailed many configurations 

including the flow between rotating plates, rotating concentric 

cylinders, etc. Hartmann and Lazarus[1] have studied the 

influence of a transverse uniform magnetic field on the flow of 

a viscous incompressible electrically conducting fluid between 

two infinite parallel stationary and insulating plates. The 

problem is extended in a numerous ways. Closed form solutions 

for the velocity fields have been obtained [2-5] under different 

physical effects. In the above mentioned cases the Hall term has 

been ignored in applying Ohm's law as it has no marked effect 

for small and moderate values of the magnetic field. However, 

the current trend for the application of magnetohydrodynamics 

is that towards a strong magnetic field so that the influence of 

electromagnetic force is noticeable. Under these conditions, the 

Hall current is important and it has a marked effect on the 

magnitude and direction of the current density and consequently 

on the magnetic force. Tani [6] studied the Hall effects on the 

steady motion of a viscous incompressible electrically 

conducting fluid in channel. Jana and Datta [7, 8] examined the 

Hall effects on Couette flow. Soundalgekar et al. [9, 10] studied 

the effects of Hall currents on the steady MHD Couette flow 

with heat transfer. The temperatures of the two plates are 

assumed either to be constant or varying linearly along the 

plates in the direction of the flow. Abo-El-Dahab[11] has 

studied the effects of Hall currents on the steady Hartmann flow 

subject to a uniform suction and injection at the bounding 

plates. The hydromagnetic Couette flow in a rotating system 

with Hall currents was investigated by Kumar et al.[12]. 

Mandal and Mandal [13] discussed the effects of Hall currents 

on MHD Couette flow between thick arbitrarily conducting 

plates in a rotating system. The steady hydromagnetic Couette 

flow in a rotating system with non-conducting walls was 

presented by Seth and Singh [14]. Seth et al.[15] investigated 

the Hall effects on oscillatory hydromagnetic Couette flow in a 

rotating system. Mandal et al.[16] presented an analysis on 

combined effects of Coriolis force and Hall currents on a steady 

MHD Couette flow and heat transfer. Combined effects of Hall 

and ion-slip currents on unsteady MHD Couette flow in a 

rotating system have been investigated by Jha and Apere[17]. 

An exact solution of an oscillatory MHD flow through a porous 

medium bounded by rotating porous channel in the presence of 

Hall currents have been obtained by Singh and Kumar[18]. 

Chauhan and Rastogi [20] have examined the heat transfer 

effects on rotating MHD Couette flow in a channel partially 

filled by a porous medium with Hall current. Ghosh and 

Bhattacharjee [21] have examined the Hall effects on a steady 

hydromagnetic flow in a rotating channel in the presence of an 

inclined magnetic field. Ghosh [22] has discussed the effects of 

Hall currents on MHD Couette flow in a rotating system with 

an arbitrary magnetic field. Beg et al.[23] have described the 

unsteady magnetohydrodynamic Hartmann-Couette flow and 

heat transfer in a Darcian fluid with Hall currents, ion-slip, 

viscous and Joule heating effects. Recently, Das et al. [24] and 

Maji et al. [25] have studied the Hall effects on MHD Couette 

flow in a rotating system. The combined effects of Hall currents 

and rotation on steady hydromagnetic Couette flow have been 

examined by Sarkar et al. [26]. 

      The objective of the present paper is to investigate the 

influences of Hall currents on the steady hydromagnetic 

Couette flow of a viscous incompressible electrically 

conducting fluid in a rotating system. The fluid is flowing 

between two electrically insulating plates. The upper plate is 

moving with a constant velocity 0U  while the lower plate is 

kept stationary. An external uniform magnetic field is applied 

perpendicular to the plates and the Hall effects are taken into 

consideration. Effects of governing parameters on the fluid 

velocity components, the induced magnetic field components 

and the shear stresses at the plates are presented graphically. 

 

2. MATHEMATICAL FORMULATION 

AND ITS SOLUTION 
The basic equations of magnetohydrodynamics for steady flow 

are         

  21 1ˆ2 ,q q j q p q j B
 

                 (1) 



International Journal of Computer Applications (0975 – 8887)  

Volume 83 – No 9, December 2013 

21 

0,q                                                                    (2) 

,eB j                                                              (3) 

0 (for steady flow),E                                   (4) 

0,B                                                                   (5) 

together with generalized Ohm's law taking Hall current into 

account is  

   
0

,e ej j B E q B
B

 
                                (6) 

 where q , B , E , j  are respectively the velocity vector, the 

magnetic field vector, the electric field vector and the current 

density vector. Also  ,  , e ,  , 0B , e  and e  are 

respectively the electrically conductivity, kinematic viscosity, 

magnetic permeability, fluid density, applied magnetic field, 

cyclotron frequency and electron collision time. In writing the 

equation (6) the ion slip and  thermoelectric effects as well as 

the electron pressure gradient are neglected. 

Consider the viscous incompressible electrically conducting 

fluid bounded by two infinitely long horizontal parallel plates 

separated by a distance d . Choose a Cartesian co-ordinate 

system with x -axis along the lower stationary plate in the 

direction of the flow, the y -axis is normal to the plates and the 

z -axis is perpendicular to xy -plane(see Fig.1). The plates are 

assumed to be electrically non-conducting. The upper plate is 

moving with a constant velocity 0U  while the lower plate is 

held at rest. The plates and the fluid rotate in unison with 

uniform angular velocity   about an axis perpendicular to the 

plates. A uniform magnetic field 0B  is applied in the positive 

y -direction. The Hall effects are taken into consideration and 

consequently a z -component for the velocity and magnetic 

fields are expected to arise. The velocity components are 

( , , )u v w  relative to a frame of reference. Since the plates are 

infinitely long, all physical variables, except pressure, depend 

on y  only. 

  

  
 

    Fig.1: Geometry of the Problem  
 

The equation of continuity 0q   with no-slip condition at 

the plates gives 0v   everywhere in the flow where 

( , , )q u v w . The solenoidal equation 0B   gives 

0=constantyB B  everywhere in the flow, where 

( , , )x y zB B B B . 

The momentum equations for the fully developed steady flow 

are  

2

0

2

1
2 ,x

e

p d u B dB
w

x dy dy


 


    


                         (7) 

2 21 1
0 ,

2

x z

e

p d B d B

y dy dy 

 
   

  
                             (8) 

2

0

2

1
2 ,z

e

p d w B dB
u

z dy dy


 


     


                       (9) 

where p  is the fluid pressure. 

Eliminating E  from equations (4) and (6), we have the x - and 

z -components of the magnetic induction equations as  
2 2

02 2
,x z

e

d B d B du
m B

dy dy dy
                                  (10) 

2 2

02 2
,z x

e

d B d B dw
m B

dy dy dy
                                  (11) 

where e em   is the Hall parameter. 

The boundary conditions for the velocities and the magnetic 

fields are  

0, 0, 0, 0 at 0,x zu w B B y      

0, 0, 0, 0 at .x zu U w B B y d                 (12) 

On the use of the boundary condition at y d , we have from 

equations (7) and (9)  

0

1 1
0 and 2 .

p p
U

x z 

 
     

 
                       (13) 

On the use of  (13), equations (7) and (9) become  
2

0

2
2 ,x

e

d u B dB
w

dy dy



                                        (14) 

2

0
0 2

2 ( ) .z

e

d w B dB
u U

dy dy



                              (15) 

Introducing the non-dimensional variables  

           1 1

0 0 0

( , ) ( , )
, ( , ) , ( , ) ,x z

x z

e

y u w B B
u w b b

d U B U d



              (16) 

equations (14), (15), (10) and (11) become  
2

2 21
1 2

2 ,xd u db
K w M

d d 
                                      (17) 

2
2 21

1 2
2 ( 1) ,zd w db

K u M
d d 

                              (18) 

2 2

1

2 2
,x zd b d b du

m
d d d  

                                           (19) 

2 2

1

2 2
,z xd b d b dw

m
d d d  

                                           (20) 

where 

1/2

0M B d




 
  

 
 is the Hartmann number and 

2
2 d

K



  the rotation parameter. 

Equations (17) and (18) and equations (19) and (20) can be 

combined into the following equations  
2

2 2 2

2
2 2 ,

d F db
M iK F iK

d d 
                               (21) 

2

2
(1 ) 0,

d b dF
im

d d 
                                              (22) 

 where  

1 1, and 1.x zF u iw b b ib i                      (23) 

The corresponding boundary conditions for ( )F   and ( )b   are  

0 at 0 and 1 at 1,F F      
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0 at 0 and 0 at 1.b b                          (24) 

The solutions of the equations (21) and (22) subject to the 

boundary conditions (24) are  

 
1

( ) sinh 1 cosh ,F A B  


                     (25) 

     
2

1
(1 ) ( ) 1 cosh sinhim b A B  


      

                   
2

2

2 (1 )
( ) ,

iK im
B

M


 


  


                       (26) 

 where  

,i                                                                (27) 
1

1 2
2 2 22 2 2

2

2 2 2

1
, 2 ,

1 1 12

M mM M
K

m m m
 

 
        

          
          

 

(28) 

   

2
2

2
2

2 cosh sinh
1 ,

2
sinh (1 cosh )

1

M
i K

imA
M

i K
im

  


  

 
 

  
  
  

                        (29) 

  

2
2

2
2

2 sinh (1 cosh )
1 .

2
sinh (1 cosh )

1

M
i K

imB
M

i K
im

  


  

 
  

   
  
  

                     (30) 

On separating into a real and imaginary parts one can easily 

obtain the velocity components 1u  and 1w  from equation (25) 

and the induced magnetic field components xb  and zb  from the 

equation  (26). If 0m  , then above equations (25) and (26) are 

identical with the equations (23) and (24) of Seth and 

Singh[14]. 
 

3. RESULTS AND DISCUSSION  

 We have presented the non-dimensional velocity components 

and induced magnetic field components for several values of 

squared-Hartmann number 2M , rotation parameter 2K  and 

Hall parameter m  in Figs.2-7. Fig.2 shows that the primary 

velocity 1u  increases near the stationary plate and then it 

decreases away from the stationary plate with an increase in 

squared-Hartmann number 2M  whereas the magnitude of 

secondary velocity 1w  decreases with an increase in 2M . It 

reveals that magnetic field tends to accelerate the primary 

velocity in the region near the stationary plate while it has the 

reverse effect on the primary velocity in the region near the 

moving plate and it tends to decelerate the secondary velocity. 

Fig.3 displays that the primary velocity 1u  increases with an 

increase in rotation parameter 2K  while the magnitude of 

secondary velocity 1w  increases in the region near the 

stationary plate and decreases in the region near the moving 

plate with an increase in 2K . The rotation parameter 2K  

defines the relative magnitude of the Coriolis force and the 

viscous force in the regime, therefore it is clear that high 

magnitude Coriolis forces are counter-productive for the 

primary flow. It is seen from Fig.4 that the primary velocity 1u  

decreases near the stationary plate and then it increases away 

from the stationary plate with an increase in Hall parameter m  

whereas the magnitude of secondary velocity 1w  increases in 

the region near the stationary plate and decreases in the region 

near the moving plate with an increase in m . This implies that 

Hall parameter tends to decelerate the primary velocity in the 

region near the stationary plate while it has the reverse effect on 

the primary velocity in the region near the moving plate. On the 

other hand, Hall currents  tend to accelerate the secondary 

velocity in the region near the stationary plate while it has the 

reverse effect on the secondary velocity in the region near the 

moving plate. 

When flow of a conducting fluid is under the influence of a 

magnetic field, we know that there is a coupling between the 

flow field and the magnetic field. From physical considerations 

it is known that the lines of force representing an applied 

magnetic field influence the fluid flow, which in turn influences 

these magnetic lines as well. Thus the parameters which 

influence the flow field in turn influence similarly the induced 

magnetic fields in the primary and secondary flow directions. 

Profiles for induced magnetic field xb  in the primary flow 

direction and zb  in the secondary flow direction are presented 

in Figs. 5-7 respectively for various values of the pertinent 

parameters. It is observed from Fig.5 that both the primary 

induced magnetic field xb  and the secondary induced magnetic 

field zb  decrease with an increase in squared-Hartmann number 

2M . Thus the magnetic field has tendency to reduce both the 

primary and secondary induced magnetic fields. Fig.6 reveals 

that the primary induced magnetic field xb  increases in the 

region near the stationary plate and decreases in the region near 

the moving plate with an increase in rotation parameter 2K  

whereas the magnitude of the secondary induced magnetic field 

zb  decreases with an increase in 2K . This implies that rotation 

tends to enhance primary induced magnetic field in the region 

near the stationary plate and it has reverse effect on the primary 

induced magnetic field in the region near the moving plate. 

Rotation tends to reduce the magnitude of the secondary 

induced magnetic field. It is observed from Fig.7 that with an 

increase in Hall parameter m  the primary induced magnetic 

field xb  decreases whereas the magnitude of secondary induced 

magnetic field zb  increases. When 0m  , it is negative only in 

the near region of the upper moving plate and positive in the 

remaining channel. As m  increases it is seen that the 

magnitude of zb  increases significantly in the upper part 

becomes zero at certain   and becomes positive in the lower 

remaining part of the channel. Thus the Hall parameter has 

tendency to reduce the primary induced magnetic field and it 

has reverse effect on the secondary induced magnetic field. 

  
Fig.2: Primary and secondary velocities for 2M  when 

0.5m   and 
2 4K   
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Fig.3: Primary and secondary velocities for 2K  when 

2 10M   and 0.5m   

  
Fig.4: Primary and secondary velocities for  m  when 

2 20M   and 2 2K   

 
Fig.5: Primary and secondary magnetic fields  for 2M  when 

0.5m   and 
2 4K   

 
Fig.6: Primary and secondary induced magnetic fields for  

2K  when 2 10M   and 2 4K   

 
Fig.7: Primary and secondary induced magnetic fields for m 

when 2 10M   and 2 4K   

The non-dimensional shear stresses due to the primary and  

secondary flows at the stationary plate ( 0)   and the moving 

plate ( 1)   are respectively 

      
0 0

0

x z

dF
i

d


 




 
   

 
 

                

2
2

2
2

2 cosh sinh
1 ,

2
sinh (1 cosh )

1

M
i K

im

M
i K

im

  


  

 
 

  
  
  

        (31) 

     
1 1

=1

x z

dF
i

d


 


 
   

 
  

               

2
2

2
2

2 sinh
1 ,

2
sinh (1 cosh )

1

M
i K

im

M
i K

im

 


  

 
 

  
  
  

          (32) 

where   is given by (27). 

Numerical results of the shear stresses at the stationary plate 

( 0)   and moving ( 1)   are depicted in Figs.8-11 against 

m for various values of 2M  and 2K . Fig.8 shows that both the 

primary shear stress at the stationary plate 
0

x  and the 

magnitude of secondary shear stress at the stationary plate 
0

z  

increase with an increase in squared-Hartmann number 2M . 
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This implies that the magnetic field has tendency to increase the 

primary shear stress as well as the secondary shear stress at the 

stationary plate. An increase in Hall parameter m  leads to 

decrease in  the shear stress 
0

x  and increase in the magnitude 

of 
0

z  for fixed value of 2M . Thus the Hall parameter has 

tendency to reduce the primary shear stress and it has reverse 

effect on the secondary shear stress at the stationary plate. It is 

seen from Fig.9 that both the primary shear stress 
0

x  and the 

magnitude of the secondary shear stress 
0

z  increase with an 

increase in rotation parameter 2K . This implies that rotation 

has a tendency to enhance primary as well as the secondary 

shear stresses at the stationary plate. Fig.10 reveals that the 

primary shear stress at the moving plate 
1

x  increases with an 

increase in squared-Hartmann number 2M  whereas the 

secondary shear stress at the moving plate 
1

z  first increases, 

reaches a maximum and then decreases with an increase in 2M

. It is seen from Fig.11 that the primary shear stress 
1

x  

decreases with an increase in either rotation parameter 2K  or 

Hall parameter m  whereas the secondary shear stress 
1

z  

increases with an increase in rotation parameter 2K  and it 

decreases with an increase in Hall parameter m . Thus the Hall 

parameter has tendency to reduce the primary shear stress as 

well as the secondary shear stress at the moving plate.    

 

Fig.8: Primary and secondary shear stresses at stationary 

plate  for 2M  when 
2 4K   

  
Fig.9: Primary and secondary shear stresses at stationary 

plate  for 
2K  when 

2 10M    

   
Fig.10: Primary and secondary shear stresses at moving plate  

for 2M  when 2 4K     

    
Fig.11: Primary and secondary shear stresses at moving plate  

for  2K  when 2 10M    

 

We shall now discuss the asymptotic behavior of the solutions 

(25) and (26) for  large values of 2M  and 2K : 

Case I: When 2 1K  and 
2 (1)M O , then the equations (21) 

and (22) give  

     1
1 11 cos ,u e

 



                                               (33) 

     1
1 1sin ,w e

 



                                                 (34) 

     2

1
(1 )

2 (1 )
xb m

K m
 


 

        1
1 1(1 )cos (1 )sin ,e m m

 
 

    


                 (35) 

    2

1
(1 )

2 (1 )
zb m

K m
 


 

      1
1 1(1 )cos (1 )sin ,e m m

 
 

    


                   (36) 

 where  
2

1 1 2 2

(1 )
, 1 .

4 (1 )

m M
K

K m
 

 
  

 
                          (37) 

It is seen from equations (33) and (34) that there exists a single-

deck boundary layer of thickness of the order  1O 1/  where 

1  is given by (37). It is seen that the thickness of this 

boundary layer increases with an increase in  Hall parameter m  

and decreases with an increase in either rotation parameter 2K  

or squared-Hartmann 2M . 

Case II: When 2 1M  and 
2 (1)K O , then equations (21) 
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and (22) give  

2 2

2
1 2 2

1 1
1 cos sin ,

2

K m
u e

M

 
   


  
    

    

              (38) 

2 2 2 2

2
1 2 2

1 1 1
sin cos ,

2

K m K m
w e

M M

 
   


   
     

    

  (39) 

2 22
2

2

1 1 1 1
1 1 cos

2 2 21
xb m e m

M m

 
 

     
        

     

 

    
2 2

2
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It is seen from equations (38) and (39) that there exists a single-

deck boundary layer of thickness of the order  2O 1/  where 

2  is given by (42). It is seen that the thickness of this 

boundary layer increases with increase in Hall parameter m

while it decreases with an increase in Hartmann number M . It 

is interesting to note that for large Hartmann number, that is, for 

strong magnetic field the boundary layer thickness is 

independent of rotation parameter 2K . 

 

4. CONCLUSION 

An investigation of the effects of Hall currents and rotation on 

the hydromagnetic Couette flow of a viscous incompressible 

electrically conducting fluid in the presence of a uniform 

transverse magnetic field has been carried out. Hall currents 

stifle the primary flow in the channel while the secondary flow 

responds more positively with it. The secondary flow is due to 

Hall effects and rotation, hence both effects mark significantly 

on the secondary flow throughout the channel. Rotation has 

significant influences on the velocity components. Hall currents 

have marked effects on the induced magnetic field. The 

magnetic field and rotation have tendency to enhance the 

primary and secondary shear stresses at the stationary plate. 

Hall currents tends to reduce the primary shear stress and it has 

reverse effect on the secondary shear stress at the stationary 

plate. There exists a single-deck boundary layer in the region 

near the stationary plate either for large squared-Hartmann 

number or rotation parameter. The boundary layer thickness 

increases with an increase in Hall parameter whereas it 

decreases with an increase in either squared-Hartmann number 

or rotation parameter. The present study concerning 

magnetohydrodynamics of rotating fluids in the presence of 

Hall currents has immediate relevance to many aspects of fluid 

engineering, astrophysics and geophysics and therefore has 

wide applications in these areas. 
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