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ABSTRACT
In this paper characterization of pseudo M -p-projective modules
and quasi pseudo principally projective modules are given and dis-
cussed the various properties of it. It is proved that a pseudo M -p-
projective module is Hopfian iff M/N is Hopfian, for each fully
invariant small submodule N of M . It is also provided the suffi-
cient condition for pseudo M -p-projective module to be discrete.
Finally several equivalent conditions are given for a quasi pseudo
principally projective module to have the finite exchange property.
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1. INTRODUCTION
The aim of this paper is to study quasi-pseudo principally
projective modules. In 1999 Sanh et.al. [12], defined that N is M -
principally injective, if every R-homomorphism from an M -cyclic
submodule of M to N can be extended to an R-homomorphism
from M to N . A module M is called quasi principally (or semi)
injective, if it is M -principally injective. The dual notion of this is
defined by Tansee and Wongwai in [14], that a module N is called
M -principally projective, if every R-homomorphism from N to an
M -cyclic submodule of M can be lifted to an R-homomorphism
from N to M . A module M is called quasi principally (or
semi) projective, if for any M -cyclic submodule N of M , any
epimorphism g : M → N and any homomorphism f : M → N ,
there exists an R-endomorphism h of M such that f = g.h.
Motivated by this definition, authors have introduce the notion of
quasi-pseudo principally projective module in [10] which is the
dual notion of quasi-pseudo principally injective module defined
by Chaturvedi et.al.[2]. In [11] T.C.Quynh have studied the same
under the name Pseudo semi-projective Modules, Now authors are
in position to prove the various property of such modules. It is
easy to show that if M is quasi-pseudo principally projective, then
every epimorphism in EndMR is an automorphism. Consequently
proved (Proposition 2.17) that every quasi-pseudo principally
projective module is Hopfian.

The paper is divided into three sections; In section 1, introduction,
some definitions and notations are given.
Section 2, is devoted to the study of the properties of quasi-pseudo
principally projective modules. Sufficient condition for quasi-
pseudo principally projective to be quasi principally projective

module is given. An example of a pseudo M -principally projective
module which is not M -projective is given. Apart from this some
results are proved related to Hopfian, co-Hopfian, and directly
finite modules with Pseudo M -p-projective module.

Section 3, contains necessary and sufficient condition for Pseudo
M -p-projective module to be discrete. Finally several equivalent
conditions are given for a quasi-pseudo principally projective mod-
ule to have the finite exchange property.

1.1 Preliminaries
Throughout this paper, by a ringR always mean an associative ring
with identity and everyR-moduleM is an unitary rightR-module.
Let M be an R-module; a module N is called M -generated, if
there is an epimorphism M (I) −→ N for some index set I . If
I is finite then N is called finitely M -generated. In particular, a
submodule N of M is called an M -cyclic submodule of M if it is
isomorphic toM/L for some submodule L ofM . A submoduleK
of an R-module M is said to be small in M , written K � M , if
for every submodule L ⊂M with K +L =M implies L = M . A
nonzero R-module M is called hollow if every proper submodule
of it is small in M . A submodule N of M is called fully invariant
submodule of M , if f(N) ⊂ N for any f ∈ SM = EndMR.
A module M is called indecomposable, if M 6= 0 and cannot be
written as a direct sum of nonzero submodules.
Consider the following conditions for an R-module M :
(D1) : For every submodule A of M there is a decomposition
M =M1 ⊕M2 such that M1 ⊆ A and A ∩M2 �M .
(D2) : If A ⊆ M such that M/A is isomorphic to a summand of
M, then A is a summand of M .
(D3) : If M1 and M2 are summands of M with M1 +M2 = M ,
then M1 ∩M2 is a summand of M .
An R-module M is called a lifting module if M satisfies (D1),
M is called discrete module if it satisfies (D1) and (D2) and
quasi-discrete if it satisfies (D1) and (D3).

Given a cardinal number c, a module M is said to have the c-
exchange property if for any module A and any internal direct sum
decomposition of A given by

A =M ′ ⊕N =
⊕

I Ai.

for modules M ′, N,Ai where M ′ ∼= M and card(I) ≤ c, there
always exist submodules Bi ⊆ Ai for each i ∈ I such that

A =M ′ ⊕ (
⊕

I Bi).
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If M has the n-exchange property for every positive integer n, then
M is said to have the finite exchange property.
For standard notations and terminologies refer to [3], [7] and [17].

2. PSEUDO M -P-PROJECTIVE AND
QUASI-PSEUDO PRINCIPALLY PROJECTIVE
MODULE

DEFINITION 2.1. Let M be an R-module. An R-module N is
called pseudo M -principally projective (pseudo M -p-projective,
for short) if every epimorphism from N to an M -cyclic submodule
of M can be lifted to an R-homomorphism from N to M . Equiv-
alently, for any endomorphism f of M , every epimorphism from
N to f(M) can be lifted to an R-homomorphism from N to M .
An R-module M is called quasi-pseudo principally projective, if
it is pseudo M -principally projective module. N is called pseudo
principally projective, if it is pseudo R-p-projective.

REMARK 2.2. Every M -projective module is pseudo M -p-
projective but the converse is not necessarily true.

An example of pseudo M -p-projective module which is not M -
projective is given.

EXAMPLE 2.3. Z/4Z is pseudo Z-p-projective module but not
Z-projective.

Proof : Let Z denote the ring of integer. For any n ∈ N it is
easily seen that HomZ(Z/4Z, nZ) = 0, thus Z/4Z is pseudo Z-p-
projective. Now it require to show that Z/4Z is not Z-projective.
Let f : Z/4Z → Z/8Z, be defined by f(1 + 4z) = 2 + 8z.
Clearly f is non zero Z-homomorphism, but f can not be lifted to a
Z-homomorphism from Z/4Z → Z, since HomZ(Z/4Z, 1Z) = 0
so Z/4Z is not Z-projective.

It is well known that every quasi principally projective module is
quasi-pseudo principally projective but the converse is not neces-
sarily true (see [3], Exercise 4.45(8)). In the following proposition
authors provide the sufficient condition in terms of hollow module
on quasi-pseudo principally projective module to be quasi princi-
pally projective.

PROPOSITION 2.4. Every hollow quasi-pseudo principally
projective module is quasi principally projective.

Proof : Let M be hollow quasi-pseudo principally projective and
N be M -cyclic submodule of M , let f : M → N be any homo-
morphism implies that Imf ⊆ N , if Imf = 0, so case is trivial. If
Imf 6= 0, means that f is not surjective homomorphism, since N
is hollow then it is easily check that π − f is surjective homomor-
phism from M to N where π : M → N be surjective homomor-
phism. Then by quasi-pseudo principally projectivity of M there
exists an R-endomorphism g : M → M such that π.g = π − f
which implise that f = π.(1 − g). Which shows that M is quasi
principally projective module.

PROPOSITION 2.5. If N is pseudo M -p-projective then any
epimorphism f : M → N splits. In addition, if M is indecom-
posable, then f is an isomorphism.

Proof : Let f : M → N be an epimorphism then M/Kerf ∼= N
with an R-isomorphism g : M/Kerf → N , and so g−1 :
N → M/Kerf is also an R-isomorphism. Since N is pseudo
M -p-projective then g−1 can be lifted to an R-homomorphism
f ′ : N → M such that g−1 = πf ′ where π : M → M/Kerf
is natural epimorphism. Thus gg−1 = gπf ′ implies that IN = ff ′

which gives identity map on N so f splits. Now if M is indecom-
posable that is M can not be written as direct sum of its nonzero
submodules therefore Kerf = 0 which shows that f is an R-
isomorphism.

COROLLARY 2.6. If N is M -p-projective then any epimor-
phism f : M → N splits, and if M is indecomposable then f
is an isomorphism.

LEMMA 2.7. Let M and N be an R-modules then the follow-
ing statements are equivalent :
(1) N is pseudo M -p-projective;
(2) for each f ∈ SM = EndMR, the set of all epimor-
phism in HomR(N, f(M)) = the set of all epimorphism in
f.HomR(N,M) or {g ∈ HomR(N, f(M)) : g is epi} = {g ∈
f.HomR(N,M) : g is epi};
(3) For every submodule L of M every epimorphism f : M → L
and g : N → L, there exists an R-homomorphism h : N → M
such that f.h = g.

Proof : Proof is straightforward.

REMARK 2.8. Every N -cyclic submodule of a M -cyclic sub-
module N is M -cyclic.

PROPOSITION 2.9. N is pseudo M -p-projective if and only if
N is pseudo K-p-projective for every M -cyclic submodule K of
M . In particular, if K is direct summand of M then N is both
pseudo K-p-projective and pseudo M/K-p-projective.

Proof : Prove is given in [11] Proposition 2.4.

PROPOSITION 2.10. For an R-module M , the following state-
ments are equivalent :
(1)M is quasi-pseudo principally projective module,
(2) For submodules N , K of M , and epimorphisms f : M/N →
M/K and g : M → M/K there exists an R-homomorphism
h :M →M/N with g = fh,
(3) For any direct summand L and submodule K of M with epi-
morphisms f : L → M/K and g : M → M/K there exists an
R-homomorphism h :M → L with g = fh.

Proof : Proof is on the same line as proposition 2.2 of Tiwary et.al.
[15].

It is known from Chaturvedi et. al.[2], if M -cyclic submodule K
of M is pseudo M -p-injective then K is direct summand of M but
it is not true in case of pseudo M -p-projective.

PROPOSITION 2.11. IfM -cyclic submoduleK ofM is pseudo
M -p-projective then K is isomorphic to some direct summand B
of M .

Proof : Since K is an M -cyclic submodule of M , therefore K =
s(M) for some s ∈ EndMR. By pseudo M -p-projectivity of K
implies that the epimorphism s : M → s(M) = K splits by
[proposition 2.5], so M = Kers⊕B for some summand B of M ,
therefore B ∼=M/Kers ∼= s(M) = K.
In general it can not conclude that K itself is a direct summand,
which is proved by the following example :

EXAMPLE 2.12. Let Z denote the ring of integer. Consider 2Z
as a Z-cyclic submodule of Z. Now it require to show that 2Z is
pseudo Z-p-projective. Let nZ ⊂ Z, f : Z→ nZ and g : 2Z→ nZ
are epimorphisms, now let h : 2Z → Z be defined by h(2k) =
g(2k)/n. Clearly h is a Z-homomorphism and f.h = g. Therefore
2Z is pseudo Z-p-projective but it is seen that 2Z ∼= Z ⊆⊕ Z and
2Z is not a direct summand of Z.
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In the following proposition it is proved that pseudo M -p-
projective module is closed under direct summand. Thus it is clear
that for any R-module M , Soc(M) is pseudo M -p-projective if
and only if each simple submodule ofM is pseudoM -p-projective.

PROPOSITION 2.13.
⊕

i∈I Ni is pseudo M -p-projective if
and only if each Ni is pseudo M -p-projective.

Proof : Assume that
⊕

i∈I Ni is pseudoM -p-projective. Let f(M)
be an M -cyclic submodule of M , f : M → f(M) and g :
Ni → f(M) are an epimorphisms, now define the epimorphism
g∗ = g.πNi

:
⊕

i∈I Ni → f(M) where πNi
is natural pro-

jection from
⊕

iNi → Ni then g∗(n1, n2, .....ni, ....) = g(ni)
for ni ∈ Ni, i ∈ I . Since

⊕
i∈I Ni is pseudo M -p-projective

there exists an R-homomorphism h :
⊕

i∈I Ni → M such that
f.h = g∗ then h∗ = h|Ni

is an R-homomorphism which lifts g
that is f.h∗ = g. Therefore Ni is pseudo M -p-projective.
Conversely, let Ni be pseudo M -p-projective. Let g ∈
HomR(

⊕
i∈I Ni, f(M)) be epimorphism where f ∈ EndMR

then g|Ni
: Ni → f(M)∀ i, is an epimorphism. Since

Ni is pseudo M -p-projective so clearly f.hi = g|Ni
for

some hi ∈ HomR(Ni,M) now set h =
⊕

i hi then h :⊕
iNi → M and f.h = g so that, the set of all epi-

morphism in HomR(
⊕

iNi, f(M)) ⊂ the set of all epimor-
phism in f.HomR(

⊕
iNi,M) hence the set of all epimor-

phism in HomR(
⊕

iNi, f(M)) = the set of all epimorphism in
f.HomR(

⊕
iNi,M) by lemma 2.7 . Therefore,

⊕
iNi is pseudo

M -p-projective module.
Thus it is seen that pseudo M -p-projectivity is inherited by direct
summand.

COROLLARY 2.14. Every direct summand of quasi principally
projective module is also quasi principally projective.

PROPOSITION 2.15. If M is quasi projective module and K is
fully invariant submodule of M then M/K is quasi-pseudo princi-
pally projective module.

Proof : proof is straightforward and hence omit it.

An R-module M is called Hopfian(resp. co-Hopfian), if every sur-
jective (resp. injective) R-homomorphism f : M → M is an au-
tomorphism. For example every noetherian R-modules are Hop-
fian and every artinian R-modules are co-Hopfian. A module M is
called directly finite, if M is not isomorphic to a proper summand
of itself.

LEMMA 2.16. (Proposition 1.25, Mohamed and Muller [7]).
An R-module M is directly finite if and only if f.g = 1 implies
g.f = 1 for any f, g ∈ EndMR.

In the following propositions pseudo M -p-projective module re-
lated with with Hopfian, co-Hopfian and directly finite modules.

PROPOSITION 2.17. Every quasi-pseudo principally projec-
tive module M is Hopfian.

Proof : Let f be any surjective endomorphism of M , IM : M →
M be an identity map on M . Since M is quasi-pseudo principally
projective then there exists an R-epimorphism g : M → M such
that f.g = IM . Which gives that g is an automorphism on M ,
therefore f = g−1 is an automorphism onM . HenceM is Hopfian.

COROLLARY 2.18. Every quasi-principally projective module
M is Hopfian.

Proof : Proof is easy.

PROPOSITION 2.19. Let M be pseudo M -p-projective co-
Hopfian, then it is Hopfian.

Proof : Let f be surjective endomorphism on M , IM : M → M
be an identity map on M . By pseudo M -p-projectivity of M there
exists an R-homomorphism g : M → M such that f.g = IM ,
implies that g is monomorphism. Since M is co-Hopfian, then it
follows that f = g−1 is an automorphism on M . Therefore M is
Hopfian.

COROLLARY 2.20. If M be quasi-principally projective co-
Hopfian module, then M is Hopfian.

PROPOSITION 2.21. Let M be pseudo M -p-projective and N
is fully invariant small submodule of M . Then M is Hopfian if and
only if M/N is Hopfian.

Proof : Assume that M/N is Hopfian. Let f : M → M be any
epimorphism, then pseudo M -p-projectivity of M implies that f
splits, by proposition 2.5, hence K = Kerf is direct summand
of M . Since N is fully invariant implies f(N) ⊂ N , now in-
duced a map f ′ : M/N → M/N which is clearly an epimor-
phism, the Hopficity of M/N implies that f ′ : M/N → M/N
is an isomorphism. Now by (f ′.π)(K) = (π.f)(K) = 0, where
π :M →M/N be natural epimorphism, it is seen that π(K) = 0,
it means K ⊂ N , but K ⊂ N � M implies that K � M .
Since M is pseudo M -p-projective there exist a spliting for f , i.e.
K = Kerf is direct summand of M . Therefore K = Kerf = 0,
implies that M is Hopfian.
Conversely, assume thatM is Hopfian andN �M if f :M/N →
M/N is an epimorphism. Thus f.π : M → M/N , where π is
natural epimorphism from M → M/N . Then by pseudo M -p-
projectivity of M there exists g ∈ EndMR, such that π.g = f.π
implies that g is an epimorphism by 19.2, Wisbauer(1991) [17] as
π is a small epimorphism. Since M is Hopfian then g is an iso-
morphism. Assume Kerf 6= 0, then there exists x ∈ M such that
f(x + N) = N ⇒ f.π(x) = π.g(x) = g(x) + N = N gives
that g(x) ∈ N ⇒ x ∈ g−1(N) ⊆ N . It follows that Kerf = N ,
therefore M/N is Hopfian.

COROLLARY 2.22. Let M be finitely generated pseudo M -p-
projective module. Then M is Hopfian if and only if M/J(M) is
Hopfian.

Proof : It is known that J(M) is fully invariant submodule of M .
IfM is finitely generated then J(M)�M . Thus by above propo-
sition proof is obvious.

COROLLARY 2.23. Let M be pseudo M -p-projective, N and
L are submodules of M such that N + L =M and N ∩ L�M .
Then M/N and M/L are Hopfian.

Proof : It is known that M/N ∩ L = N/N ∩ L ⊕ L/N ∩ L,
by proposition 2.18 and 2.21 M/N ∩ L is Hopfian, hence so its
direct summand, as N/N ∩ L ∼= N + L/L = M/L, similarly
L/N ∩ L ∼= N + L/N =M/N is Hopfian.
The next proposition is the just generalization of Pandeya and
Pandey (proposition 2.8)[9], whose proof is straightforward and
hence omit it.

PROPOSITION 2.24. Let M be finitely generated pseudo M -
p-projective hollow module then M is directly finite if and only if
each homomorphic image is directly finite.
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PROPOSITION 2.25. Let M be a hollow R-module and N be
an R- module. Then N is pseudo M -p-projective and every M -
cyclic submodule of M is N -injective if and only if M is N -
injective and every submodule of N is pseudo M -p-projective.

Proof : Assume that M is N -injective and every submodule of N
is pseudo M -p-projective. Let s(M) be an M -cyclic submodule
of M for any s ∈ SM = EndMR, N ′ be any submodule of N
and let f : N ′ → s(M) be any homomorphism. Since s(M) is
hollow then f is an epimorphism. By pseudo M -p-projectivity
of N ′ there exists a homomorphism h : N ′ → M such that
s.h = f . Also M is N -injective then h can be extended to a
homomorphism g : N → M such that g.i = h. Now take
g′ = s.g : N → s(M) which is an extension of f to N , therefore
s(M) is N -injective. Since N is submodule of itself therefore it is
pseudo M -p-projective module.
Conversely, assume that N is pseudo M -p-projective and ev-
ery M -cyclic submodule of M is N -injective. Let N ′ be any
submodule of N , i : N ′ → N be an inclusion map and s(M)
be an M -cyclic submodule of M . Since s(M) is N -injective
then for any homomorphism f : N ′ → s(M) there exists a
homomorphism g : N → s(M) such that g.i = f . Since s(M) is
hollow so Img = s(M) consequently, g is an epimomorphism. By
pseudo M -p-projectivity of N , g can be lifted to a homomorphism
h : N → M such that s.h = g. Now take h′ = h.i : N ′ → M
be homomorphism, which lifts f and sh′ = s.h.i = g.i = f .
Therefore N ′ is pseudo M -p-projective. M is an M -cyclic
submodule of itself therefore it is N -injective.

The following lemma is the generalization of lemma 1.1, [5],
which is useful to characterize semi-simple rings in terms of
pseudo M -p-projective module in corollary 2.27.

LEMMA 2.26. A sufficient condition for short exact sequence
0 → K → P

λ→ Q → 0, to splits is that P ⊕ Q is pseudo M -p-
projective module.

Proof : Proof is easily obtained in the light of lemma 1.1, [5].

COROLLARY 2.27. A sufficient condition for R to be semi-
simple is that R ⊕M be pseudo M -p-projective for every simple
module M .

Proof : M is simple then there exists a short exact sequence 0 →
K → R→M → 0, which splits by above lemma (simple module
being pseudo M -p-projective), therefore every simple module is
projective, which implies that R is semi-simple.

PROPOSITION 2.28. Every pseudo M -p-projective module
satisfy (D2) condition.

Proof : Let A be a direct summand of M and B is a submodule of
M with M/B ∼= A with an R-isomorphism f :M/B → A. Now
define f ∗ = f.πB : M → A where πB is natural epimorphism of
M onto M/B then f ∗ is an epimorphism and Kerf ∗ = B. Since
A is direct summand of M therefore A is pseudo M -p-projective,
then f ∗ splits and M = Kerf ∗ ⊕N for some direct summand N
of M . It follows thatB = Kerf ∗ is a direct summand of M hence
M satisfies (D2) condition.

COROLLARY 2.29. Let M be a pseudo M -p-projective mod-
ule. Then the followings are equivalent :
(1)M is discrete module;
(2)M is quasi discrete module;
(3)M is lifting module.

Proof : (1) ⇒ (2) ⇒ (3) is trivial and (3) ⇒ (1) follows from
proposition 2.28.

In general the following implication is given :

projective ⇒ quasi projective

⇒ semi projective

⇒ quasi pseudo principally projective

; discrete.

3. WHEN PSEUDO M -P-PROJECTIVE MODULES
IS DISCRETE ?

It is provided that sufficient condition for pseudo M -p-projective
module to be discrete. Infact a pseudoM -p-projective module does
not satisfy (D1) condition always. Thus pseudo M -p-projective
module with (D1) condition is discrete. In the following propo-
sition authors provide a necessary and sufficient condition for a
pseudo M -p-projective module to be discrete.

PROPOSITION 3.1. An indecomposable pseudo M -p-
projective module M is discrete if and only if M is hollow.

Proof : Suppose M is discrete then it satisfies (D1) and (D2)
conditions. By (D1) condition, for any submodule N of M there
exists a decomposition M = M1 ⊕M2 such that M1 ⊆ N and
N ∩M2 � M . Indecomposability of M implies either M1 = 0
or M2 = 0, then proof is done.
Conversely, assume that pseudo M -p-projective module is hollow,
Since hollow module is indecomposable and satisfies (D1)
condition and by proposition 2.28, M satisfies (D2) condition.
Therefore M is discrete.

A right R-module M is called a duo module, if every submodule
of M is fully invariant. A module M is called a self-generator, if it
generates all of its submodules. The following lemma is helpful in
the proof of corollary 3.4.

LEMMA 3.2. (lemma 2.1, C. Somchit[13]) Let M be a duo
right R-module and N be its direct summand. Then
(1) N is itself a duo module.
(2) If M is self-generator, N is also a self generator.

LEMMA 3.3. Let M be pseudo M -p-projective if SM =
EndMR is local. Then for any non-trivial fully invariantM -cyclic
submodules M1 and M2 of M , M 6=M1 +M2.

Proof : Let M1 = s(M) 6= 0 and M2 = t(M) 6= 0 for s, t,∈
SM = EndMR. Assume that M = M1 + M2 define the map
f : (s+ t)M = M → M/M1 ∩M2 by f(s+ t)(m) = s(m) +
M1 ∩ M2. Clearly f is well defined R-epimorphism by pseudo
M -p-projectivity there exists g ∈ SM such that π.g = f where
π : M → M/M1 ∩M2 is natural epimorphism. It follows that
π.g(s+ t)(m) = π(s(m)) then ((1−g)s−g.t)(M) ⊆M1∩M2.
Since SM is local then g or 1− g is invertible. If 1− g is invertible
then (s− (1− g)−1g.t)(M) ⊆ (1− g)−1(M1 ∩M2) thus M1 ⊆
(s−(1−g)−1g.t)(M) ⊆ (1−g)−1(M1∩M2) ⊆M1∩M2. Then
M1 ⊆M1∩M2 which is a contradiction. Similarly if g is invertible
then M2 ⊆ (g−1(1 − g)s − t) ⊆ g−1(M1 ∩M2) ⊆ M1 ∩M2.
Then M2 ⊆ M1 ∩M2 which is contradiction to our assumption
M =M1 +M2 and hence M 6=M1 +M2.

COROLLARY 3.4. If M is pseudo M -p-projective duo module
which is self-generator with local endomorphism ring. Then M is
hollow hence it is discrete module.
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Proof : For any 0 6= m ∈ M,mR contains a nonzero M -cyclic
submodule, sinceM is self-generator. It is clear from above lemma
that M is hollow.

LEMMA 3.5. (lemma 1.1, Birkenmeier et.al.[1] ) Suppose
M =

⊕
i∈IMi be duo module then every submodule N of M

is N =
⊕

i∈I(N ∩Mi).

THEOREM 3.6. LetM =
⊕

i∈IMi be pseudoM -p-projective
where eachMi is hollow. IfM is duo module withRad(M)�M ,
then M is discrete module.

Proof : Suppose for any submodule N of M from above lemma
N =

⊕
j∈J(N∩Mj) where J ⊂ I andN∩Mj 6= 0, sinceN∩Mj

is small in Mj then N =
⊕

j∈J(N ∩Mj)�
⊕

i∈IMi =M that
is N �M thus M is hollow and hence discrete module.

PROPOSITION 3.7. SupposeM is semi-simple duo module and
Rad(M)�M . If M is self-generator then M is discrete module.

Proof : Since M is semi-simple then M =
⊕

i∈IMi such that
eachMi is simple thenEnd(Mi) is local. Then by lemma 3.2 each
Mi is duo and self-generator. Since every semi-simple module
is pseudo M -p-projective and every direct summand of pseudo
M -p-projective module is again pseudo M -p-projective. Then
by corollary 3.4 each Mi is discrete so from theorem 3.6, M is
discrete module.

Suppose M = M1 ⊕ M2 be a decomposition of R-module M ,
now authors assign some condition on M1 and M2 so that M is a
discrete module.

PROPOSITION 3.8. Let M1 be simple module and M2 a
pseudo M -p-projective uniserial module with unique composition
series 0 ⊆M ′

2 ⊂M2. Then M =M1 ⊕M2 is discrete module.

Proof : It is well known that every simple module is pseudo
M -p-projective. Then M = M1 ⊕M2 is pseudo M -p-projective
which satisfies (D2) condition by proposition 2.28. Now for
discreteness it remains to show that M satisfy (D1) condition.
Let L be non zero submodule of M , it require to show that there
exists a submodule M1 of M such that M = M1 ⊕ M2 with
M1 ⊆ L and L ∩M2 � M for some submodule M2 of M . If
M1∩ (L+M2) = 0 then L ⊆M2. SinceM =M1⊕M2 andM2

has unique composition series hence L is small submodule of M
or direct summand of M . Now assume that M1 ∩ (L+M2) 6= 0,
then M1 ⊆ L + M2 and M = L + M2, if (i) L ∩M2 = M2

and L ∩M1 = M1, (ii) L ∩M2 = 0 and L ∩M1 = M1, (iii)
L ∩M2 =M ′

2 and L ∩M1 =M1. Then it can easily verified that
proof is done. Assume that L ∩M2 = M ′

2 and L ∩M1 = 0 then
M ′

2 ⊆ L, hence M = L ⊕M1. Thus M satisfies (D1) condition
and therefore M is discrete module.

Let M1 and M2 be an R-module then M1 and M2 are said to be
relatively projective, if M1 is M2 projective and M2 is M1 projec-
tive.

LEMMA 3.9. The following statements are equivalent for a
module M =M1 ⊕M2;
(i) For each submodule N of M with M =M1 +N there exists a
submodule N ′ of N such that M =M1 ⊕N ′.
(ii) M1 and M2 are relatively projective.

Proof : See ( [17] 41.14, (3)⇔ (4) ) and ( [7] lemma 4.47).

PROPOSITION 3.10. Let the pseudo M -p-projective module
M = M1 ⊕M2 be a direct sum of relatively projective module

M1 and M2, such that M1 is semi-simple and M2 is lifting module
then M is discrete module.

Proof : LetL be a nonzero submodule ofM , now assume thatM1∩
(L + M2) 6= 0 and let M1 ∩ (L + M2) = N then for some
submodule N ′ of M1, then M1 = N ⊕N ′ and hence M = N ⊕
N ′ ⊕M2 = L+ (N ′ ⊕M2). Then by ( [7] prop. 4.31, prop. 4.32,
prop. 4.33), N is M2 ⊕ N ′ projective. Now from above lemma,
there exists a submodule L′ of L such that M = L′ ⊕ (M2 ⊕N ′).
Assume L ∩ (M2 ⊕ N ′) 6= 0, let K be any submodule of M2.
Since L ∩ (K + N ′) ⊆ K ∩ (L + N ′) + N ′ ∩ (L + K) and
N ′ ∩ (L+K) = 0, then L∩ (K+N ′) ⊆ K ∩ (L+N ′) similarly
K ∩ (L + N ′) ⊆ L ∩ (K + N ′), therefore K ∩ (L + N ′) =
L ∩ (K +N ′) for every submodule K of M2. Since M2 is lifting
there exist a submodule A1 of M2 ∩ (L+N ′) = L ∩ (M2 ⊕N ′)
such that M2 = A1 ⊕ A2 and A2 ∩ (L + N ′) � A2 for some
A2 ⊆ M2, thus M = (L′ ⊕ A1) ⊕ (A2 ⊕N ′), L′ ⊕ A1 ⊆ L and
L ∩ (A2 ⊕N ′) = A2 ∩ (L+N ′) is small in A2 ⊕N ′.
Now assume that M1 ∩ (L +M2) = 0 ⇒ L ⊆ M2. Since M2 is
lifting there exists a submodule A1 of L such that M2 = A1 ⊕A2

and L ∩ A2 � A2 for some submodule A2 of M2. Hence M =
M1⊕A1⊕A2 = A1⊕ (M1⊕A2) and L∩ (M1⊕A2) = L∩A2

is small inM1⊕A2. It follows thatM satisfies (D1) condition and
by proposition 2.28, M is discrete module.

COROLLARY 3.11. Let M1 be semi simple and M2 a mod-
ule with RadM2 = M2. Then pseudo M -p-projective module
M = M1 ⊕M2 is discrete if and only if M1 and M2 is relatively
projective and M2 is lifting.

Proof : Sufficient part is clear from the above proposition. Con-
versely, assume M = M1 ⊕M2 is discrete, implies that M2 has
(D1) and (D2) condition, by lemma 4.7 [7], since M1 is semi
simple, M2 is M1-projective. Now it require to prove that M1 is
M2-projective. Let N be a submodule of M with M = N +M2,
by prop. 4.8 [7], there exists a submodule N1 of N such that
M = N1 + M2 = N1 ⊕ N2 and N1 ∩ M2 � N1 for some
submodule N2 of M . It follows easily that RadN1 = N1 ∩M2.
Since RadM = RadN1 ⊕ RadN2 = M2, then N1 ∩ M2 is a
direct summand of N1. Hence M = N1 ⊕M2. By lemma 3.9, M1

is M2-projective.

An R-module M is called refinable (or suitable) if, for any
submodules M1,M2 of M with M1 + M2 = M , there exist a
direct summand M ′

1 of M with M ′
1 ⊆M1 and M ′

1 +M2 =M .

Moreover if there exist a direct summandM ′
2 ofM withM ′

2 ⊆M2

with M = M ′
1 ⊕M ′

2, then M is said to be strongly refinable. For
example semisimple modules, hollow modules are strongly refin-
able. A finitely generated module M in which every finitely gen-
erated submodule is a direct summand is strongly refinable, such
modules are called regular module.

LEMMA 3.12. (11.28, Clark et. al. [3]). Let M be a quasi-
pseudo principally projective module with SM = EndMR. Then
the following conditions are equivalent :
(1)M is strongly refinable;
(2) M/RadM is refinable and direct summands lift modulo
RadM ;
(3) SM is left refinable.

LEMMA 3.13. Let M be strongly refinable module;
(1) If M1 is a direct summand of M , then M1 is strongly refinable.
(2) If M = M1 +M2 + ....... +Mn, then M = M ′

1 ⊕M ′
2 ⊕
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.......⊕M ′
n where M ′

i ⊆Mi for i=1,2,.....n. In particular, if Mi is
cyclic then M ′

i is cyclic. In other words if M is finitely generated
then it is a direct sum of cyclic submodules.
(3) If M has no infinite direct sum of submodules of M , then M is
strongly ⊕-supplemented.

Proof : Proof is straightforward.

Following lemmas generalize some results of Nicholson [8], for
pseudo M -p-projective modules.

LEMMA 3.14. If M is pseudo M -p-projective modules, M =
M1 + M2 + ....... + Mn where Mi are submodules of M , then
there exist fi ∈ EndMR such that fi(M) ⊆ Mi for each i and
f1 + f2 + ......+ fn = IM .

Proof : Proof is similar to Lemma 2.7 of [8].

LEMMA 3.15. Let M be quasi-pseudo principally projective
module and suppose M =M1 +M2 where M1 is direct summand
of M and M2 is a submodule, then there exists M ′

2 ⊆ M2 such
that M =M1 ⊕M ′

2.

Proof : Proof is similar to Lemma 2.8 of [8].

PROPOSITION 3.16. The following statements are equivalent
for quasi-pseudo principally projective modules :
(1)M has finite exchange property;
(2) If M =

∑n
i=1Mi where Mi are submodules there exists a

decomposition M =
⊕n

i=1M
′
i with M ′

i ⊆ Mi for each i =
1, 2, .....n;
(3) If M = M1 +M2 where M1 and M2 are submodules there
exists summand M ′

1 ⊆M1 of M and M =M ′
1 +M2.

Proof: (1) ⇒ (2). If M =
∑n
i=1Mi by Lemma 3.14 there

exists fi ∈ EndMR such that fi(M) ⊆ Mi for each i and
f1 + f2 + ...... + fn = IM . By Prop. 1.11 of Nicholson [8]
there exist orthogonal idempotents gi ∈ (EndMR)fi such that
g1 + g2 + .......gn = IM then (2) follows with gi(M) =Mi.
(2)⇒ (3). Obvious.
(3) ⇒ (1). Let f1, f2 ∈ EndMR be such that f1 + f2 = 1.
Then M = f1(M) + f2(M) therefore, by (3) and Lemma 3.15,
let M = M1 ⊕ M2 where Mi ⊆ fi(M) for each i. Let g1, g2
be idempotents in EndMR with g1 + g2 = 1 and gi(M) = Mi.
There exist hi ∈ EndMR such that fi.hi = gi. Hence EndMR is
refinable and (1) follows by lemma 3.12 and 11.31 of Clark et.al.
[3].
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