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ABSTRACT 

This paper deals with a method for solving Poisson Equation 

(PE) based on genetic algorithms and grammatical evolution. 

The method forms generations of solutions expressed in an 

analytical form.  Several examples of PE are tested and in 

most cases the exact solution is recovered. But, when the 

solution cannot be expressed in an analytical form, our 

method produces a satisfactory solution with a good level of 

accuracy.   
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1. INTRODUCTION 
 Poisson equation is omnipresent in science, engineering and 

manufacturing. Several physical phenomena may be described 

by PE [1]. In electrostatics, the electric field E can be 

expressed  in terms of an electric potential φ: 

                   φ=E                                (1) 

Where   is the divergence operator 

The potential itself satisfies Poisson’s equation: 

                   

0

2

ε

ρ
=φ                            (2) 

Where 
2 is Laplace operator, ρ  is the charge density and 

0ε is the permittivity of free-space. In Newtonian gravity, we 

can write the force f exerted on a unit  mass in terms of a 

gravitational potential ф: 

                  φ=f                                   (3) 

The potential satisfies Poisson’s equation: 

                    Gρ=φ 22 4π                    (4) 

Where ρ is the mass density, and G is the universal 

gravitational constant. 

A series of problems in many scientific fields such as physics 

[2], chemistry [3], biology [4], economics [5], electrostatics 

[6] and semiconductor [7]  can be modelled with the use of 

PE. The Poisson equations are also very important in 

computer vision. They arise in several computer vision fields, 

such as shape from shading, surface reconstruction, height 

from gradient and brightness based stereo vision [8]. 

Due to the importance of Poisson Equation, many methods 

have been proposed. In some cases, analytical solutions can 

be found or approximated by standard methods. However, in 

numerous cases these equations are nonlinear and are 

impossible to solve.  In literature, many methods have been 

proposed for solving PE such as Runge Kutta methods [9], 

Predictor–Corrector [10], radial basis functions [11], artificial 

neural networks [12] and genetic programming [13]. 

In this paper, we have proposed a method based on Genetic 

Algorithms (GAs) and grammatical evolution. This method 

has also the advantage of not requiring the derivative of the 

objective function, which is a great advantage for problems 

whose objective function is not known in an analytic form.  

GAs are stochastic methods that permit to find, in a 

reasonable amount of  time, acceptable and satisfying 

solutions to challenging problems of search and optimization 

that are out of reach for conventional and deterministic 

methods. They are iterative heuristic procedures that imitate 

biological evolution as described by Darwin’s theory of 

evolution [14]. Such heuristics have been proved effective in 

solving a variety of hard real-world problems in many 

application domains[ 15]. 

To design a genetic solution to any optimization problem, we 

first need to represent each candidate solution to the problem, 

called individual, by the mean of an abstract representation, 

called chromosome [15]. A function, called fitness, is 

necessary for assessing and comparing the relative quality of 

different solutions. Thus, starting from an initial population of 

randomly generated individuals. GA permits to evolve this 

population, throughout iterations called generations, toward 

better solutions according to rules of selection [16], crossover 

and mutation that simulate biological evolution. 

 Our method offers analytical form solutions. However, the 

variety of the basic functions involved is not a priori 

determined, rather is constructed dynamically as the solution 

procedure proceeds and evolve. The generation of solutions 

progress with using a grammatical evolution, governed by a 

grammar expressed in Backus Naur Form (BNF) [17]. 

 The rest of the paper is organized as follows: in section 2 we 

give a brief presentation of grammatical evolution, in section 

3 we describe in detail our method, in section 4 we present 

several experiments and in section 5 we present our 

conclusions and ideas for further work. 

2. GRAMMATICAL  EVOLUTION 
Grammatical evolution (GE) is an evolutionary algorithm that 

can produce code in any programming language. GE has been 
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applied successfully to problems such as symbolic regression 

[18], discovery of trigonometric identities [19], robot control 

[20], caching algorithms [21], and financial prediction [22]. 

 The algorithm requires as inputs the BNF grammar definition 

of the target language and the appropriate fitness function. 

Chromosomes in grammatical evolution, in contrast to 

classical genetic algorithms, are expressed as vectors of 

integers. Each integer denotes a production rule from the BNF 

grammar. The algorithm starts from the start symbol of the 

grammar and gradually creates the string, by replacing non 

terminal symbols with the right hand of the selected 

production rule. The selection is performed in two steps: 

  read an element from the chromosome (with value V)  

  select the Rule  according to the scheme  

Rule = V  mod R                               (1) 

Where  R is the number of rules for the specific non terminal 

symbol.  

A BNF grammar is made up of the tuple N, T, P and S, where 

N is the set of all non-terminal symbols, T is the set of 

terminals, P is the set of production rules that map N to T, and 

S is the initial start symbol and a member of N. Where there 

are a number of production rules that can be applied to a non-

terminal, a “ |  ” (or) symbol separates the options. Using: 

N = {<expr>, <op>, <operand>, <var>, <func>} 

T = {1, 2, 3, 4, +, -, /, *, x, y, z} 

S = {<expr>} 

The process of replacing non terminal symbols with the right 

hand of production rules is continued until the end of 

chromosome has been reached. We can reject the entire 

chromosome or we can start over (wrapping event) from the 

first element of the chromosome if threshold of the number of 

wrapping events is reached, the chromosome is rejected by 

assigning to it a large fitness value. In our approach, threshold 

of the number of wrapping events is equal to 2. 

As well we programmed in C++ language, we used a small 

part of the C programming language grammar as we can see 

an example in Table II, we also construct 4 Radial Basis 

Functions (RBF), see Table I, that we added to the C++ 

standard functions. We note that the numbers in parentheses 

denote the sequence number of the corresponding production. 

Below is a BNF grammar used in our method: 

S::=<expr>       (0) 

<var>::=x        (0) 

|y                    (1) 

|z                    (2) 

<operand> ::= 0               (0) 

| 1                (1) 

| 2                (2) 

| 3                (3) 

| 4                (4) 

| 5                (5) 

| 6                (6) 

| 7                (7) 

| 8                (8) 

| 9                (9) 

| <var>        (10) 

 

<op> ::= +      (0) 

| -                     (1) 

| *                    (2) 

| /                     (3) 

 

<func> ::= sin              (0) 

|cos               (1) 

|exp               (2) 

|log                (3) 

|sqrt               (4) 

|BRF1           (5) 

|BRF2           (6) 

|BRF3           (7) 

|BRF4           (8) 

<expr> ::= <expr> <op> <expr>      (0) 

| ( <expr> )                        (1) 

| <func> ( <expr> )           (2) 

|<operand>                        (3) 

 Table 1. Radial Basis Functions 

Name Used Function Name Definition 

BRF1 Gaussian  2crexp  

BRF2 Hardy Multiquadratic 2r+c2
 

BRF3 Inverse Multiquadratic 

2r+c2

1
 

BRF4 Inverse Quadratic 

2r+c2

1
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Consider the chromosome C, the steps of the mapping 

procedure are listed in Table 2. The result of these steps is the 

expression sqrt(3*x) 

Table 2. An example for executing procedure 

String_BNF Chromosome Operation 

<expr> 10,4,8,15,3,6,19,21,9 10 mod 4=2 

<func>(<expr>)      4,8,15,3,6,19,21,9 4 mod 9=4 

sqrt(<expr>)         8,15,3,6,19,21,9 8 mod 4=0 

sqrt(<expr><op><expr>)            15,3,6,19,21,9 15 mod 4=3 

sqrt(3*<expr>)                       19,21,9 19 mod 4=3 

sqrt(3*<operand>)                            21,9 21mod 11=10 

sqrt(3*<var>)                                 9 9 mod 3=0 

sqrt(3*x)   

 

3. METHOD DESCRIPTION 
In order to conceive a genetic solution to PE we have to 

determine the encoding method. Then the fitness function is 

used for assessing and comparing the solutions candidates for 

PE. Thus, starting from an initial population of randomly 

generated individuals, we evolved this population toward 

better solutions according to the rules of selection strategy, 

crossover and mutation. The details are as follows 

Encoding Method: the ordinal encoding scheme was used in 

the proposed method. Under this scheme, a serial number is 

assigned to each gene from 0 to s where s=50.  

Initial population size: generally, the initial population size 

can be determined according to the complexity of the solved 

problem. A larger population size will reduce the search speed 

of the GA, but it will increase the probability of finding a high 

quality solution. The initialization of the population of 

chromosomes is generated by a random process. Each 

chromosome is represented as permutation j1, j2, ... , js  of  1, 2, 

... , s. The process does not yield any illegal chromosome, i.e. 

the alleles of each gene of the chromosome are different from 

each others. 

Fitness function: the fitness function is a performance index 

that it is applied to judge the quality of the generated  solution 

of PE.  

We only consider the PE in two variables with Dirichlet 

boundary conditions. 

The generalization of the process to other types of boundary 

conditions and higher dimensions is possible with our method. 

The PE is expressed in the form:                                                                                         

      02 =yx,ρyx,u                  (5.a)                                    

    Or 

      0
2

2

2

2

=yx,u
y

,yx,u
x

,yx,uy,x,f












 
       (5.b) 

With    dc,yba,x                     

Suppose that u(x, y) satisfies mixed boundary conditions in 

the x-direction: i.e.,  

u(0,y)-γa(y)=0 

u(1,y)-γb(y)=0; 

Furthermore, suppose that u(x, y) satisfies the following 

simple Dirichlet boundary conditions in the y-direction: 

u(x,0)-βc(x)=0; 

u(x,1)-βd(x)=0; 

The steps for evaluating chromosome Ci by fitness function 

are [13]: 

1. Choose Tx equidistant points in [a,b] 

             Ty equidistant points in [c,d], 

we also choose Tx=Ty=T; 

2. Construct a solution Si from Ci by using grammatical 

evolution described earlier; 

3. Calculate  

       












 
 yx,S

y
,yx,S

x
,yx,S,y,xf=SE iiijj

T

=j
ir 2

2

2

22

1

 

4. Calculate the penalty value satisfying  each Dirichlet 

boundary condition: 

     iai

T

=j
iia yγya,S=SP 

1

    (7) 

     ibi

T

=j
iib yγyb,S=SP 

1

    (8) 

     ici

T

=j
iic xβc,xS=SP 

1

    (9) 

     idi

T

=j
iid xβd,xS=SP 

1

     (10) 

5. the fitness is : 

    idcbari SP+P+P+P+E=cf (11) 

Selection operator: in the selection operation, the 

chromosome with the lower fitness function value will have a 

higher probability to reproduce the next generation. 

The aim of this operation is to choose a good chromosome to 

achieve the goal of gene evolution. The most commonly used 

method is Tournament Selection. In this study, we used a 

modified Tournament Selection, which guards in each 

iteration the best individual. The following pseudo code 

summarizes the Selection Method.  
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// N: population size 

T_alea: array of integer containing the indices of individuals  in 

the population 

T_ind_Winner : an array of individuals indices 's who will be 

selected 

Lsorted : a list of all individual indices sorted in decreasing 

fitness values 

l = 0 

k=0 

For (i=0; i<k; i++) 

{ 

 Shuffle T_alea ; 

 For (j=0; j<N; j=j+k+1) 

 { 

  C1 = T_alea(j); 

  For (m=1; m<k; m++) 

  { 

   C2=T_alea(j+m); 

   if f(C1)< f(C2) C1 = C2 

  

            // f(Ci): Fitness of individual Ci 

  } 

  T_ind_Winner(l) = C1 

                          T_ind_Winner(l+1) = Lsorted  (k) 

  l=l+2; 

                         k=k+1 

 } 

} 

Fig 1. Tournament Selection Modified 
 

Crossover operation:  This operation aims to combine two 

parent chromosomes to generate better child chromosomes, by 

crossover rate decision.  

In our study, a novel Homologous crossover [23] operator is 

used, which is inspired by molecular biology and proceeds as 

follows: 

1.  For each individual of the population,  a history of the 

rules in the grammar BNF is stored. 

2.  The histories of the two individuals for crossover are 

aligned. 

3.  The history for each parent is treated from the left with 

sequential manner. The region of similarity is marked if 

the rules selected for the both parents are identical. 

4.  At the limits of the region of similarity, the first two 

crossover points are picked. These points are the same on 

both parents 

5.  The two second crossover points are then selected from 

the regions of dissimilarity by respecting the following 

steps: 

5. 1  from the dissimilarity region, the crossover 

point is selected randomly in the first parent; 

5. 2  on the second parent,  the crossover point 

picked respects the rule that a gene is 

associated with the same type of non-terminal 

as the gene related the crossover point on the 

first parent; 

5. 3  this gene is established by generating randomly 

a crossover point and then the process searches 

incrementally, nearby this point until an 

appropriate point is found; 

5. 4  once the second crossover point is found, the 

process applies the simple two points 

crossover; 

5. 5  if  no point is found in the second parent,   the 

crossover  process is unsuccessful  and a new 

initial crossover point is randomly selected in 

the first parent;  

In this research, the probability of crossover is 0.7 

Mutation operation:  we used Inversion Mutation, the 

inversion mutation [24] is randomly select a sub string_BNF, 

removes it from the string_BNF and inserts it in a randomly 

selected position. However, the sub string_BNF is inserted in 

reversed order. The mutation operation will create some new 

individuals that might not be produced by the reproduction 

and crossover operations. 

Generally, a lower probability of mutation can guarantee the 

convergence of the GA, but it may lead to a poor solution 

quality. On the other hand, a higher probability of mutation 

may lead to the phenomenon of a random walk for the GA. In 

this research, the probability of mutation is set to be 0.1. 

Stop criterion:  the genetic algorithm repeatedly runs the 

reproduction, crossover, mutation, and replacement operations 

until it meets the stop criterion. The stop criterion is set to be 

1000 generations, because this criterion can obtain satisfied 

solution  

4. EXPERIMENTAL RESULTS 
The proposed method was tested on a series of PEs, with two 

and three variables and Dirichlet boundary conditions. These 

test functions are listed subsequently and they have been used 

in the experiments performed in [1,2,13]. In the following, the 

PEs are presented with the exact solutions:  

1.  

        )()(π=y)(x,u 4ππsin4ππsin32 2
1

2   

 

01

01,

1,1

1

1

=)(x,±u

=y)(±u

yx, 
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The exact solution is 

u1(x,y)=sin(4πx)sin(4πy) 

2.      
y)+(x)+)(y(x

+)(y+)y+(x=y)(x,u 2

exp11

12x2

22

22
2

2




 

 

01

01,

1,1

2

2

=)(x,±u

=y)(±u

yx, 

 

The exact solution is  

u2(x,y)=(x2-1)(y2-1)exp(x+y) 

3.  

                
 0,1

2x16 3
3

2





yx,

y)xy(=y)(x,u
 

              u3(x,0)=0; u3(x,1)=0 

                 u3(0,y)=0; u3(1,y)=y(y-1) 

                 The exact solution is 

                 u3(x,y)=y(y-1)x3  

4.  

              
 0,1

64
2





zy,x,

=z)y,(x,u
     

            u4(0,y,z)=y2+z2; u4(1,y,z)=1+y2+z2 

               u4(x,0,z)=x2+z2; u4(x,1,z)=1+x2+z2 

               u4(x,y,0)=x2+y2 ; u4(x,y,1)=1+x2+z2  

               The exact solution is 

                u4(x,y,z)= 1+x2+y2+z2   

We used for the population size a number in [200,1000], the 

chromosome length is 50. The number of equidistant points 

Tx=Ty=T=100. 

The experiments were performed on a core duo 2400 Mhz, 

running in Debian Linux. Table III summarizes the results:  

Table 3. Solution founded by the proposed algorithm 

Problem Optimum Fitness 

Value 

Solution Founded 

u1(x,y) 2.8 x 10-7 sin(4πx)(sin(4πy)) 

u2(x,y) 1.2 x 10-8 (y2-1)exp(x+y)(x2-1) 

u3(x,y) 3.5 x 10-8 y(y-1)x3  

u4(x,y,z) 4.1 x 10-6 1+x2+y2+z2   

We consider now a problem of sinh Poisson Equation (shPE), 

governed by the relation: 

     0sinh5
2 =yx,u+yx,u   

The shPE uses in the studies of the most probable state in 

viscid two-dimensional flows in fluids and plasmas. Exact 

solution in analytical form is found by Mallier–Maslowe [25]: 

 
 

 














y

x
=yx,u

cosh2

2cos
tanh*4 1

5  

Our method found the following analytic solution: 

 
 

   

 
    













































































y+y

x
+

+

y+y

x
+

=yx,um5

expexp

2cos
exp21

1
4

expexp

2cos
exp1

1
4

 

The difference between the trial solution um(x; y ) and the 

exact solution found by Mallier–Maslowe is shown 

 

Fig 2: Difference  between Analytical Solution  

u5(x,y) and um5(x,y) 

 

5.   CONCLUSION 
Solving PE is a major concern, both with respect to the 

complexity of the task and to its relevance in the mathematical 

representation of problems in almost all the branches of 

sciences. Taking into account the algorithmic character of 

many of the existing solving methods, it is clear that GAs can 

play an important role in the progress of solving PE. 

In this context, the goal of the material presented was to 

contribute both to the discussion of the GAs role in this kind 
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of   problems and to the implementation of this algorithm 

using the grammatical evolution.   

In this paper, we have developed  an algorithm, based on a 

real coded genetic algorithm and grammatical evolution for 

solving PE. 

The GA based method was found to produce trial solutions 

and minimize an associated error. If the proposed method 

cannot produce an exact solution, it will be able to recover an 

approximant form. 

Although we have only considered solving PE, the method 

can be applied to more general linear and nonlinear partial 

differential equations. 

Concerning the possible extensions of this work, they can 

relate to the interface, the computational capabilities and the 

mathematical methods. Some of the possible improvements 

falling into these categories are: 

 the grammar used can be further developed and 

enhanced. 

 to give the User the option of building a family of Partial 

differential equations through a friendly interface; 

 to complete the implementation of a reasonable 

collection of standard methods; 

 to introduce techniques for working with systems of 

coupled linear PDEs; 

 to introduce symmetry methods for solving PDEs. 

These improvements are expected to be included in future 

works.  
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