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ABSTRACT 

In this paper a Genetic Algorithm (GA) approach is presented 

to solve the N-Jobs M-Machines Permutation Flow-Shop 

Scheduling Problem (PFSP) with Break-down times. In 

comparison with other methods that start with a solution 

obtained with the Johnson’s Algorithm (or another greedy 

approach), the presented GA method starts with randomly 

generated solutions and within 100 iterations is able to obtain 

a solution better than other methods. Also, while in other 

works the sequence of jobs to be processed in the machines is 

obtained prior to the occurrence of break-down times, the GA 

finds the solution considering from the beginning the 

occurrence of the break-down times. Thus, the presented GA 

method considers the effect of the break-down times in the 

overall process. A selection of standard 20×20 PFSPs was 

used for validation of the GA, finding that in 86% of the 

selected PFSPs the GA was able to provide job sequences 

with better makespans when compared with another method. 

The makespan improvements were statistically significant at 

the 0.10 and 0.01 levels. Then, evaluation of the GA was 

performed on one PFSP case with break-down times. As in 

the validation cases with standard PFSPs, the GA 

outperformed the results obtained with another method.  

General Terms 

Industrial Engineering, Permutation Flow-Shop Scheduling 

Problem. 

Keywords 

Flow-Shop Scheduling, Break-Down Times, Genetic 

Algorithms. 

1. INTRODUCTION 
Flow-shop is one of the main scheduling problems in 

manufacturing [1]. Flow-shop scheduling is used to determine 

the optimal sequence of N-jobs to be processed on M-

machines in the same order [2]. In the permutation flow-shop 

scheduling problem (PFSP) the same sequence of jobs must 

be performed on all machines, one machine can only process 

one job at a time, and no machine is allowed to be re-visited 

[3]. The optimal sequence of jobs is the one that minimizes 

the makespan of the N-jobs through the M-machines, this is, 

the minimization of the completion time of the last job on the 

last machine [2, 4]. 

Three main factors are known to be related to scheduling 

problems: job transportation time (which includes moving and 

idle times), relative importance of a job over another, and 

break-down time of machines [5]. Break-down times 

represent the periods or time intervals where processing may 

be stopped due to interruption of energy or raw material 

supply, failures, or due to maintenance tasks [6]. Flow-shop 

scheduling with break-down times has been studied as 

presented in [5, 6] with diverse conditions and solving 

methods. For example, in [7] an optimal sequence was 

obtained for the 2-machines N-jobs flow-shop with random 

break-down times. In [6] a heuristic approach was proposed 

for solving the 3-machines N-jobs flow-shop considering 

transportation times and weights of jobs in addition to break-

down times. In [8] the makespan for a flexible flow-shop was 

optimized by using a decomposition based algorithm (DBA). 

Another work involving a 3-machines N-jobs flow-shop was 

presented in [9] where a heuristic algorithm was proposed for 

solving the scheduling problem with break-down times and 

weights of jobs. Finally, in [10] a branch-and-bound algorithm 

was presented to solve the 3-machines N-jobs flow-shop 

scheduling problem with break-down and transportation 

times. Note that many of the works available consider the case 

with a limited number of machines (e.g., M=2, 3). 

This paper is focused on the PFSP with break-down times. In 

contrast with other works, the case of N-jobs and M-machines 

is considered. Because the complexity of this problem 

increases with the number of machines, a Genetic Algorithm 

(GA) is proposed as a solving method. This evolutionary 

approach was able to obtain sequences of jobs with better 

makespan when compared with other methods and PFSP with 



International Journal of Computer Applications (0975 – 8887)  

Volume 83 – No1, December 2013 

2 

sizes up to N=M=20. The improvements obtained in 

makespan were statistically significant. 

The present work is structured as follows: in Section 2 an 

overview of the PFSP with break-down times is presented. 

Then in Section 3 the details of the GA approach for solving 

the PFSP with breakdown times and N-jobs M-machines is 

presented. In Section 4 the results of the GA approach on case 

studies are discussed. Finally, in Section 5 the conclusions 

and future work are presented.  

2. PFSP WITH BREAK-DOWN TIMES 
The PFSP with break-down times with N-jobs and M-

machines is defined as follows: 

o All N-jobs are processed through M processing centers P1, 

P2, ..., PM in the same order (e.g., each job is processed 

first in center P1, then P2, ..., until PM). 

o i represents the job in an arbitrary sequence, where i = 

1,...,N. 

o All N-jobs are available to be processed at time zero. 

o Pi1, Pi2, Pi3, ..., PiM, represents the processing time of job i 

in the processing center P1, P2, P3, ..., PM respectively. 

o The break-down interval is defined as (a, b), and the 

interval length is (b - a). 

o If break-down conditions take place and interruption of 

power supply occurs, the processing times of the centers 

may be affected accordingly to the type of center. These 

can be classified under three categories: 

 U: Processes that cannot be interrupted. In this case, 

breakdown time is applied and the process itself is 

postponed. This is common for processes as 

moulding, casting, forging, and welding [5]. The 

processing time in this case is modified and (b - s1) is 

added to the original processing time. 

 V: Processes that require power supply and, if break-

down occurs between the process (which starts at time 

s1 and ends at time s2), can be resumed when power 

supply returns. Processes that can be classified in this 

category are packing, machining, threading, and 

drilling [5]. In this case, original processing times are 

modified as follows: 

 if break-down starts between s1 and s2, (b - a) is 

added to the original processing time; 

 if break-down starts and ends between s1 and s2, (b 

- a) is added to the original processing time; 

 if break-down ends between s1 and s2, (b - s1) is 

added to the original processing time; 

 if break-down starts before s1 and ends after s2, (b 

- s1) is added to the original processing time. 

 W: Processes that do not require power supply can 

continue during the break-down time. Thus, no 

modification in the original processing time is 

required. 

The information of a PFSP is commonly presented as shown 

in Table 1. Other works also consider weights for the jobs in 

order to represent their importance in the process sequence [6, 

9] however the present work is focused on the solving method 

for N-jobs and M-machines. 

 

 

 

 

 

Table 1. A standard PFSP 

Job   Times   

 P1 P2 P3 … PM 

1 P11 P12 P13 … P1M 

2 P21 P22 P23 … P2M 

… … … … … … 

N PN1 PN2 PN3 … PNM 

 

3. THE GA METHOD 
The PFSP has been solved with different methods. For 

example, in [11] a greedy heuristic was used while in [8] and 

[10] DBA and B&B (branch and bound) algorithms were used 

respectively. The use of a GA (Genetic Algorithm) was 

explored in [12] with significant results. For the PFSP with 

break-down times greedy heuristics have been applied [5], 

however the use of GAs has been limited.  

GAs are heuristics based on the natural process of evolution 

[13, 14]. These have been used to solve other combinatorial 

problems as the Travelling Salesman Problem (TSP) and Job-

shop scheduling [15]. In this paper a GA is presented for the 

PFSP with break-down times with N-jobs and M-machines. In 

Figure 1 the general structure of the GA is shown and the 

details of each module are explained in the next sections. 

3.1 Initial Population and Fitness 

Evaluation 
The initial population is the set of initial solutions for the 

PFSP. These can be randomly generated or be given by a fast 

heuristic algorithm [13]. These solutions are represented as 

“chromosomes” to enable diversification by means of the 

reproduction operators (crossover, mutation). In Figure 2 the 

chromosome representation of a solution for the PFSP is 

presented. The chromosome is a vector with N + 1 cells, 

where in the first N cells the sequence with N-jobs is stored 

and in the cell N +1 the makespan obtained through M-

machines with that sequence is stored. 

For this work a random initial population of X=1000 

individuals was considered. Initially small initial populations 

(e.g., with size < 50 individuals) were considered as discussed 

in [16, 17]. However it was found that for the PFSP the 

reproduction operators were not able to efficiently diversify 

the solutions within small populations. 

In a GA is important to measure the ability to solve a problem 

with an optimality criterion, or fitness, of each solution in the 

initial population. In this case, the optimality criterion consists 

in finding the solution with the minimum makespan, thus, the 

fitness is measured based on this concept. The makespan is 

the completion time of the last job on the last machine [2, 4].  

3.2 Selection of Parents 
Diversification of solutions starts with the selection of 

“Parent” individuals. Based on Darwin’s rule of “survival of 

the fittest”, it is understood that the strongest individuals in a 

population would survive, would adapt more successfully to 

environmental adversities, and would reproduce [13]. Also, 

the fittest individuals would inherit their characteristics (those 

that made them fit) to their “Offsprings”. In this way, and 

based on the natural process of evolution, these characteristics 

would be refined through several generations, improving the 

overall fitness of new individuals. 
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In the PFSP, fitness is measured based on the makespan, and 

the “Roulette Wheel” selection method is one of the most 

used methods for selection of the fittest individuals without 

excluding less fitted individuals [18]. In the “Roulette Wheel” 

method, all chromosomes (individuals) are located into a 

roulette wheel in function of their fitness values. A segment of 

the roulette wheel is assigned to each individual based on its 

overall fitness with respect to the other individuals. Thus, the 

size of the segment is proportional to the individual’s fitness 

(e.g., largest segment = highest fitness). Then, when the 

roulette wheel is rotated the individuals with better fitness are 

more likely to be selected for reproduction, although there is 

also the possibility to select individuals with less fitness. This 

may be beneficial for the diversification process [19]. 

The steps of the roulette wheel selection for i = 1, …, n 

individuals are presented as follows [20]: 

(1) Compute the fitness value (  ) for each i-chromosome in 

the population. 

(2) Compute the sum of fitness (  ) for all chromosomes in 

the population:        
 
    

(3) Compute the average fitness (  ) in the population: 

   
  

 
 

(4) Compute the expected fitness (  ) for each chromosome 

in the population:     
   

  
 

(5) Compute the sum of all expected fitness (   ) for the 

chromosomes in the population:         
 
    

(6) Generate a random number ( ) within the range (0,   ). 

(7) Select the chromosome for which the cumulative fitness 

>=   

(8) Go to step 6 and repeat n times. 

3.3 Reproduction and Population Update 
In order to diversify the initial solutions (generate new 

solutions) reproduction operators are used that work at the 

chromosome level of the individuals in a population (e.g., see 

Figure 2). To generate “offspring” solutions, pairs of “parent” 

solutions are required. The first operator to be used in this 

work is the crossover operator which consists in the exchange 

of genes between “parent” chromosomes [13]. When the 

individuals consist of sequences where order is important (as 

is the case of the PFSP) the Partially Mapped Crossover 

(PMX) is the most suitable. In general, two offspring 

solutions are obtained from each pair of parent solutions using 

the PMX operator. Details of this operator can be found in 

[21]. 

The second operator is the mutation operator, and this consists 

in changing, randomly or deterministically, the element(s) in a 

chromosome [13]. In this case, offspring solutions were 

obtained by the exchange of two randomly selected genes in a 

chromosome. In general, one offspring is obtained from a 

single parent solution. 

The number of offspring solutions obtained by using the 

crossover and mutation operators usually depends of a 

probability. In this case, the following probabilities were 

considered for crossover and mutation: PPMX and PMUT. By 

considering X as the number of individuals in the population, 

the number of offspring solutions generated by crossover and 

mutation is defined as XPMX = X×PPMX and XMUT = X×PMUT, 

where PPMX = 0.80 and PMUT = 0.30 were considered. 

After all offspring solutions are generated (XPMX+XPMX) their 

fitness is evaluated (e.g., the makespan is obtained for each 

offspring). When this is achieved, the initial population is 

updated, and the offspring solutions with better fitness replace 

the original parents with worse fitness. At the end, and 

updated population with X individuals is obtained, which 

consists of parents and offsprings. These individuals will be 

the new parents for new offsprings by repeating the same 

process of selection and reproduction, thus generating a new 

population. This updating process is iterated and repeated 

 

Fig 1: Structure of the proposed GA approach). 

 

Fig 2: Chromosome representation. 
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until a stop condition is met. This is explained in the 

following section. 

3.4 Stop Condition 
As commented, the new population is considered the initial 

population for the next iteration (generation) of the GA. The 

process of selection, reproduction, and update, is repeated 

until a stop condition is met, however there is no overall 

condition to stop the GA. While a common practice is to stop 

the GA when there are no change in the population’s average 

fitness (convergence is achieved), other practices involve 

considering a fixed number of iterations. In this case a total of 

T = 200 iterations (generations) was considered. 

4. EXPERIMENTS 
The GA approach was tested with two types of case studies. 

The first consisted of the standard PFSP (no break-down 

times). This was considered important to evaluate and validate 

the performance of the GA for large problems (in this case, 

with N=M=20). Then, the second type consisted of the PFSP 

with break-down times. The results are presented in the 

following sections. 

4.1 Standard PFSP 
For the validation of the GA the PFSP problems defined in 

[22] were considered. Particularly, the PFSPs with size 20×20 

(N=M=20) were considered as the instances in [22] provided 

two important values for comparison: Lower Bound (LB) and 

Best Known Solution (BEST). In this case, a population of 

1000 was used for the GA given the size of the PFSP. In 

Table 2 the makespan results obtained with the GA and the 

method used in [22] (BEST) for 28 randomly selected 20×20 

PFSPs are presented. 

As presented in Table 2, in 24 out of the 28 PFSPs a solution 

that led to a better makespan was found with the GA in 

comparison with the results reported in [22] for the same 

PFSPs. This is an improvement in 86% of the PFSPs and the 

convergence of the GA is also presented. In Figure 3 the 

convergence plot of the GA across all PFSPs is presented. The 

overall makespan across al PFSPs starts at iteration 0 with 

2450 approximately, however, as the diversification 

(reproduction) is performed the individuals in the population 

become more fit and thus, overall makespan tends to decrease. 

At iteration 60 the overall fitness equals the fitness obtained 

with the method presented in [22] and after that iteration the 

individuals found with the GA are of better fitness. A pairs-

match test was performed to evaluate the statistical 

significance of these results, obtaining a p-value of 1.44226E-

05. Thus, the improvements are statistically significant at the 

0.10 and 0.01 levels and there is confidence about the use of 

the GA for other PFSPs (including the case with break-down 

times). 

Table 2. GA performance on standard 20×20 PFSPs 

Problem LB BEST GA 

1 1957 2213 2190 

2 1854 2155 2121 

3 2016 2307 2295 

4 1825 2142 2152 

11 1984 2299 2289 

12 1922 2188 2193 

15 1905 2272 2270 

17 2044 2281 2273 

23 2031 2259 2231 

24 2017 2264 2259 

29 1845 2119 2126 

31 1846 2291 2274 

32 1914 2289 2235 

33 1859 2205 2192 

42 1952 2337 2332 

45 1906 2278 2273 

50 1918 2308 2302 

53 1898 2193 2203 

56 1881 2211 2206 

63 1853 2150 2146 

66 1932 2197 2179 

67 1894 2354 2351 

70 1990 2323 2302 

72 1861 2188 2178 

77 1756 2121 2116 

85 2125 2220 2189 

89 1809 2182 2165 

94 1993 2221 2201 

 

4.2 Standard PFSP 
The GA approach was tested with the following PFSP with 

breakdown times: 4-jobs 5-machines with known makespan = 

53 [5]. In this work the processing centers 1 and 5 are 

catalogued as of “V” type while the processing center 2 is 

catalogued as type “M” and 3 and 4 as type “U”. A heuristic 

method was used to obtain the sequence that led to a 

makespan of 53. This sequence was obtained prior to adjust 

the processing times with the break-down times. After 3 

iterations of the GA with an initial randomly generated 

population of 10 individuals a sequence with a makespan of 

52 was obtained (which is lower than the baseline of 53). In 

Figure 4 the Gantt diagrams for both sequences are presented.   

5. CONCLUSIONS AND FUTURE 

WORK 
In this work a GA approach was presented for solving the 

PFSPs with and without break-down times. Given the limited 

availability of numerical examples with break-down times we 

were only able to test the GA with a 4×5 PFSP. However, 

numerical examples with standard 20×20 PFSPs were found 

and improvements in 86% of cases were achieved. These 

improvements were statistically significant and thus there is 

confidence about the overall performance of the presented 

GA. 

Future work is focused on (1) testing the GA on PFSPs with 

larger N and M by means of benchmark numerical examples 

and implementation of other solving methods for comparison 

purposes, (2) considering other PFSPs as those with weights 

and transportation times, and (3) adapting the GA for the Job-

Shop scheduling problem. 
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