
International Journal of Computer Applications (0975 – 8887)

Volume 83 – No 5, December 2013

1

Solving Poisson Equation by Genetic Algorithms

Khalid Jebari
LCS Laboratory, Faculty of

Sciences, Mohammed V Agdal
Rabat Morocco

Mohammed Madiafi
Ben M'Sik faculty of Sciences

Mohammadia
Morocco

Abdelaziz El Moujahid
LCS Laboratory, Faculty of

Sciences, Mohammed V Agdal
Rabat Morocco

ABSTRACT

This paper deals with a method for solving Poisson Equation

(PE) based on genetic algorithms and grammatical evolution.

The method forms generations of solutions expressed in an

analytical form. Several examples of PE are tested and in

most cases the exact solution is recovered. But, when the

solution cannot be expressed in an analytical form, our

method produces a satisfactory solution with a good level of

accuracy.

General Terms

Artificial Intelligence, Algorithms.

Keywords

Genetic algorithms, Evolutionary Computation, Poisson

Equation, Grammatical Evolution

1. INTRODUCTION
 Poisson equation is omnipresent in science, engineering and

manufacturing. Several physical phenomena may be described

by PE [1]. In electrostatics, the electric field E can be

expressed in terms of an electric potential φ:

 φ=E  (1)

Where  is the divergence operator

The potential itself satisfies Poisson’s equation:

0

2

ε

ρ
=φ  (2)

Where
2 is Laplace operator, ρ is the charge density and

0ε is the permittivity of free-space. In Newtonian gravity, we

can write the force f exerted on a unit mass in terms of a

gravitational potential ф:

 φ=f  (3)

The potential satisfies Poisson’s equation:

 Gρ=φ 22 4π (4)

Where ρ is the mass density, and G is the universal

gravitational constant.

A series of problems in many scientific fields such as physics

[2], chemistry [3], biology [4], economics [5], electrostatics

[6] and semiconductor [7] can be modelled with the use of

PE. The Poisson equations are also very important in

computer vision. They arise in several computer vision fields,

such as shape from shading, surface reconstruction, height

from gradient and brightness based stereo vision [8].

Due to the importance of Poisson Equation, many methods

have been proposed. In some cases, analytical solutions can

be found or approximated by standard methods. However, in

numerous cases these equations are nonlinear and are

impossible to solve. In literature, many methods have been

proposed for solving PE such as Runge Kutta methods [9],

Predictor–Corrector [10], radial basis functions [11], artificial

neural networks [12] and genetic programming [13].

In this paper, we have proposed a method based on Genetic

Algorithms (GAs) and grammatical evolution. This method

has also the advantage of not requiring the derivative of the

objective function, which is a great advantage for problems

whose objective function is not known in an analytic form.

GAs are stochastic methods that permit to find, in a

reasonable amount of time, acceptable and satisfying

solutions to challenging problems of search and optimization

that are out of reach for conventional and deterministic

methods. They are iterative heuristic procedures that imitate

biological evolution as described by Darwin’s theory of

evolution [14]. Such heuristics have been proved effective in

solving a variety of hard real-world problems in many

application domains[15].

To design a genetic solution to any optimization problem, we

first need to represent each candidate solution to the problem,

called individual, by the mean of an abstract representation,

called chromosome [15]. A function, called fitness, is

necessary for assessing and comparing the relative quality of

different solutions. Thus, starting from an initial population of

randomly generated individuals. GA permits to evolve this

population, throughout iterations called generations, toward

better solutions according to rules of selection [16], crossover

and mutation that simulate biological evolution.

 Our method offers analytical form solutions. However, the

variety of the basic functions involved is not a priori

determined, rather is constructed dynamically as the solution

procedure proceeds and evolve. The generation of solutions

progress with using a grammatical evolution, governed by a

grammar expressed in Backus Naur Form (BNF) [17].

 The rest of the paper is organized as follows: in section 2 we

give a brief presentation of grammatical evolution, in section

3 we describe in detail our method, in section 4 we present

several experiments and in section 5 we present our

conclusions and ideas for further work.

2. GRAMMATICAL EVOLUTION
Grammatical evolution (GE) is an evolutionary algorithm that

can produce code in any programming language. GE has been

International Journal of Computer Applications (0975 – 8887)

Volume 83 – No 5, December 2013

2

applied successfully to problems such as symbolic regression

[18], discovery of trigonometric identities [19], robot control

[20], caching algorithms [21], and financial prediction [22].

 The algorithm requires as inputs the BNF grammar definition

of the target language and the appropriate fitness function.

Chromosomes in grammatical evolution, in contrast to

classical genetic algorithms, are expressed as vectors of

integers. Each integer denotes a production rule from the BNF

grammar. The algorithm starts from the start symbol of the

grammar and gradually creates the string, by replacing non

terminal symbols with the right hand of the selected

production rule. The selection is performed in two steps:

 read an element from the chromosome (with value V)

 select the Rule according to the scheme

Rule = V mod R (1)

Where R is the number of rules for the specific non terminal

symbol.

A BNF grammar is made up of the tuple N, T, P and S, where

N is the set of all non-terminal symbols, T is the set of

terminals, P is the set of production rules that map N to T, and

S is the initial start symbol and a member of N. Where there

are a number of production rules that can be applied to a non-

terminal, a “ | ” (or) symbol separates the options. Using:

N = {<expr>, <op>, <operand>, <var>, <func>}

T = {1, 2, 3, 4, +, -, /, *, x, y, z}

S = {<expr>}

The process of replacing non terminal symbols with the right

hand of production rules is continued until the end of

chromosome has been reached. We can reject the entire

chromosome or we can start over (wrapping event) from the

first element of the chromosome if threshold of the number of

wrapping events is reached, the chromosome is rejected by

assigning to it a large fitness value. In our approach, threshold

of the number of wrapping events is equal to 2.

As well we programmed in C++ language, we used a small

part of the C programming language grammar as we can see

an example in Table II, we also construct 4 Radial Basis

Functions (RBF), see Table I, that we added to the C++

standard functions. We note that the numbers in parentheses

denote the sequence number of the corresponding production.

Below is a BNF grammar used in our method:

S::=<expr> (0)

<var>::=x (0)

|y (1)

|z (2)

<operand> ::= 0 (0)

| 1 (1)

| 2 (2)

| 3 (3)

| 4 (4)

| 5 (5)

| 6 (6)

| 7 (7)

| 8 (8)

| 9 (9)

| <var> (10)

<op> ::= + (0)

| - (1)

| * (2)

| / (3)

<func> ::= sin (0)

|cos (1)

|exp (2)

|log (3)

|sqrt (4)

|BRF1 (5)

|BRF2 (6)

|BRF3 (7)

|BRF4 (8)

<expr> ::= <expr> <op> <expr> (0)

| (<expr>) (1)

| <func> (<expr>) (2)

|<operand> (3)

 Table 1. Radial Basis Functions

Name Used Function Name Definition

BRF1 Gaussian  2crexp

BRF2 Hardy Multiquadratic 2r+c2

BRF3 Inverse Multiquadratic

2r+c2

1

BRF4 Inverse Quadratic

2r+c2

1

International Journal of Computer Applications (0975 – 8887)

Volume 83 – No 5, December 2013

3

Consider the chromosome C, the steps of the mapping

procedure are listed in Table 2. The result of these steps is the

expression sqrt(3*x)

Table 2. An example for executing procedure

String_BNF Chromosome Operation

<expr> 10,4,8,15,3,6,19,21,9 10 mod 4=2

<func>(<expr>) 4,8,15,3,6,19,21,9 4 mod 9=4

sqrt(<expr>) 8,15,3,6,19,21,9 8 mod 4=0

sqrt(<expr><op><expr>) 15,3,6,19,21,9 15 mod 4=3

sqrt(3*<expr>) 19,21,9 19 mod 4=3

sqrt(3*<operand>) 21,9 21mod 11=10

sqrt(3*<var>) 9 9 mod 3=0

sqrt(3*x)

3. METHOD DESCRIPTION
In order to conceive a genetic solution to PE we have to

determine the encoding method. Then the fitness function is

used for assessing and comparing the solutions candidates for

PE. Thus, starting from an initial population of randomly

generated individuals, we evolved this population toward

better solutions according to the rules of selection strategy,

crossover and mutation. The details are as follows

Encoding Method: the ordinal encoding scheme was used in

the proposed method. Under this scheme, a serial number is

assigned to each gene from 0 to s where s=50.

Initial population size: generally, the initial population size

can be determined according to the complexity of the solved

problem. A larger population size will reduce the search speed

of the GA, but it will increase the probability of finding a high

quality solution. The initialization of the population of

chromosomes is generated by a random process. Each

chromosome is represented as permutation j1, j2, ... , js of 1, 2,

... , s. The process does not yield any illegal chromosome, i.e.

the alleles of each gene of the chromosome are different from

each others.

Fitness function: the fitness function is a performance index

that it is applied to judge the quality of the generated solution

of PE.

We only consider the PE in two variables with Dirichlet

boundary conditions.

The generalization of the process to other types of boundary

conditions and higher dimensions is possible with our method.

The PE is expressed in the form:

     02 =yx,ρyx,u  (5.a)

 Or

      0
2

2

2

2

=yx,u
y

,yx,u
x

,yx,uy,x,f












 
 (5.b)

With    dc,yba,x 

Suppose that u(x, y) satisfies mixed boundary conditions in

the x-direction: i.e.,

u(0,y)-γa(y)=0

u(1,y)-γb(y)=0;

Furthermore, suppose that u(x, y) satisfies the following

simple Dirichlet boundary conditions in the y-direction:

u(x,0)-βc(x)=0;

u(x,1)-βd(x)=0;

The steps for evaluating chromosome Ci by fitness function

are [13]:

1. Choose Tx equidistant points in [a,b]

 Ty equidistant points in [c,d],

we also choose Tx=Ty=T;

2. Construct a solution Si from Ci by using grammatical

evolution described earlier;

3. Calculate

       












 
 yx,S

y
,yx,S

x
,yx,S,y,xf=SE iiijj

T

=j
ir 2

2

2

22

1

4. Calculate the penalty value satisfying each Dirichlet

boundary condition:

     iai

T

=j
iia yγya,S=SP 

1

 (7)

     ibi

T

=j
iib yγyb,S=SP 

1

 (8)

     ici

T

=j
iic xβc,xS=SP 

1

 (9)

     idi

T

=j
iid xβd,xS=SP 

1

 (10)

5. the fitness is :

    idcbari SP+P+P+P+E=cf (11)

Selection operator: in the selection operation, the

chromosome with the lower fitness function value will have a

higher probability to reproduce the next generation.

The aim of this operation is to choose a good chromosome to

achieve the goal of gene evolution. The most commonly used

method is Tournament Selection. In this study, we used a

modified Tournament Selection, which guards in each

iteration the best individual. The following pseudo code

summarizes the Selection Method.

International Journal of Computer Applications (0975 – 8887)

Volume 83 – No 5, December 2013

4

// N: population size

T_alea: array of integer containing the indices of individuals in

the population

T_ind_Winner : an array of individuals indices 's who will be

selected

Lsorted : a list of all individual indices sorted in decreasing

fitness values

l = 0

k=0

For (i=0; i<k; i++)

{

 Shuffle T_alea ;

 For (j=0; j<N; j=j+k+1)

 {

 C1 = T_alea(j);

 For (m=1; m<k; m++)

 {

 C2=T_alea(j+m);

 if f(C1)< f(C2) C1 = C2

 // f(Ci): Fitness of individual Ci

 }

 T_ind_Winner(l) = C1

 T_ind_Winner(l+1) = Lsorted (k)

 l=l+2;

 k=k+1

 }

}

Fig 1. Tournament Selection Modified

Crossover operation: This operation aims to combine two

parent chromosomes to generate better child chromosomes, by

crossover rate decision.

In our study, a novel Homologous crossover [23] operator is

used, which is inspired by molecular biology and proceeds as

follows:

1. For each individual of the population, a history of the

rules in the grammar BNF is stored.

2. The histories of the two individuals for crossover are

aligned.

3. The history for each parent is treated from the left with

sequential manner. The region of similarity is marked if

the rules selected for the both parents are identical.

4. At the limits of the region of similarity, the first two

crossover points are picked. These points are the same on

both parents

5. The two second crossover points are then selected from

the regions of dissimilarity by respecting the following

steps:

5. 1 from the dissimilarity region, the crossover

point is selected randomly in the first parent;

5. 2 on the second parent, the crossover point

picked respects the rule that a gene is

associated with the same type of non-terminal

as the gene related the crossover point on the

first parent;

5. 3 this gene is established by generating randomly

a crossover point and then the process searches

incrementally, nearby this point until an

appropriate point is found;

5. 4 once the second crossover point is found, the

process applies the simple two points

crossover;

5. 5 if no point is found in the second parent, the

crossover process is unsuccessful and a new

initial crossover point is randomly selected in

the first parent;

In this research, the probability of crossover is 0.7

Mutation operation: we used Inversion Mutation, the

inversion mutation [24] is randomly select a sub string_BNF,

removes it from the string_BNF and inserts it in a randomly

selected position. However, the sub string_BNF is inserted in

reversed order. The mutation operation will create some new

individuals that might not be produced by the reproduction

and crossover operations.

Generally, a lower probability of mutation can guarantee the

convergence of the GA, but it may lead to a poor solution

quality. On the other hand, a higher probability of mutation

may lead to the phenomenon of a random walk for the GA. In

this research, the probability of mutation is set to be 0.1.

Stop criterion: the genetic algorithm repeatedly runs the

reproduction, crossover, mutation, and replacement operations

until it meets the stop criterion. The stop criterion is set to be

1000 generations, because this criterion can obtain satisfied

solution

4. EXPERIMENTAL RESULTS
The proposed method was tested on a series of PEs, with two

and three variables and Dirichlet boundary conditions. These

test functions are listed subsequently and they have been used

in the experiments performed in [1,2,13]. In the following, the

PEs are presented with the exact solutions:

1.

)()(π=y)(x,u 4ππsin4ππsin32 2
1

2 

 

01

01,

1,1

1

1

=)(x,±u

=y)(±u

yx, 

International Journal of Computer Applications (0975 – 8887)

Volume 83 – No 5, December 2013

5

The exact solution is

u1(x,y)=sin(4πx)sin(4πy)

2.
y)+(x)+)(y(x

+)(y+)y+(x=y)(x,u 2

exp11

12x2

22

22
2

2





 

01

01,

1,1

2

2

=)(x,±u

=y)(±u

yx, 

The exact solution is

u2(x,y)=(x2-1)(y2-1)exp(x+y)

3.

 0,1

2x16 3
3

2





yx,

y)xy(=y)(x,u

 u3(x,0)=0; u3(x,1)=0

 u3(0,y)=0; u3(1,y)=y(y-1)

 The exact solution is

 u3(x,y)=y(y-1)x3

4.

 0,1

64
2





zy,x,

=z)y,(x,u

 u4(0,y,z)=y2+z2; u4(1,y,z)=1+y2+z2

 u4(x,0,z)=x2+z2; u4(x,1,z)=1+x2+z2

 u4(x,y,0)=x2+y2 ; u4(x,y,1)=1+x2+z2

 The exact solution is

 u4(x,y,z)= 1+x2+y2+z2

We used for the population size a number in [200,1000], the

chromosome length is 50. The number of equidistant points

Tx=Ty=T=100.

The experiments were performed on a core duo 2400 Mhz,

running in Debian Linux. Table III summarizes the results:

Table 3. Solution founded by the proposed algorithm

Problem Optimum Fitness

Value

Solution Founded

u1(x,y) 2.8 x 10-7 sin(4πx)(sin(4πy))

u2(x,y) 1.2 x 10-8 (y2-1)exp(x+y)(x2-1)

u3(x,y) 3.5 x 10-8 y(y-1)x3

u4(x,y,z) 4.1 x 10-6 1+x2+y2+z2

We consider now a problem of sinh Poisson Equation (shPE),

governed by the relation:

     0sinh5
2 =yx,u+yx,u

The shPE uses in the studies of the most probable state in

viscid two-dimensional flows in fluids and plasmas. Exact

solution in analytical form is found by Mallier–Maslowe [25]:

 
 

 














y

x
=yx,u

cosh2

2cos
tanh*4 1

5

Our method found the following analytic solution:

 
 

   

 
    













































































y+y

x
+

+

y+y

x
+

=yx,um5

expexp

2cos
exp21

1
4

expexp

2cos
exp1

1
4

The difference between the trial solution um(x; y) and the

exact solution found by Mallier–Maslowe is shown

Fig 2: Difference between Analytical Solution

u5(x,y) and um5(x,y)

5. CONCLUSION
Solving PE is a major concern, both with respect to the

complexity of the task and to its relevance in the mathematical

representation of problems in almost all the branches of

sciences. Taking into account the algorithmic character of

many of the existing solving methods, it is clear that GAs can

play an important role in the progress of solving PE.

In this context, the goal of the material presented was to

contribute both to the discussion of the GAs role in this kind

International Journal of Computer Applications (0975 – 8887)

Volume 83 – No 5, December 2013

6

of problems and to the implementation of this algorithm

using the grammatical evolution.

In this paper, we have developed an algorithm, based on a

real coded genetic algorithm and grammatical evolution for

solving PE.

The GA based method was found to produce trial solutions

and minimize an associated error. If the proposed method

cannot produce an exact solution, it will be able to recover an

approximant form.

Although we have only considered solving PE, the method

can be applied to more general linear and nonlinear partial

differential equations.

Concerning the possible extensions of this work, they can

relate to the interface, the computational capabilities and the

mathematical methods. Some of the possible improvements

falling into these categories are:

 the grammar used can be further developed and

enhanced.

 to give the User the option of building a family of Partial

differential equations through a friendly interface;

 to complete the implementation of a reasonable

collection of standard methods;

 to introduce techniques for working with systems of

coupled linear PDEs;

 to introduce symmetry methods for solving PDEs.

These improvements are expected to be included in future

works.

6. REFERENCES
[1] Myinl, T., Debabath, L. 2007 Linear Partial Differential

Equations for Scientists and Engineers, Birkhäuser

Boston.

[2] Peng, Y.Z. 2003 Exact solutions for some non linear

partial differential equations. Physics Letters A 314,

401–408.

[3] Salzner, Y., Otto, P., and Ladik, J. 1990 Numerical

solution of a partial differential equation system

describing chemical kinetics and diffusion in a cell with

the aid of compartmentalization. Journal of

Computational Chemistry, 11, 194–204.

[4] Culshaw, R.V., Ruan, S. 2000 A delay-differential

equation model of HIV infection of CD4+ T-cells.

Mathematical Biosciences 165, 27–39.

[5] Norberg, R. 1995 Differential equations for moments of

present values in life, Insurance. Mathematics and

Economics 17, 171–180.

[6] Srebrenik, S., Weinstein, H., and Pauncz, R. 1973

Analytic calculation of atomic and molecular

electrostatic potentials from the Poisson equation. Chem.

Phys. Letters 20, 419-423.

[7] Lee, C., Lee, K., Kim, C.Ki., and Moon-Uhn, K. 1997

Variational Formulation of Poisson’s Equation in

Semiconductor at Quasi-Equilibrium and Its

Applications, VOL. 44, NO. 9, September 1997.

[8] Perez, P., Gangnet, M., and, Blake, A. 2003 Poisson

Image Editing. ACM Transactions on Graphics, 22(3),

313-318.

[9] Verwer, J.G. 1996 Explicit Runge–Kutta methods for

parabolic partial differential equations. Applied

Numerical Mathematics, 22, 359–379.

[10] Lambert, J.D. 1991 Numerical Methods for Ordinary

Differential Systems: The Initial Value Problem. Wiley,

Chichester, England.

[11] Buhmann, M. D. 2004 Radial Basis Functions: Theory

and Implementation. Cambridge University Press.

[12] Lagaris, I.E., Likas, A., Fotiadis, D.I. 1998 Artificial

neural networks for solving ordinary and partial

differential equations. IEEE Transactionson Neural

Networks 9, 987–1000.

[13] Tsoulos, I.G, Lagaris, I.E. 2006 Solving differential

equations with genetic programming. Genetic

Programming and Evolvable Machines 7, 33–54.

[14] Holland, J. H. 1975 Adaptation in Natural and Artificial

Systems. University of Michigan Press.

[15] Goldberg, D., Deb, K. 1991 A comparative analysis of

selection schemes used in Genetic Algorithm. In

G.Rawlins, editor, Foundations of Genetic Algorithms,

69-93, San Mateo, Morgan Kaufmann.

[16] Jebari, K., Bouroumi, A., and, Ettouhami, A. 2011

Unsupervised Fuzzy tournament Selection. Applied

Mathematical Sciences, 5(85), 2863-2881.

[17] Hemberg, P. 2010 An Exploration of Grammars in

Grammatical Evolution. Thesis submitted to University

College Dublin, September 17.

[18] O’Neill, M., Ryan, C. 2003 Grammatical Evolution:

Evolutionary Automatic Programming in a Arbitrary

Language. Genetic Programming,vol.4,Kluwer

Academic Publishers, Dordrecht.

[19] Ryan, C., O’Neill, M., Collins, J.J. 1998 Grammatical

evolution: solving trigonometric identities. in:

Proceedings of Mendel 1998:4th International Mendel

Conference on Genetic Algorithms, Optimization

Problems, Fuzzy Logic, Neural Networks, Rough Sets,

Brno, Czech Republic, Technical University of Brno,

Faculty of Mechanical Engineering, 111–119.

[20] Collins, J., Ryan, C. 2000 Automatic Generation of

Robot Behaviors using Grammatical Evolution. in:

Proceedings of AROB 2000,the Fifth International

Symposium on Artificial Life and Robotics.

[21] O’Neill, M., Ryan, C. 1999 Automatic generation of

caching algorithms. Evolutionary Algorithms in

Engineering and ComputerScience,J yvskyl, Finland,30

May–3 June 1999, Wiley,NewYork, 127–134.

[22] Brabazon, A., O’Neill, M. 2003 A grammar model for

foreign-exchange trading. Proceedings of the

International conference on Artificial

Intelligence,vol.II,CSREA Press, 492–498, 23–26 June.

[23] O’Neill, M., Ryan, C., Keijzer, M., Cattolico , M. 2003

Crossover in Grammatical Evolution. Genetic

Programming and Evolvable Machines, 4, 67–93.

[24] Fogel, D.B. 1993 Applying Evolutionary Programming

to Selected Traveling Salesman Problems. Cybernetics

and Systems 24: 27–36.

[25] Mallier, R., and, Maslowe, S.A. 1993 A row of counter

rotating vortices," Phys. Fluids A 5.

IJCATM : www.ijcaonline.org

