
International Journal of Computer Applications (0975 – 8887)

Volume 83 – No1, December 2013

1

An Evolutionary Approach for Solving the N-Jobs M-

Machines Permutation Flow-Shop Scheduling Problem

with Break-Down Times

Armando Rosas-

González
Technological University of the

Mixteca
Road to Acatlima Km. 2.5

Huajuapan de León, Oaxaca,
México, 69000

Dulce-María Clemente-
Guerrero

Technological University of the
Mixteca

Road to Acatlima Km. 2.5
Huajuapan de León, Oaxaca,

México, 69000

Jorge-Carmen Flores-

Juan
Technological University of the

Mixteca
Road to Acatlima Km. 2.5

Huajuapan de León, Oaxaca,
México, 69000

Santiago-Omar Caballero-
Morales

Technological University of the
Mixteca

Road to Acatlima Km. 2.5
Huajuapan de León, Oaxaca,

México, 69000

ABSTRACT

In this paper a Genetic Algorithm (GA) approach is presented

to solve the N-Jobs M-Machines Permutation Flow-Shop

Scheduling Problem (PFSP) with Break-down times. In

comparison with other methods that start with a solution

obtained with the Johnson’s Algorithm (or another greedy

approach), the presented GA method starts with randomly

generated solutions and within 100 iterations is able to obtain

a solution better than other methods. Also, while in other

works the sequence of jobs to be processed in the machines is

obtained prior to the occurrence of break-down times, the GA

finds the solution considering from the beginning the

occurrence of the break-down times. Thus, the presented GA

method considers the effect of the break-down times in the

overall process. A selection of standard 20×20 PFSPs was

used for validation of the GA, finding that in 86% of the

selected PFSPs the GA was able to provide job sequences

with better makespans when compared with another method.

The makespan improvements were statistically significant at

the 0.10 and 0.01 levels. Then, evaluation of the GA was

performed on one PFSP case with break-down times. As in

the validation cases with standard PFSPs, the GA

outperformed the results obtained with another method.

General Terms

Industrial Engineering, Permutation Flow-Shop Scheduling

Problem.

Keywords

Flow-Shop Scheduling, Break-Down Times, Genetic

Algorithms.

1. INTRODUCTION
Flow-shop is one of the main scheduling problems in

manufacturing [1]. Flow-shop scheduling is used to determine

the optimal sequence of N-jobs to be processed on M-

machines in the same order [2]. In the permutation flow-shop

scheduling problem (PFSP) the same sequence of jobs must

be performed on all machines, one machine can only process

one job at a time, and no machine is allowed to be re-visited

[3]. The optimal sequence of jobs is the one that minimizes

the makespan of the N-jobs through the M-machines, this is,

the minimization of the completion time of the last job on the

last machine [2, 4].

Three main factors are known to be related to scheduling

problems: job transportation time (which includes moving and

idle times), relative importance of a job over another, and

break-down time of machines [5]. Break-down times

represent the periods or time intervals where processing may

be stopped due to interruption of energy or raw material

supply, failures, or due to maintenance tasks [6]. Flow-shop

scheduling with break-down times has been studied as

presented in [5, 6] with diverse conditions and solving

methods. For example, in [7] an optimal sequence was

obtained for the 2-machines N-jobs flow-shop with random

break-down times. In [6] a heuristic approach was proposed

for solving the 3-machines N-jobs flow-shop considering

transportation times and weights of jobs in addition to break-

down times. In [8] the makespan for a flexible flow-shop was

optimized by using a decomposition based algorithm (DBA).

Another work involving a 3-machines N-jobs flow-shop was

presented in [9] where a heuristic algorithm was proposed for

solving the scheduling problem with break-down times and

weights of jobs. Finally, in [10] a branch-and-bound algorithm

was presented to solve the 3-machines N-jobs flow-shop

scheduling problem with break-down and transportation

times. Note that many of the works available consider the case

with a limited number of machines (e.g., M=2, 3).

This paper is focused on the PFSP with break-down times. In

contrast with other works, the case of N-jobs and M-machines

is considered. Because the complexity of this problem

increases with the number of machines, a Genetic Algorithm

(GA) is proposed as a solving method. This evolutionary

approach was able to obtain sequences of jobs with better

makespan when compared with other methods and PFSP with

International Journal of Computer Applications (0975 – 8887)

Volume 83 – No1, December 2013

2

sizes up to N=M=20. The improvements obtained in

makespan were statistically significant.

The present work is structured as follows: in Section 2 an

overview of the PFSP with break-down times is presented.

Then in Section 3 the details of the GA approach for solving

the PFSP with breakdown times and N-jobs M-machines is

presented. In Section 4 the results of the GA approach on case

studies are discussed. Finally, in Section 5 the conclusions

and future work are presented.

2. PFSP WITH BREAK-DOWN TIMES
The PFSP with break-down times with N-jobs and M-

machines is defined as follows:

o All N-jobs are processed through M processing centers P1,

P2, ..., PM in the same order (e.g., each job is processed

first in center P1, then P2, ..., until PM).

o i represents the job in an arbitrary sequence, where i =

1,...,N.

o All N-jobs are available to be processed at time zero.

o Pi1, Pi2, Pi3, ..., PiM, represents the processing time of job i

in the processing center P1, P2, P3, ..., PM respectively.

o The break-down interval is defined as (a, b), and the

interval length is (b - a).

o If break-down conditions take place and interruption of

power supply occurs, the processing times of the centers

may be affected accordingly to the type of center. These

can be classified under three categories:

 U: Processes that cannot be interrupted. In this case,

breakdown time is applied and the process itself is

postponed. This is common for processes as

moulding, casting, forging, and welding [5]. The

processing time in this case is modified and (b - s1) is

added to the original processing time.

 V: Processes that require power supply and, if break-

down occurs between the process (which starts at time

s1 and ends at time s2), can be resumed when power

supply returns. Processes that can be classified in this

category are packing, machining, threading, and

drilling [5]. In this case, original processing times are

modified as follows:

 if break-down starts between s1 and s2, (b - a) is

added to the original processing time;

 if break-down starts and ends between s1 and s2, (b

- a) is added to the original processing time;

 if break-down ends between s1 and s2, (b - s1) is

added to the original processing time;

 if break-down starts before s1 and ends after s2, (b

- s1) is added to the original processing time.

 W: Processes that do not require power supply can

continue during the break-down time. Thus, no

modification in the original processing time is

required.

The information of a PFSP is commonly presented as shown

in Table 1. Other works also consider weights for the jobs in

order to represent their importance in the process sequence [6,

9] however the present work is focused on the solving method

for N-jobs and M-machines.

Table 1. A standard PFSP

Job Times

 P1 P2 P3 … PM

1 P11 P12 P13 … P1M

2 P21 P22 P23 … P2M

… … … … … …

N PN1 PN2 PN3 … PNM

3. THE GA METHOD
The PFSP has been solved with different methods. For

example, in [11] a greedy heuristic was used while in [8] and

[10] DBA and B&B (branch and bound) algorithms were used

respectively. The use of a GA (Genetic Algorithm) was

explored in [12] with significant results. For the PFSP with

break-down times greedy heuristics have been applied [5],

however the use of GAs has been limited.

GAs are heuristics based on the natural process of evolution

[13, 14]. These have been used to solve other combinatorial

problems as the Travelling Salesman Problem (TSP) and Job-

shop scheduling [15]. In this paper a GA is presented for the

PFSP with break-down times with N-jobs and M-machines. In

Figure 1 the general structure of the GA is shown and the

details of each module are explained in the next sections.

3.1 Initial Population and Fitness

Evaluation
The initial population is the set of initial solutions for the

PFSP. These can be randomly generated or be given by a fast

heuristic algorithm [13]. These solutions are represented as

“chromosomes” to enable diversification by means of the

reproduction operators (crossover, mutation). In Figure 2 the

chromosome representation of a solution for the PFSP is

presented. The chromosome is a vector with N + 1 cells,

where in the first N cells the sequence with N-jobs is stored

and in the cell N +1 the makespan obtained through M-

machines with that sequence is stored.

For this work a random initial population of X=1000

individuals was considered. Initially small initial populations

(e.g., with size < 50 individuals) were considered as discussed

in [16, 17]. However it was found that for the PFSP the

reproduction operators were not able to efficiently diversify

the solutions within small populations.

In a GA is important to measure the ability to solve a problem

with an optimality criterion, or fitness, of each solution in the

initial population. In this case, the optimality criterion consists

in finding the solution with the minimum makespan, thus, the

fitness is measured based on this concept. The makespan is

the completion time of the last job on the last machine [2, 4].

3.2 Selection of Parents
Diversification of solutions starts with the selection of

“Parent” individuals. Based on Darwin’s rule of “survival of

the fittest”, it is understood that the strongest individuals in a

population would survive, would adapt more successfully to

environmental adversities, and would reproduce [13]. Also,

the fittest individuals would inherit their characteristics (those

that made them fit) to their “Offsprings”. In this way, and

based on the natural process of evolution, these characteristics

would be refined through several generations, improving the

overall fitness of new individuals.

International Journal of Computer Applications (0975 – 8887)

Volume 83 – No1, December 2013

3

In the PFSP, fitness is measured based on the makespan, and

the “Roulette Wheel” selection method is one of the most

used methods for selection of the fittest individuals without

excluding less fitted individuals [18]. In the “Roulette Wheel”

method, all chromosomes (individuals) are located into a

roulette wheel in function of their fitness values. A segment of

the roulette wheel is assigned to each individual based on its

overall fitness with respect to the other individuals. Thus, the

size of the segment is proportional to the individual’s fitness

(e.g., largest segment = highest fitness). Then, when the

roulette wheel is rotated the individuals with better fitness are

more likely to be selected for reproduction, although there is

also the possibility to select individuals with less fitness. This

may be beneficial for the diversification process [19].

The steps of the roulette wheel selection for i = 1, …, n

individuals are presented as follows [20]:

(1) Compute the fitness value () for each i-chromosome in

the population.

(2) Compute the sum of fitness () for all chromosomes in

the population:

(3) Compute the average fitness () in the population:

(4) Compute the expected fitness () for each chromosome

in the population:

(5) Compute the sum of all expected fitness () for the

chromosomes in the population:

(6) Generate a random number () within the range (0,).

(7) Select the chromosome for which the cumulative fitness

>=

(8) Go to step 6 and repeat n times.

3.3 Reproduction and Population Update
In order to diversify the initial solutions (generate new

solutions) reproduction operators are used that work at the

chromosome level of the individuals in a population (e.g., see

Figure 2). To generate “offspring” solutions, pairs of “parent”

solutions are required. The first operator to be used in this

work is the crossover operator which consists in the exchange

of genes between “parent” chromosomes [13]. When the

individuals consist of sequences where order is important (as

is the case of the PFSP) the Partially Mapped Crossover

(PMX) is the most suitable. In general, two offspring

solutions are obtained from each pair of parent solutions using

the PMX operator. Details of this operator can be found in

[21].

The second operator is the mutation operator, and this consists

in changing, randomly or deterministically, the element(s) in a

chromosome [13]. In this case, offspring solutions were

obtained by the exchange of two randomly selected genes in a

chromosome. In general, one offspring is obtained from a

single parent solution.

The number of offspring solutions obtained by using the

crossover and mutation operators usually depends of a

probability. In this case, the following probabilities were

considered for crossover and mutation: PPMX and PMUT. By

considering X as the number of individuals in the population,

the number of offspring solutions generated by crossover and

mutation is defined as XPMX = X×PPMX and XMUT = X×PMUT,

where PPMX = 0.80 and PMUT = 0.30 were considered.

After all offspring solutions are generated (XPMX+XPMX) their

fitness is evaluated (e.g., the makespan is obtained for each

offspring). When this is achieved, the initial population is

updated, and the offspring solutions with better fitness replace

the original parents with worse fitness. At the end, and

updated population with X individuals is obtained, which

consists of parents and offsprings. These individuals will be

the new parents for new offsprings by repeating the same

process of selection and reproduction, thus generating a new

population. This updating process is iterated and repeated

Fig 1: Structure of the proposed GA approach).

Fig 2: Chromosome representation.

Initial Population

Fitness Evaluation

Selection of Parents

Reproduction

Generation of Offsprings

Crossover / Mutation

Fitness Evaluation of

Offsprings

Population Update

(replacement of less fit

individuals)

Stop

Condition

Start

End

Yes

No

Chromosome index j = 1 2 3 ... N N+1

Sequence of N -jobs = 1 10 8 ... 3 120

makespan

International Journal of Computer Applications (0975 – 8887)

Volume 83 – No1, December 2013

4

until a stop condition is met. This is explained in the

following section.

3.4 Stop Condition
As commented, the new population is considered the initial

population for the next iteration (generation) of the GA. The

process of selection, reproduction, and update, is repeated

until a stop condition is met, however there is no overall

condition to stop the GA. While a common practice is to stop

the GA when there are no change in the population’s average

fitness (convergence is achieved), other practices involve

considering a fixed number of iterations. In this case a total of

T = 200 iterations (generations) was considered.

4. EXPERIMENTS
The GA approach was tested with two types of case studies.

The first consisted of the standard PFSP (no break-down

times). This was considered important to evaluate and validate

the performance of the GA for large problems (in this case,

with N=M=20). Then, the second type consisted of the PFSP

with break-down times. The results are presented in the

following sections.

4.1 Standard PFSP
For the validation of the GA the PFSP problems defined in

[22] were considered. Particularly, the PFSPs with size 20×20

(N=M=20) were considered as the instances in [22] provided

two important values for comparison: Lower Bound (LB) and

Best Known Solution (BEST). In this case, a population of

1000 was used for the GA given the size of the PFSP. In

Table 2 the makespan results obtained with the GA and the

method used in [22] (BEST) for 28 randomly selected 20×20

PFSPs are presented.

As presented in Table 2, in 24 out of the 28 PFSPs a solution

that led to a better makespan was found with the GA in

comparison with the results reported in [22] for the same

PFSPs. This is an improvement in 86% of the PFSPs and the

convergence of the GA is also presented. In Figure 3 the

convergence plot of the GA across all PFSPs is presented. The

overall makespan across al PFSPs starts at iteration 0 with

2450 approximately, however, as the diversification

(reproduction) is performed the individuals in the population

become more fit and thus, overall makespan tends to decrease.

At iteration 60 the overall fitness equals the fitness obtained

with the method presented in [22] and after that iteration the

individuals found with the GA are of better fitness. A pairs-

match test was performed to evaluate the statistical

significance of these results, obtaining a p-value of 1.44226E-

05. Thus, the improvements are statistically significant at the

0.10 and 0.01 levels and there is confidence about the use of

the GA for other PFSPs (including the case with break-down

times).

Table 2. GA performance on standard 20×20 PFSPs

Problem LB BEST GA

1 1957 2213 2190

2 1854 2155 2121

3 2016 2307 2295

4 1825 2142 2152

11 1984 2299 2289

12 1922 2188 2193

15 1905 2272 2270

17 2044 2281 2273

23 2031 2259 2231

24 2017 2264 2259

29 1845 2119 2126

31 1846 2291 2274

32 1914 2289 2235

33 1859 2205 2192

42 1952 2337 2332

45 1906 2278 2273

50 1918 2308 2302

53 1898 2193 2203

56 1881 2211 2206

63 1853 2150 2146

66 1932 2197 2179

67 1894 2354 2351

70 1990 2323 2302

72 1861 2188 2178

77 1756 2121 2116

85 2125 2220 2189

89 1809 2182 2165

94 1993 2221 2201

4.2 Standard PFSP
The GA approach was tested with the following PFSP with

breakdown times: 4-jobs 5-machines with known makespan =

53 [5]. In this work the processing centers 1 and 5 are

catalogued as of “V” type while the processing center 2 is

catalogued as type “M” and 3 and 4 as type “U”. A heuristic

method was used to obtain the sequence that led to a

makespan of 53. This sequence was obtained prior to adjust

the processing times with the break-down times. After 3

iterations of the GA with an initial randomly generated

population of 10 individuals a sequence with a makespan of

52 was obtained (which is lower than the baseline of 53). In

Figure 4 the Gantt diagrams for both sequences are presented.

5. CONCLUSIONS AND FUTURE

WORK
In this work a GA approach was presented for solving the

PFSPs with and without break-down times. Given the limited

availability of numerical examples with break-down times we

were only able to test the GA with a 4×5 PFSP. However,

numerical examples with standard 20×20 PFSPs were found

and improvements in 86% of cases were achieved. These

improvements were statistically significant and thus there is

confidence about the overall performance of the presented

GA.

Future work is focused on (1) testing the GA on PFSPs with

larger N and M by means of benchmark numerical examples

and implementation of other solving methods for comparison

purposes, (2) considering other PFSPs as those with weights

and transportation times, and (3) adapting the GA for the Job-

Shop scheduling problem.

International Journal of Computer Applications (0975 – 8887)

Volume 83 – No1, December 2013

5

6. REFERENCES
[1] Gupta, D., Sharma, S., and Sharma, S. 2011. Heuristic

Approach for n-Jobs, 3-Machines Flow Shop Scheduling

Problem, Processing Time Associated With Probabilities

Involving Transportation Time, Break-Down Interval,

Weightage of Jobs and Job Block Criteria. Mathematical

Theory and Modeling. 1(1), 30–36.

[2] Singhal, E., Singh, S., and Dayma, A. 2012. An

Improved Heuristic for Permutation Flow Shop

Scheduling (NEH ALGORITHM). International Journal

of Computational Engineering Research. 2(6), 30–36.

[3] Emmons, H. and Vairaktarakis, G. 2013. Flow Shop

Scheduling: Theoretical Results, Algorithms, and

Applications. International Series in Operations Research

& Management Science, Springer, New York.

[4] Baskar, N., Balasundaram, N., and Siva, R. 2012. A New

Approach to Generate Dispatching Rules for Two

Machine Flow Shop Scheduling Using Data Mining. In

Proc. of the International Conference on Modeling,

Optimization and Computing (ICMOC2012), 238–245.

[5] Baskar, A. and Xavior, A. 2012. A Simple Model to

Optimize General Flow-Shop Scheduling Problems with

Known Break Down Time and Weights of Jobs. In Proc.

of the International Conference on Modeling,

Optimization and Computing (ICMOC 2012), 191–196.

[6] Chandramouli, A. B. 2005. Heuristic Approach for n-

Job, 3-Machine Flow Shop Scheduling Problem

Involving Transportation Time, Break Down Time and

Weights of Jobs. Mathematical and Computational

Applications. 10(2), 301–305.

[7] Allahverdi, A. and Mittenthal, J. 1994. Two-machine

ordered flowshop scheduling under random break-

downs. Mathl. Comput. Modelling. 20(2), 9–17.

[8] Wang, K. and Choi, S. H. 2009. A decomposition based

algorithm for flexible flowshop scheduling with machine

breakdown. In The IEEE International Conference on

Fig 3: Convergence of the GA on standard 20×20 PFSPs.

Fig 4: Performance of the GA on a 4×5 PFSP with break-down times.

1900

2000

2100

2200

2300

2400

2500

1 11 21 31 41 51 61 71 81 91 101 111 121 131 141 151 161 171 181 191

M
ak

es
p

an

Generations

Genetic Algorithm (GA) Lower Bound (LB) BEST (Reference)

International Journal of Computer Applications (0975 – 8887)

Volume 83 – No1, December 2013

6

Computational Intelligence for Measurement Systems

and Applications (CIMSA 2009). 134-139.

[9] Khodadadi, A. 2012. Solving Weighted Flow-Shop

Scheduling Problem Involving Break-Down Time of

Jobs for Machines. Journal of International Academic

Research. 12(1), 10–15.

[10] Gupta, D. 2012. Branch and Bound Technique for three

stage Flow Shop Scheduling Problem Including

Breakdown Interval and Transportation Time. Journal of

Information Engineering and Applications. 2(1), 24–29.

[11] Finke, G. and Jiang, H. 1997. A variant of the

permutation flowshop model with variable processing

times. Discrete Applied Mathematics. 76, 123–140.

[12] Akhshabi, M., Haddadnia, J., and Akhshabi, M. 2012.

Solving flow-shop scheduling problem using a parallel

genetic algorithm. Procedia Technology. 1, 351–355.

[13] Goldberg, D. E. 1989. Genetic Algorithms: in Search,

Optimization and Machine Learning. Addison Wesley,

Massachusetts.

[14] Cerrolaza, M. and Annicchiarico, W. 1996. Algoritmos

de optimización estructural basados en simulación

genética. U. C. V.-Consejo de Desarrollo Científico y

Humanístico, Caracas.

[15] Chan, F. and Choy, K.L. 2011. A genetic algorithm-

based scheduler for multiproduct parallel machine sheet

metal job shop. Expert systems with Applications. 38,

8703–8715.

[16] Martín, E. and Valeiras, G. 2004. Sistemas Evolutivos y

Selección de Indicadores. Universidad de Sevilla-

Secretariado de Publicaciones, Sevilla.

[17] Alander, J.T. 1992. On optimal population size of genetic

algorithms. In Proc. of the 6th Annual European

Computer Conference.

[18] Escolano, F., Cazorla, M. A., Alfonso, M. I., Colomina,

O., and Lozano, M. A. 2003. Inteligencia Artificial:

Modelos, Técnicas y Áreas de Aplicación. Thomson

Ediciones, Madrid.

[19] Kumar, R. 2012. Blending roulette wheel selection &

rank selection in genetic algorithms. International

Journal of Machine Learning and Computing. 2(4), 365-

370.

[20] Firas, A. and Reyadh, N. 2012. Comparison of Selection

Methods and Crossover Operations using Steady State

Genetic Based Intrusion Detection System. Journal of

Emerging Trends in Computing and Information

Sciences. 3(7), 1053-1058.

[21] Deep, K. and Mebrahtu, H. 2012. Variant of partially

mapped crossover for the Travelling Salesman problems.

International Journal of Combinatorial Optimization

Problems and Informatics. 3(1), 47–69.

[22] Watson, J.P., Barbulescu, L., Whitley, D.L., and Howe,

A.E. 2002. Contrasting structured and random

permutation flow-shop scheduling problems: Search

space topology and algorithm performance. INFORMS

Journal on Computing. 14(2), 98–123.

IJCATM : www.ijcaonline.org

