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ABSTRACT 

Abstract -Mining of frequent itemset plays important role in 

data mining applications. The algorithms which are used to 

generate the frequent patterns must perform efficiently.  

Because the overall performance of association rule mining 

based on fast discovery of frequent pattern. Many MFI 

approaches need to recursively construct many candidates, 

they also suffer the problem of a large search space, so that 

the performances for the approaches degrade when the 

database is massive or the threshold for mining frequent 

patterns is low. In this paper, an efficient method for 

discovering the maximal frequent itemsets is proposed which 

combines a vertical tidset representation of the database with 

effective pruning mechanisms for search space reduction.   It 

works efficiently when the number of itemsets and tidsets are 

more. The proposed approach has been compared with 

GenMax algorithm for mushroom dataset and the results show 

that the proposed algorithm generates less number of 

candidate itemsets from which MFIs are obtained. Hence, the 

proposed algorithm performs effectively and generates 

maximal frequent patterns faster. 
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1. INTRODUCTION 
 

Data mining or knowledge discovery in databases is a 

collection of exploration techniques based on advanced 

analytical methods and tools for handling a large amount of 

information. In data mining, association rule mininig is a 

popular and well researched method for discovering 

interesting relations between items in large transactional 

datasets. Association rule generation is usually split up into 

two separate steps. In the first step, minimum support is given 

by the user to find all frequent itemsets in a dataset. In the 

second step, these frequent itemsets and the minimum 

confidence constraint are used to generate rules. The support 

of an itemset X(sup(X)) is defined as the proportion of 

transactions in the data set which contain the itemset. sup(X)= 

no. of transactions which contain the itemset X / total no. of 

transactions. The confidence of a rule is defined as follows: 

conf(x->y)= sup(x∪y)/sup(x). Based on the different measures 

of interestingness, strong rules are discovered in datasets. 

Based on the perception of strong rules, association rules are 

introduced by Agrawal [7] for discovering regularities 

between products in large scale transaction data recorded in 

retail markets.   

The problem of mining frequent itemsets has been a topic of 

Intensive research. Efficient algorithms for mining frequent 

items are crucial for mining association rules. Mining 

Frequent itemsets plays an important role in the field of data 

mining. Frequent itemsets are essential for many data mining 

problems, such as the discovery of association rules, data 

correlations and sequential patterns. The frequent pattern has 

several alternative forms including a simple frequent pattern, 

a closed pattern and maximal pattern. Frequent pattern is a 

pattern that satisfies a minimum support threshold.  A pattern 

X is a closed pattern if there is no super pattern with the same 

support of X. A pattern X is a maximal pattern if there exists 

no frequent super pattern of X. once frequent patterns are 

mined, it can be mapped into association rules or other kind of 

rule based interestingness measures. Most existing work 

focuses on mining all frequent item sets (FI). However, since 

any subset of a frequent item set also is frequent, it is 

sufficient to mine only the set of maximal frequent item sets 

(MFI). 

 

The frequent itemset mining problem can be formally stated 

as follows: Let I be a set of different items. Each transaction T 

in database D is a subset of I. if X is a set of items then X ⊆ I. 

An itemset with k items is called a k-itemset. The support of 

X, denoted by sup(X), is the number of transactions 

containing X. If sup(X) is greater than a user-specified 

minimum support, X is called a frequent itemset. An itemset 

X is closed frequent itemset if it has no proper superset with 

the same support.  An itemset X is called a maximal frequent 

itemset if it has no proper superset that is frequent. An itemset  

X  is  a maximum length frequent itemset if X contains a 

maximum number of items in frequent itemset. Formally, it 

can be defined as follows: Let D be a transaction database 

over a set of different items I. Given a user-specified 

minimum support ε, an itemset X is a maximum length 

frequent itemset if sup(X) ≥ ε and for all itemset Y, if sup(Y ) 

≥ ε then the number of items contained in Y  is greater than or 

equal to number of items contained in  X. 

 

The drawback of mining all frequent itemsets is that if there is 

a large frequent itemset with size n then almost all 2n 

candidate subsets of the items might be generated. However, 

since frequent itemsets are upward closed, it is sufficient to 

discover only all maximal frequent itemsets (MFI's). The 

database representation is also an important factor in the 

efficiency of generating maximal patterns. In horizontal data 

format, the data is represented as tid-itemset format, where tid 

is the transaction identifier and itemset is the set of items 

included in the transaction. In vertical data format, the data is 

represented as item-tidset format, where item is the name of 

the item and tidset is the set of transaction identifiers 

containing the item. The vertical representation allows simple 

and efficient support counting. 

 

http://en.wikipedia.org/wiki/%E2%88%AA
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2. RELATED WORKS 
When the frequent patterns are long, mining all Frequent 

Itemsets is infeasible because of the exponential number of 

frequent itemsets. Thus algorithms for mining Frequent 

Closed Itemsets (FCI) are proposed, because FCI is enough to 

generate association rules. However FCI could also be 

exponentially large as the FI. However, since any subset of a 

frequent set also is frequent, it is sufficient to mine only the 

set of maximal frequent itemsets. Given the set of MFI, it is 

easy to analyze many interesting properties of the dataset, 

such as the longest pattern, the overlap of the MFI, etc. MFI 

mining has two advantages over all FI mining. First, MFI 

mines small and useful rules, and second a single database 

scan can collect all FI, if we have MFI. In this paper we 

present a new algorithm to find MFIs quickly by obtaining the 

possible Maximal frequent items (PMFIs) from which 

candidates are generated. So the number of candidates passed 

to the algorithm is relatively less when compared to existing 

algorithm. Some of the existing MFI mining algorithm is 

described below. 

 

GenMax[2], is a efficient  backtrack search based algorithm 

for mining maximal frequent itemsets. Genmax used number 

of optimizations to prune the search space. It used differential 

set propagation to perform fast frequency computation when 

the frequent items have more number of candidates and 

progressive focusing to perform maximal checking. Genmax 

reduce the number of superset checking by using progressive 

focusing technique of LMFI-Backtrack. GenMax is efficient 

method to mine the exact set of maximal patterns. Genmax 

uses vertical tidset format and computes the set of frequent 

items by counting the number of tids of each item and and 

frequent 2 items by intersecting the item’s tids. Genmax uses 

itemset reorderting technique which reduces the search space 

of MFI tree. 

 

Mafia is one of the recent methods proposed by Burdick, D., 

M. Calimlim and J. Gehrke,[1] for mining the MFI. The 

search strategy of the algorithm integrates a depth-first 

traversal of the itemset lattice with effective pruning 

mechanisms that significantly improve mining performance. 

Mafia implementation for support counting combines a 

vertical bitmap representation of the data with an efficient 

bitmap compression scheme. Mafia uses vertical bit-vector 

data format, and compression and projection of bitmaps to 

improve performance. Mafia uses three pruning strategies to 

remove non-maximal sets. The first is the look-ahead pruning 

which is introduced in MaxMiner. The second is to check if a 

new set is subsumed by an existing maximal set. The last 

technique checks if t(X) ⊆ t(Y). If so X is considered together 

with Y for extension. Mafia mines a superset of the MFI, and 

requires a postpruning step to eliminate non-maximal patterns. 

 

Max Miner [6] is another algorithm for finding the maximal 

elements. It uses efficient pruning techniques to quickly 

narrow the search. Max Miner employs a breadth first 

traversal of the search space. It reduces database scanning by 

employing a look ahead pruning strategy. For frequency 

computation maxminer use a additional technique called 

support lower bounding. This algorithm also uses dynamic 

reordering technique to reduce the size of the search space.  

This process produces small number of frequent extension for 

the next level. The item which occurs in the fewest number of 

large itemsets should be occurred first and item occurring in 

the maximum number of large itemset should be occurred last. 

DepthProject[5] finds long itemsets using a depth first search 

of a lexicographic tree of itemsets, and uses a counting 

method called bucketing based on transaction projections 

along its branches. DepthProject uses a horizontal database 

layout and use some form of compression when the bitmaps 

become sparse. DepthProject also uses the look-ahead pruning 

method with item reordering. It returns a superset of the MFI 

and would require post-pruning to eliminate non-maximal 

patterns. 

The Pincer-Search [3] algorithm uses horizontal data format 

and hybrid approach to mine Maximal frequent patterns. It 

constructs the candidates in a bottom-up and top-down 

direction at the same time, maintaining Maximal Frequent 

Candidate Patterns. It generates candidates and infrequent 

items in bottom up direction and based on the infrequent item 

MFCS are splitted into more than one candidate. This can 

help in reducing the number of database scans, by eliminating 

non-maximal sets early. The MFCS are supersets of the 

maximal frequent itemsets. Hash-Based Method HMFS [4] 

generates the maximal frequent itemsets in the category of the 

combination of bottom-up and top-down search. This method 

combines the advantages of both the DHP and the Pincer-

Search algorithms. The HMFS method reduces the number of 

database scans when the length of the longest frequent itemset 

is relatively long. The HMFS method obtains the infrequent 

itemsets with the hash technique from the bottom-up direction 

and then can use the filtered itemsets to find the maximal 

frequent itemsets in the top-down direction. HMFS uses the 

hash technique of the DHP algorithm to filter the infrequent 

itemsets in the bottom-up direction and uses a top-down 

technique that is similar to the Pincer-Search algorithm to find 

the maximal frequent itemsets. 

3. PROPOSED WORK 
The proposed approach focuses on Mining Maximal Frequent 

Itemset. In this paper, a backtracking method and effective 

pruning mechanism to reduce the search space is proposed for 

generating Maximal frequent patterns. Backtracking method 

is first introduced by Karam Gouda and Mohammad Zaki in 

GenMax algorithm to generate Maximal Frequent Itemsets.  

Backtracking method is used here to generate Maximal 

Frequent Itemsets from PMFIs.  

 

There are two main factors to develop an efficient MFI 

algorithm. The first is the database representation used to 

perform fast frequency computations, and the second is the set 

of techniques used to reduce the size of search space. Here, 

we are using vertical data format for storing the transactions 

in the database to compute the frequency of an itemset 

quickly. The vertical representation has the following major 

advantages over the horizontal layout: Firstly, computing the 

support of itemsets is simpler and faster with the vertical 

layout since it involves only the intersections of tidsets. 

Secondly, with the vertical layout, there is an automatic 

“reduction” of the database before each scanning that only 

those itemsets that are relevant to the following scan of the 

mining process are accessed from disk. 

 

Most of the Maximal frequent itemset mining algorithm sends 

all frequent items as candidate items to the recursive 

algorithm to obtain MFIs. The size of the search space 

depends on number of candidate items to be sent to the 

algorithm. Because N candidate generates 2N nodes at worst 

case while constructing the MFI Tree. In this paper Search 

Space Reduction (SSR) algorithm is proposed to mine MFIs. 

To prune the search space of MFI tree the number of 
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candidates passed to the algorithm must be reduced. In this 

approach PMFIs are generated once frequent item and 

candidates of each frequent item are obtained. All candidates 

are generated from these PMFIs. So number of candidate 

passed to the algorithm is relatively small which in turns 

reduce the search space of MFI tree. 

 

Consider our example database which includes five different 

items, I = {A, C, D, T, W} and six transactions     T= {1, 2, 3, 

4, 5, 6}. The vertical data format of the database d is given 

below. 

 

 

 

 

Table 1 : Vertical Data format of the transactional 

database d. 

All Frequent items are extracted and reordered in ascending 

order with respect to the support .The support is directly given 

by the number of transactions in the tidset of each item. Let us 

consider the minimum support to be 3. From the above 

structure, all items are frequent. The items A, C, D, T and W 

are reordered in ascending order with respect to the support 

and these are considered to next level. The Frequent 1 items 

are A, D, T, W and C. 

In the next level PMFIs are constructed by obtaining 

candidate sets for each frequent item.  All candidates are 

reordered in increasing order of support. 

All PMFIs are sorted with respect to their size in descending 

order. In database d, the PMFIs are ATWC, DWC, TWC, WC 

and C.  Each PMFI is checked whether it has no superset in 

MFI or not. If PMFI has no superset in MFI then it is checked 

whether it is frequent. If it is, then the PMFI is added to MFI 

directly.  

 

A PMFI can be added to MFI directly if it has no superset in 

MFI and is frequent. This early finding of MFI relatively 

reduces the number of candidates passed to the algorithm.   

In this example the first PMFI is ATWC which has no 

superset in MFI and it is frequent. So it is added to MFI 

directly. The next PMFI is DWC which has no superset in 

MFI and it is frequent and added to MFI directly. The 

subsequent itemsets TWC, WC, and C are having superset in 

MFI (ATWC) and are ignored. If DWC is infrequent then it is 

sent to the GenerateMFI algorithm to mine MFIs from DWC.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 : PMFIs of frequent item in database D. 

 

This algorithm also obtain the size of largest PMFI and cutoff 

which is sqrt(number of frequent itemsets). If the size of 

largest PMFI is less than the cutoff then the infrequent PMFIs 

are passed to the GenerateMFI algorithm directly to mine MFI 

from PMFI. Because the size of PMFIs will be very small and 

instead of form a candidate set, each PMFI is passed to the 

algorithm.  If the size of largest PMFI is greater than the 

cutoff then the infrequent large PMFIs are merged into 

candidate sets and it is passed to the algorithm. GenerateMFI 

algorithm returns a superset of the MFI and would require 

post-pruning to eliminate non-maximal patterns. 

SSR Algorithm 

1. Generate Frequent 1 items and reorder them in 

ascending order of their support. 

2. Construct PMFIs by obtaining candidate items 

(reorderd in increasing order of support) for each 

frequent item.  

3. Sort PMFIs with respect to their size in descending 

order. 

4. MaxsizePMFI=size of Largest PMFI , 

cutoff=sqrt(number of frequent itemsets) 

5. For each x ε PMFIs 

6. If x has no superset in MFI 

a. If size of x is 1 or 2 then add x to MFI   

// most of the sparse dataset the candidate 

items of frequent item may be 1 or 2; 

b. If x is frequent  then add x to MFI;  

c. Else if (MaxsizePMFI > cutoff) 

d. generateMFI(x.freq,x.cand,(x.freq).tid) 

e. else 

f. candidate=candidate ∪  x 

7. reordercandidate; 

8. generateMFI(empty,candidate,empty) 

generateMFI Algorithm 

generateMFI (frequent ,candidate, ftids) 

{ 

For each x ε candidate 

If frequent ∪ candidate has superset in 

MFI then returns    

Nfrequent={} 

Nfrequent.add(frequent U x) 

If ftids=={} 

Ntids=x.tid; 

Else 

Item  Tidset  

A  T1, T3, T4, T5 

C T1,T2,T3,T4,T5,T6 

D  T2,T4,T5,T6 

T  T1,T3,T5,T6 

W  T1,T2,T3,T4,T5 

Frequent 

Item  

Candidate 

sets  

PMFIs 

A C ,T, W ATWC 

D W,C DWC 

T W,C TWC 

W C WC 

C - C 

http://en.wikipedia.org/wiki/%E2%88%AA
http://en.wikipedia.org/wiki/%E2%88%AA
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Ntids=x.tid ∩ ftids 

candidate.remove(x) 

if candidate is empty && Nfrequent has 

no superset in MFI 

add Nfrequent to MFI 

newcandidate = 

generatecandidates(Nfrequent,candidate,Ntids) 

If newcandidate is empty   

  if Nfrequent has no superset in MFI 

         add Nfrequent to MFI 

Else  

generateMFI (Nfrequent, 

newcandidate,Ntids) 

} 

 

generatecandidates(frequent,candidate,ftids) 

{cand=null; 

for each x ε candidate 

If(ftids ∩ tid(x) ≥ support) 

cand.add(x); // candidates are stored in 

increasing order of support. 

return(cand); 

} 

Pruning 

Most of the standard algorithm like mafia, depthproject, 

genmax takes all frequent items as candidates and MFIs are 

found from these candidates. To reduce the search space of 

the MFI tree the number of candidates passed to the algorithm 

is to be reduced. We propose a pruning technique to achieve 

the same. Once FIs are generated, they are reordered with 

respect to its support in ascending order and this technique is 

introduced by Roberto Bayardo in MaxMiner algorithm for 

mining maximal frequent itemsets. Once frequent items are 

generated, the candidates of each frequent item are obtained. 

The Frequent items and Candidates of the frequent items are 

combined to form PMFIs and they are sorted in descending 

order of their size. PMFIs can be directly added to MFI if they 

are frequent and no superset in MFI. Every PMFI is checked 

whether it is MFI or not, if it is MFI then it is not passed to 

the algorithm. So we can find a MFI as early as possible. 

Definition1: PMFIs- The combination of frequent item and 

it’s reordered candidates is called PMFI (Possible maximal 

frequent itemset). For example if A is the frequent item and 

candidates of A are T, W, C then the PMFI is ATWC. 

Definition2: if the PMFI is frequent then it is added to MFI 

directly which in turns reduce the search space of the MFI 

tree.  ATWC (PMFI) is frequent then it can be added to the 

MFI directly. 

Definition3:  PMFIs are not included in the candidate set if it 

becomes MFI.  The PMFI, ATWC is frequent so it is not 

added to the candidate set. If x is an infrequent PMFI then it is 

added to the candidate set. All infrequent PMFIs are 

combined to form a candidate set and it is reordered in 

ascending order with respect to the support and passed to the 

GenerateMFI algorithm to mine the remaining MFIs. 

4. RESUTS  
The testing of the proposed algorithm has been carried out on 

the real dataset (containing long itemsets) Mushroom. The 

number of candidates passed to the algorithm to mine MFIs 

by the SSR algorithm is compared to Genmax algorithm for 

various values of minimum support.  The SSR algorithm has 

been compared with GenMax algorithm and results show that 

the SSR algorithm passes less number of candidate itemsets 

from which MFIs are mined. 

 

Figure 1 illustrates that, the SSR algorithm passes less number 

of candidate itemsets and may have better performance when 

compared to conventional GenMax algorithm. Support is 

taken as x axis and the number of candidate itemsets taken to 

find MFI is taken as y axis. 

 

 

 
Figure 1. Number of Candidate itemsets passed to 

GenerateMFI and GenMax Algorithm from Mushroom 

dataset. 

 

5. CONCLUSION 
In this paper we have introduced a pruning technique for 

search space reduction. The initial candidates for every 

frequent item are generated by finding association among 

frequent items. PMFIs are generated and sorted in descending 

order of their size. PMFIs are added to MFI directly if the 

PMFI is frequent. So that the number of candidates passed to 

the algorithm is relatively reduced. The infrequent PMFIs are 

combined to form a candidate set and it is passed to the 

generateMFI algorithm to mine remaining MFIs. 
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