
International Journal of Computer Applications (0975 – 8887)

Volume 83 – No3, December 2013

24

Evaluation of Efficient Requirement Engineering

Techniques in Agile Software Development

 M.Usman Malik Nadeem Majeed Chaudhry Khurram Shahzad Malik
 UET Taxila UET Taxila RIU Islamabad
 Rawalpindi, Pakistan Rawalpindi, Pakistan Islamabad, Pakistan

ABSTRACT
Software development is one of the most booming industries of

the world at the moment. All the major industrial groups are

investing huge amounts of money in software development

sector. Although several software development models have

been developed in this regard, currently, the most widely used

software development model is the agile model, due to its

flexibility and change management capabilities. An important

aspect of software development is that it is a phased activity

which means that before ending up in the development of robust

software application, several activities have to be performed.

These activities are characterized by software development life

cycle. The first and foremost activity of any software

development life cycle is requirement gathering and

specification. Now the problem is in agile development

approach where nothing is fixed and requirements keep on

changing all the time. In such scenarios it becomes extremely

difficult to gather, analyze and document those requirements. In

this paper evaluation of efficient requirement engineering

approaches have been presented which could remove these

requirement gathering issues in agile application development.

General Terms
Requirement engineering, Agile Application Development,

Evaluation matrix

Keywords
Agile methodologies, scrum, software development life cycle,

Requirement engineering techniques,

1. INTRODUCTION
Requirement Engineering is the first phase of software

development life cycle and is considered corner stone of a

software product. Efficiently gathered requirements result in

development of a robust and reliable application. Apart from

that, cost of requirement change is much higher than cost of

gathering correct requirement. Hence, requirement engineering

is an extremely important activity in SDLC.

1.1 Requirements Engineering issues in

Traditional Models
In traditional software development models like waterfall

models, requirements are frozen once decided. It means that

once all the stakeholders have agreed upon set of requirements,

they are immutable and cannot be changed later. After

requirements have been gathered, work on next phase is started.

However, this approach has certain disadvantages [1] as

described in the following section.

1.1.1 Requirements Change
Requirements can be changed at any time during the project

development life cycle due to several reasons, for example

customer might want to add or modify something, technology

has changed or there can be any other reason. In such scenarios,

in traditional rigid software development models, change in

requirement can cause financial loss as well as project may take

more time as compared to the decided one.

1.1.2 Business Process Change
Change in business requirement can occur at any time which

results in the currently methodology becoming obsolete and

outdated.

Hence it is very important to build a system, flexible enough to

embrace change in requirement at any point of time during

software development life cycle.

1.2 Requirements Engineering issues in Agile

Approaches
Agile software development somehow satisfies this requirement

but there are still few loopholes in requirement engineering for

agile approaches [1].

There has been very little research which shows requirement

activities in agile environment [2]. Research work has been done

in this regard which shows that agile application development

also have some issues in this regard [3]. Requirement

engineering issues in agile environment have been discussed as

follows:

1.2.1 Lack of unambiguous requirements
Requirements keep on changing in agile approach, therefore it is

difficult to gather unambiguous requirement. Agile approaches

lack a proper requirements engineering framework which can be

used to properly document user requirements.

1.2.2 Lack of Requirement Activities
There are no documented requirement engineering activities

which can be followed in order to properly obtain user

requirements.

1.2.3 Incompatible Interfacing
Product developed in one phase with certain requirements might

not be compatible with the next phase when customer’s need

change resulting in the requirements change [4], which leads to

interfacing issues between each iteration.

1.2.4 Difficulties in Non-Functional Requirement
Apart from, functional environment, there is no hard and fast

approach for capturing and evaluating non-functional

requirement in agile development [5]. Usually, whenever

International Journal of Computer Applications (0975 – 8887)

Volume 83 – No3, December 2013

25

iteration is completed, running product is handled over to client

for evaluation and client provides feedback regarding the non-

functional requirement. Client is often times not able to correctly

perceive the non-functional requirement of the product which

affects overall quality of the final product.

This paper has been divided into five sections. First section

introduces the concept and problem that this research will solve.

Second section contains literature review of requirement

engineering process and agile methodologies. Third section

contains some of the most efficient requirement engineering

approaches in agile methodologies. Fourth section contains

evaluation of the approaches while the fifth section contains

conclusion followed by future work which is last section.

2. LITERATURE REVIEW

2.1. Requirement Engineering Process
Requirement engineering is considered first phase and the most

important phase in any software development life cycle.

Requirement engineering is defined as the process of gathering,

processing and documenting requirements of a system along

with the context in which software is being developed. Purpose

of requirement engineering processes is to only identify what is

going to be developed; not how it is going to be developed [6].

Requirement engineering itself is a phased process. Activities in

requirement engineering are divided into 5 major phases. In this

section, we are going to explain these five activities.

Requirement engineering activities flow has been mentioned in

figure 2.1.

2.1.1 Requirement Elicitation
The first step in requirement engineering process is to identify

the basic requirement and boundaries of the system that is going

to be developed [7].This first step is called, requirement

elicitation. In requirement elicitation phase, all the major stake

holders of the system sit together and identify what are the

fundamental requirements of the system and what is the scope of

the system. Answer to these questions help in the identification

of boundaries and context of the system.

Fig 1: R.E Activities

2.1.2 Requirement Analysis
Requirement elicitation phase results in the list of fundamental

requirements. Analysis phase further evaluates requirements on

the basis of several criteria. It is verified that if requirements

gathered in elicitation phase are actually required and will they

play substantial role in the final developed system. It is also

verified that no requirement is affecting other requirement i-e

there is no contradiction between the requirements. Is there any

missing requirement and lastly, does the entire requirements

identified fall inside the budget and time constraints.

2.1.3 Requirements Documentation
Requirement documentation is the process of formally

documenting all the requirements that have been elicited and

analyzed in the previous phases. Purpose of documenting

requirement is smooth sharing of requirements among several

stake holders. A good requirement document should be readable,

unambiguous, consistent, correct, feasible and concise [7]

2.1.4 Requirements Validation
Requirement validation process, as the name suggests, validates

that requirements that have been documented are correct and

will fulfill the desired functionalities of the system. It is also

validated that requirements have been gathered using standard

process and models. [7]

2.1.5 Requirement Management
Requirement management is the last phase of requirement

engineering process. Requirement engineering is an umbrella

activity and it continues throughout the software development

life cycle. Requirement management basically refers to

International Journal of Computer Applications (0975 – 8887)

Volume 83 – No3, December 2013

26

managing change in the requirements, requirement status

monitoring, requirement tracking and version control.

2.2 Agile Software Development
Agile software development refers to set of software

development methodologies based on iterative and incremental

model where requirements and solution evolve through

consistent collaboration between customer and all other

stakeholders. In the year 2001, prominent researcher in the field

of software architecture proposed agile manifesto at conference.

The theme of agile manifesto is uncovering better ways of

software development and helping others do it [8].

Four core features of software agile software development were

stated in agile manifesto.

 Individuals and Interactions over process and tools.

 Working software over comprehensive

documentation.

 Customer Collaboration over contract negotiation.

 Responding to change over following a plan.

In this section, some of the most widely used and popular agile

development methodologies are described. All of these

methodologies are based on agile manifesto with slight

difference in their implementation strategy.

2.2.1 Extreme Programming
Extreme programming is an agile software development process

with focus on rapid communication, instant feedback and

process simplicity [9]. In extreme programming, as the name

suggest major focus is on coding and programming rather than

spending time on collecting requirement. As the development

process continues, requirement changes are embraced during

development phase. This eliminates time spend on requirement

gathering activities discussed in section 2.1. Dr. Barry Boehm,

famous researcher has suggested that cost of requirement change

increases exponentially with the progress of the project. In case

of XP, this additional cost can be balanced out because there are

no hard and fast requirement engineering activities in the

beginning rather focus is on adopting change during

development.

In extreme programming, also known as XP, increments are

extremely small and development process is evolutionary and

incremental with a customer’s representative always present

with the development team and continuously evaluating the

product being developed. If customer wants to change anything,

it is instantly changed and another short iteration is released and

evaluated immediately.

2.2.2 Feature Driven Development
Feature driven development is an agile software development

methodology where product is developed in terms of individual

features rather than product as a whole [10]. Major phases of

FFD include, developing an overall model, developing a feature

list, feature wise planning of the product, designing product by

feature and then finally building product by feature. Feature list

is reviewed and evaluate by all the stakeholders [11]. At the end

of each week, a 30 minute meeting is held where status and

details of feature being developed is shared among all the stake

holders.

2.2.3 Scrum
Scrum is another extremely useful agile software development

methodology which focuses on adaptability to requirement

changes, flexibility in development approach and iterative

application development. In scrum, team members collaborate

with each other on consistent base at a single workplace to

achieve the desired targets [10, 12]

Scrum methodology has several artifacts. Product backlog is the

scrum artifact that contains all product features, mentioned

comprehensively in the form of a list. In product backlog,

features are arranged in the basis of priority. Sprint backlog is

scrum artifact that contains features that are going to be

developed in the current sprint. Sprint is a 2-4 weeks iteration in

which a part of product is developed. In scrum, product being

developed is always working with functionality of product

increased after each iteration.

2.2.4 Dynamic Systems Development Method
Dynamic Systems Development methodology is a rapid

application development approach following agile practices.

Dynamic systems development focuses on quick software

application development without stressing any particular

requirement engineering technique [13].

3. EFFICIENT RE TECHNIQUES FOR

AGILE DEVELOPMENT

METHODOLOGIES
Purpose of the paper is to present some requirements

engineering techniques that can be efficiently and effectively

used to gather requirements in an agile development process.

Agile application development is extremely flexible, therefore

traditional requirements engineering techniques needs to be

chosen carefully and should be modified slightly in order to

adapt to the agile development process. Here, some of these

techniques and approaches that can be helpful for gathering

requirements in agile environments have been discussed.

3.1 Interviews and Direct Discussion
Interviews are one of the most efficient and conventionally used

requirement engineering approaches. In agile environments

where customer feedback is consistently needed in order to

make changes at run time, importance of interviews is even

more highlighted.

Interviews consist of direct interactions and discussions with the

stake holders. Biggest advantage of interview is that it allows

one to one communication between the customer and the

development team which is necessary in any requirement

engineering process. In agile methodologies, customer or one of

the customer representative is always available to the product

development team, therefore there is no need for lengthy, well

documented and formal interview sessions, rather, short and to

the point multiple interviews are more effective in agile

application development because requirements are consistently

changing and it is not good approach to collect long term

requirements during agile development. Interviews are

considered critical in requirement elicitation phase.

International Journal of Computer Applications (0975 – 8887)

Volume 83 – No3, December 2013

27

3.2 JAD (Joint Application Development

Sessions)

JAD are similar to daily sprint meetings but they don’t

necessarily occur on daily basis. They can be weekly or even bi-

weekly. During JAD sessions, project managers, executives,

technical staff and custome sits together and define their long

and short term road maps regarding the product being

developed. In agile application development, such JAD sessions

focus more on customer interaction and involvement and several

such short sessions are more suitable rather than lengthy JADS.

Benefit of JAD is that it results in sharing of information

between several stakeholders that will otherwise remain limited

to individuals. JAD promotes, mutual understanding between

several technical and non-technical teams and stake holders,

encourages team work and cooperation.

3.3 Individual and Collective brain storming
Brainstorming refers to creative generation and evaluation of

ideas about product. Brain storming plays an important role in

agile engineering where features are developed at run time and

quick generation of ideas is required to capture changing

requirements of the customer.

Brain storming sessions are divided into two types, one is

individual brainstorming where individuals generate and

implement requirement ideas at run time and immediately

evaluate its output. The second type of brain storming is

collective brain storming session where requirements evolve

when two or more than two stakeholders sit together and discuss

their ideas.

There are two phases of any brain storming session. The idea

generation phase where idea is actually created after lots of

thinking and brainstorming. The second session is idea analysis

session where idea produced in generation phase is analyzed and

its feasibility is evaluated. The later phase is more rigorous in

collective brain storming sessions.

3.4 Similar Systems Analysis
Analysis of similar systems is one of the oldest and tried and

testing techniques for requirement gathering. In this technique,

systems that are similar to the system being developed are

analyzed and observed and their requirement documents are

evaluated and modified to fit the needs of the current systems.

This technique is extremely successful in agile development

since there is not much time to think and brainstorm

requirements, therefore whenever clients requirement change,

compare that to already built similar system and evolve final

requirement through these evaluations. This technique is less

time consuming, more cost effective but it may not have much

impact in the final product because it is highly unlikely to have

exact similar requirements in two or more than two systems.

3.5 Use Case Scenarios and User Stories
Use case scenarios and user stories are the scenarios in which a

user can use a software product. Use case scenarios are an

effective way to capture requirements of the systems since they

represent actual stories in which users are going to use the

product. Use case diagrams are often using to capture such

requirements. Use case scenarios are drawn with the help of

customer where customer is asked how he wants to use the

software or what are the cases in which he will interact with the

system. Use case scenario are bit lengthy technique to gather

requirement but can be effective in agile modeling where you

have customer readily available onsite.

3.6 Surveys

The last and final technique presented in this paper is surveys. In

agile methodology a survey can be presented to all the

stakeholders in daily scrum meetings where feedback regarding

the yesterday’s task can be obtained. Also questions regarding

what are the requirements for that day’s task and what the

requirements for the whole sprint are, such questions can also be

included in these surveys. Usually surveys are done in ordered

to gather requirements and feedbacks of large audience in

shorter period of time.

4. EVALUATION OF REQUIREMENT

ENGINEERING TECHNIQUES
In this paper, analysis and evaluation of all the six requirement

engineering techniques have been done with respect to agile

methodologies. Several criteria have been taken into account, in

order to evaluate these requirement engineering techniques with

respect to agile application development and in the end these

techniques have been prioritized according to their effectiveness.

Three metrics have been defined for each criteria, LOW

represented by L, MEDIUM represented as M and HIGH

represented as H. One point is awarded for L, 2 for M and 3 for

H. However weightage of last criteria i.e. Feasibility for Agile

Methodology has double weightage since our major focus is on

requirement engineering techniques in agile methodologies.

Hence L fetches 2 points; M fetches 4 points while H fetches 6

points.

 For research purposes, more than 20 software companies

employing agile practices, and 18 university professors doing

research in agile practices, have been consulted The result of

this research is presented in analysis table. L, M and H values

have been assigned to criteria on the basis of voting from the

results obtained from software companies and professors.

4.1 Evaluation Criteria
In order to evaluate the requirement engineering techniques

which have been explained in section 3, six different criteria

have been chosen. These criteria have been selected after

consulting software development companies and researchers.

These criteria are the key for evaluation of requirement

engineering techniques, particularly in reference with agile

application development. There are total six criteria that have

been explained in this section.

4.1.1 Cost Effective
Signifies that how much cost is spent on this technique.

Represented as C.E in analysis table. For example L means low

cost effective and will fetch one point for the technique.

4.1.2 Time Effective
Signifies that how much time does the technique takes.

Represented as T.E in analysis table. For example H means

highly cost effective and will fetch three points for the

technique.

International Journal of Computer Applications (0975 – 8887)

Volume 83 – No3, December 2013

28

4.1.3 Final Impact
Final impact states that how much the technique impacts the

final requirements of the system after the system has been

developed. This is represented as F.I in analysis table.

4.1.4 Resource Effective
This shows that how effective is the technique in terms of

resource consumption such as human resource and other

technology resources. This is represented as R.E in analysis

matrix.

4.1.5 Audience Reached
This criterion signifies that how many people were involved in

the evolution of a requirement. For example interview may

involve one or two persons while survey involves large

audience. This is represented as A.R in analysis matrix.

4.1.6 Feasibility for agile Development
The last and the most important criteria is feasibility of a

requirement engineering technique in agile application

development. This criterion has double weightage in this

research due to the fact that our main focus is on requirements

engineering for agile application development. Here double

weightage denotes emphasize on agile development. This is

represented as F.A.D in analysis matrix

4.2 Analysis Matrix
Analysis matrix based on evaluation criteria discussed in last

section and metrics decided have been presented in table 4.1. In

first column of the analysis matrix, all the R.E techniques

discussed in section 3 are listed while first row contains all the

criteria discussed in section 4.1. According to our criteria and

metrics, an ideal requirement engineering technique should get

21 points; 3 Points each for first 5 techniques and 6 for last i-e

feasibility for agile development.

Table 1, Analysis Matrix of RE Techniques

C.E

T.E

F.I

R.E

A.R

FA

D

Tota

l

Sum

Interviews M

(2)

M

(2)

H

(3)

M

(2)

L

(1)

H

(6)

16

JAD L

(1)

M

(2)

H

(3)

L

(1)

M

(2)

H

(6)
15

Brainstor-

ming

 H

(3)

M

(2)

M

(2)

H

(3)

M

(2)

M

(4)
16

Similar

System

Analysis

M

(2)

L

(1)

M

(2)

M

(2)

L

(1)

M

(4)
12

Use Case

Scenarios

M

(2)

M

(2)

H

(3)

M

(2)

M

(2)

H

(6)
17

Surveys L

(1)

L

(1)

M

(2)

L

(1)

H

(3)

L

(2)
10

From the evaluation matrix, it can be observed that Use Case

scenarios, with highest score of 17 are the best technique for

requirement gathering in agile application development where

user of the product is consistently involved and is readily

available. Use case scenarios and stories can be immediately

discussed and robust requirements can be gathered and

documented at run time with the help of the user. Interviews and

JAD have same scores of 16 each that show that interviews and

Brainstorming sessions are equally suited for requirement

gathering with a total score of 16, whereas JAD is not too far

with sum of 15.

The result of this research and evaluation of R.E techniques

have been presented graphically in Fig 2.. On x-axis, techniques

have been located. It can be observed that use case scenarios

have the highest bar with score of 17.

All these techniques are extremely useful with different

purposes for example surveys might not look good with a score

of 10, but if you look at audience reach criteria, it has the

highest. Therefore in case you want to get feedback of large

audience before finalizing the requirements, surveys can be a

good technique. Hence apart from overall score, individual

scores are also important in case you are interested in evaluating

technique on any particular criteria.

Fig 2: R.E Techniques Evaluation Graph

5. CONCLUSION
In this paper, several requirement engineering techniques have

been presented that can be particularly useful for requirement

gathering in agile environments. Several techniques have been

presented along with suggestions on how each technique can be

modified in order to fit the flexible nature of agile development.

All these techniques have been evaluated on the basis of

0

2

4

6

8

10

12

14

16

18

20

RE Techniques Evaluation Graph

Scores

International Journal of Computer Applications (0975 – 8887)

Volume 83 – No3, December 2013

29

research in software companies and the academia and final

result have been proposed in the analysis matrix. Overall, use

scenarios, interviews, brainstorming and JAD are suitable

techniques for requirement gathering in agile development.

6. FUTURE WORK
In order to further research in the evaluation of requirement

engineering techniques in agile development methodologies,

further metrics, criteria and techniques can be added. For

example, technology specific requirement techniques can be

evaluated such as requirement engineering techniques in agile

application development for handheld and mobile devices.

Also, modifications in existing requirement engineering

techniques can be proposed.

7. REFERENCES

[1] S.Ambler, "Agile Requirements Modeling", 2012

available at

http://www.agilemodeling.com/essays/agileRequirements.ht

m

[2] J. Erickson, K. Lyytinen, and K. Siau, "Agile Modeling,

Agile Software Development, and Extreme Programming:

The State of Research" J. Database Management, 2005,

vol. 16, no. 4, pp. 88-99.

[3] J. Nawrocki et al., "Extreme Programming Modified:

Embrace Requirements Engineering Practices," Proc.

IEEE Joint Int'l Conf. Requirements Eng. (RE 02), 2002,

IEEE CS Press, pp. 303-310.

[4] . Beck, "Extreme Programming Explained: Embrace

change”, Addison-Wesley,1999.

[5] A. Eberlein, F. Maurer, F. Paetsch, , "Requirements

Engineering and Agile Software Development",

Proceedings of the Twelfth International Workshop on

Enabling Technologies: Infrastructure for Collaborative

Enterprises.

[6] Alan M. Davis: Software Requirements Revision Objects,

Functions & States, Prentice Hall PTR, 1994.

[7] Eberlein, A., Maurer, F., Paetsch, F., "Requirements

Engineering and Agile Software Development",

Proceedings of the Twelfth International Workshop on

Enabling Technologies: Infrastructure for Collaborative

Enterprises, 2003.

[8] Murauskaite A., Adomauskas V., “Bottlenecks in Agile

Software Development using Theory of Constraints(TOC)

Principles”, Master’s Thesis, Gothenburg, Sweden

2008.

[9] Kent BeckExtreme Programming explained, Addison-

Wesley, 1999.

[10] Pekka Abrahamsson, Outi Salo, Jussi Rankainen & Juhani

Warsta : Agile software development methods - Review

and analysis, VTT Electronics, 2002.

[11] Peter Coad, Eric Lefebvre, Jeff De Luca : Java

[12] Modeling in Color with UML, Prentice Hall PTR, 1999,

Chapter 6.

[13] Ken Schwaber, Mike Beedle: Agile Software

Development with Scrum, Prentice Hall, 2001.

[14] Linda A. Macaulay: Requirements Engineering, Springer

Verlag, 1996.

8. AUTHOR’S PROFILE
M. Usman Malik has completed his Bachelors in Software

Engineering from University of Engineering & Technology in

July, 2012. Currently he is enrolled as part time MS Scholar of

Software Engineering at the same institute. He provides

consulting services, business planning solutions to various IT

firms. He also provides research services to IT Industry. His

areas of interest are Operating Systems, Mobile Application

Development, Digital Image Processing, Agile Software

Development and Software Requirements Engineering.

Nadeem Majeed Chaudhry is serving as an Assistant Professor

at University of Engineering & Technology Taxila. He is also a

PhD scholar at the same institute. His areas of interest are

Computer Networks, Operating Systems, Software Requirement

Engineering and Mobile Application Development.

Khurram Shahzad Malik is MS Scholar of Project

Management at Riphah International University Islamabad. He

has spent around 10 years in industry managing several projects.

He also holds a Master in English Literature from University of

the Punjab. His Areas of interest are Project Management,

Engineering Management, Agile Project Management and

Requirements Engineering.

IJCATM : www.ijcaonline.org

