
International Journal of Computer Applications (0975 – 8887)

Volume 82 – No.9, November 2013

32

A Search Space Reduction Algorithm for Mining

Maximal Frequent Itemset

K.Sumathi

Assistant Professor,
Department of Computer
Applications, K.L.N.C.I.T,

Madurai

S.Kannan, Ph.D

Associate Professor,
Department of Computer

Applications,
MKU, Madurai.

K.Nagarajan

Chief Architect of Business
Intelligence,

Tata Consultancy Services,
Chennai.

ABSTRACT

Abstract -Mining of frequent itemset plays important role in

data mining applications. The algorithms which are used to

generate the frequent patterns must perform efficiently.

Because the overall performance of association rule mining

based on fast discovery of frequent pattern. Many MFI

approaches need to recursively construct many candidates,

they also suffer the problem of a large search space, so that

the performances for the approaches degrade when the

database is massive or the threshold for mining frequent

patterns is low. In this paper, an efficient method for

discovering the maximal frequent itemsets is proposed which

combines a vertical tidset representation of the database with

effective pruning mechanisms for search space reduction. It

works efficiently when the number of itemsets and tidsets are

more. The proposed approach has been compared with

GenMax algorithm for mushroom dataset and the results show

that the proposed algorithm generates less number of

candidate itemsets from which MFIs are obtained. Hence, the

proposed algorithm performs effectively and generates

maximal frequent patterns faster.

Keywords

Search space Reduction, Maximal Frequent Itemsets.

1. INTRODUCTION

Data mining or knowledge discovery in databases is a

collection of exploration techniques based on advanced

analytical methods and tools for handling a large amount of

information. In data mining, association rule mininig is a

popular and well researched method for discovering

interesting relations between items in large transactional

datasets. Association rule generation is usually split up into

two separate steps. In the first step, minimum support is given

by the user to find all frequent itemsets in a dataset. In the

second step, these frequent itemsets and the minimum

confidence constraint are used to generate rules. The support

of an itemset X(sup(X)) is defined as the proportion of

transactions in the data set which contain the itemset. sup(X)=

no. of transactions which contain the itemset X / total no. of

transactions. The confidence of a rule is defined as follows:

conf(x->y)= sup(x∪y)/sup(x). Based on the different measures

of interestingness, strong rules are discovered in datasets.

Based on the perception of strong rules, association rules are

introduced by Agrawal [7] for discovering regularities

between products in large scale transaction data recorded in

retail markets.

The problem of mining frequent itemsets has been a topic of

Intensive research. Efficient algorithms for mining frequent

items are crucial for mining association rules. Mining

Frequent itemsets plays an important role in the field of data

mining. Frequent itemsets are essential for many data mining

problems, such as the discovery of association rules, data

correlations and sequential patterns. The frequent pattern has

several alternative forms including a simple frequent pattern,

a closed pattern and maximal pattern. Frequent pattern is a

pattern that satisfies a minimum support threshold. A pattern

X is a closed pattern if there is no super pattern with the same

support of X. A pattern X is a maximal pattern if there exists

no frequent super pattern of X. once frequent patterns are

mined, it can be mapped into association rules or other kind of

rule based interestingness measures. Most existing work

focuses on mining all frequent item sets (FI). However, since

any subset of a frequent item set also is frequent, it is

sufficient to mine only the set of maximal frequent item sets

(MFI).

The frequent itemset mining problem can be formally stated

as follows: Let I be a set of different items. Each transaction T

in database D is a subset of I. if X is a set of items then X ⊆ I.

An itemset with k items is called a k-itemset. The support of

X, denoted by sup(X), is the number of transactions

containing X. If sup(X) is greater than a user-specified

minimum support, X is called a frequent itemset. An itemset

X is closed frequent itemset if it has no proper superset with

the same support. An itemset X is called a maximal frequent

itemset if it has no proper superset that is frequent. An itemset

X is a maximum length frequent itemset if X contains a

maximum number of items in frequent itemset. Formally, it

can be defined as follows: Let D be a transaction database

over a set of different items I. Given a user-specified

minimum support ε, an itemset X is a maximum length

frequent itemset if sup(X) ≥ ε and for all itemset Y, if sup(Y)

≥ ε then the number of items contained in Y is greater than or

equal to number of items contained in X.

The drawback of mining all frequent itemsets is that if there is

a large frequent itemset with size n then almost all 2n

candidate subsets of the items might be generated. However,

since frequent itemsets are upward closed, it is sufficient to

discover only all maximal frequent itemsets (MFI's). The

database representation is also an important factor in the

efficiency of generating maximal patterns. In horizontal data

format, the data is represented as tid-itemset format, where tid

is the transaction identifier and itemset is the set of items

included in the transaction. In vertical data format, the data is

represented as item-tidset format, where item is the name of

the item and tidset is the set of transaction identifiers

containing the item. The vertical representation allows simple

and efficient support counting.

http://en.wikipedia.org/wiki/%E2%88%AA

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No.9, November 2013

33

2. RELATED WORKS
When the frequent patterns are long, mining all Frequent

Itemsets is infeasible because of the exponential number of

frequent itemsets. Thus algorithms for mining Frequent

Closed Itemsets (FCI) are proposed, because FCI is enough to

generate association rules. However FCI could also be

exponentially large as the FI. However, since any subset of a

frequent set also is frequent, it is sufficient to mine only the

set of maximal frequent itemsets. Given the set of MFI, it is

easy to analyze many interesting properties of the dataset,

such as the longest pattern, the overlap of the MFI, etc. MFI

mining has two advantages over all FI mining. First, MFI

mines small and useful rules, and second a single database

scan can collect all FI, if we have MFI. In this paper we

present a new algorithm to find MFIs quickly by obtaining the

possible Maximal frequent items (PMFIs) from which

candidates are generated. So the number of candidates passed

to the algorithm is relatively less when compared to existing

algorithm. Some of the existing MFI mining algorithm is

described below.

GenMax[2], is a efficient backtrack search based algorithm

for mining maximal frequent itemsets. Genmax used number

of optimizations to prune the search space. It used differential

set propagation to perform fast frequency computation when

the frequent items have more number of candidates and

progressive focusing to perform maximal checking. Genmax

reduce the number of superset checking by using progressive

focusing technique of LMFI-Backtrack. GenMax is efficient

method to mine the exact set of maximal patterns. Genmax

uses vertical tidset format and computes the set of frequent

items by counting the number of tids of each item and and

frequent 2 items by intersecting the item’s tids. Genmax uses

itemset reorderting technique which reduces the search space

of MFI tree.

Mafia is one of the recent methods proposed by Burdick, D.,

M. Calimlim and J. Gehrke,[1] for mining the MFI. The

search strategy of the algorithm integrates a depth-first

traversal of the itemset lattice with effective pruning

mechanisms that significantly improve mining performance.

Mafia implementation for support counting combines a

vertical bitmap representation of the data with an efficient

bitmap compression scheme. Mafia uses vertical bit-vector

data format, and compression and projection of bitmaps to

improve performance. Mafia uses three pruning strategies to

remove non-maximal sets. The first is the look-ahead pruning

which is introduced in MaxMiner. The second is to check if a

new set is subsumed by an existing maximal set. The last

technique checks if t(X) ⊆ t(Y). If so X is considered together

with Y for extension. Mafia mines a superset of the MFI, and

requires a postpruning step to eliminate non-maximal patterns.

Max Miner [6] is another algorithm for finding the maximal

elements. It uses efficient pruning techniques to quickly

narrow the search. Max Miner employs a breadth first

traversal of the search space. It reduces database scanning by

employing a look ahead pruning strategy. For frequency

computation maxminer use a additional technique called

support lower bounding. This algorithm also uses dynamic

reordering technique to reduce the size of the search space.

This process produces small number of frequent extension for

the next level. The item which occurs in the fewest number of

large itemsets should be occurred first and item occurring in

the maximum number of large itemset should be occurred last.

DepthProject[5] finds long itemsets using a depth first search

of a lexicographic tree of itemsets, and uses a counting

method called bucketing based on transaction projections

along its branches. DepthProject uses a horizontal database

layout and use some form of compression when the bitmaps

become sparse. DepthProject also uses the look-ahead pruning

method with item reordering. It returns a superset of the MFI

and would require post-pruning to eliminate non-maximal

patterns.

The Pincer-Search [3] algorithm uses horizontal data format

and hybrid approach to mine Maximal frequent patterns. It

constructs the candidates in a bottom-up and top-down

direction at the same time, maintaining Maximal Frequent

Candidate Patterns. It generates candidates and infrequent

items in bottom up direction and based on the infrequent item

MFCS are splitted into more than one candidate. This can

help in reducing the number of database scans, by eliminating

non-maximal sets early. The MFCS are supersets of the

maximal frequent itemsets. Hash-Based Method HMFS [4]

generates the maximal frequent itemsets in the category of the

combination of bottom-up and top-down search. This method

combines the advantages of both the DHP and the Pincer-

Search algorithms. The HMFS method reduces the number of

database scans when the length of the longest frequent itemset

is relatively long. The HMFS method obtains the infrequent

itemsets with the hash technique from the bottom-up direction

and then can use the filtered itemsets to find the maximal

frequent itemsets in the top-down direction. HMFS uses the

hash technique of the DHP algorithm to filter the infrequent

itemsets in the bottom-up direction and uses a top-down

technique that is similar to the Pincer-Search algorithm to find

the maximal frequent itemsets.

3. PROPOSED WORK
The proposed approach focuses on Mining Maximal Frequent

Itemset. In this paper, a backtracking method and effective

pruning mechanism to reduce the search space is proposed for

generating Maximal frequent patterns. Backtracking method

is first introduced by Karam Gouda and Mohammad Zaki in

GenMax algorithm to generate Maximal Frequent Itemsets.

Backtracking method is used here to generate Maximal

Frequent Itemsets from PMFIs.

There are two main factors to develop an efficient MFI

algorithm. The first is the database representation used to

perform fast frequency computations, and the second is the set

of techniques used to reduce the size of search space. Here,

we are using vertical data format for storing the transactions

in the database to compute the frequency of an itemset

quickly. The vertical representation has the following major

advantages over the horizontal layout: Firstly, computing the

support of itemsets is simpler and faster with the vertical

layout since it involves only the intersections of tidsets.

Secondly, with the vertical layout, there is an automatic

“reduction” of the database before each scanning that only

those itemsets that are relevant to the following scan of the

mining process are accessed from disk.

Most of the Maximal frequent itemset mining algorithm sends

all frequent items as candidate items to the recursive

algorithm to obtain MFIs. The size of the search space

depends on number of candidate items to be sent to the

algorithm. Because N candidate generates 2N nodes at worst

case while constructing the MFI Tree. In this paper Search

Space Reduction (SSR) algorithm is proposed to mine MFIs.

To prune the search space of MFI tree the number of

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No.9, November 2013

34

candidates passed to the algorithm must be reduced. In this

approach PMFIs are generated once frequent item and

candidates of each frequent item are obtained. All candidates

are generated from these PMFIs. So number of candidate

passed to the algorithm is relatively small which in turns

reduce the search space of MFI tree.

Consider our example database which includes five different

items, I = {A, C, D, T, W} and six transactions T= {1, 2, 3,

4, 5, 6}. The vertical data format of the database d is given

below.

Table 1 : Vertical Data format of the transactional

database d.

All Frequent items are extracted and reordered in ascending

order with respect to the support .The support is directly given

by the number of transactions in the tidset of each item. Let us

consider the minimum support to be 3. From the above

structure, all items are frequent. The items A, C, D, T and W

are reordered in ascending order with respect to the support

and these are considered to next level. The Frequent 1 items

are A, D, T, W and C.

In the next level PMFIs are constructed by obtaining

candidate sets for each frequent item. All candidates are

reordered in increasing order of support.

All PMFIs are sorted with respect to their size in descending

order. In database d, the PMFIs are ATWC, DWC, TWC, WC

and C. Each PMFI is checked whether it has no superset in

MFI or not. If PMFI has no superset in MFI then it is checked

whether it is frequent. If it is, then the PMFI is added to MFI

directly.

A PMFI can be added to MFI directly if it has no superset in

MFI and is frequent. This early finding of MFI relatively

reduces the number of candidates passed to the algorithm.

In this example the first PMFI is ATWC which has no

superset in MFI and it is frequent. So it is added to MFI

directly. The next PMFI is DWC which has no superset in

MFI and it is frequent and added to MFI directly. The

subsequent itemsets TWC, WC, and C are having superset in

MFI (ATWC) and are ignored. If DWC is infrequent then it is

sent to the GenerateMFI algorithm to mine MFIs from DWC.

Table 2 : PMFIs of frequent item in database D.

This algorithm also obtain the size of largest PMFI and cutoff

which is sqrt(number of frequent itemsets). If the size of

largest PMFI is less than the cutoff then the infrequent PMFIs

are passed to the GenerateMFI algorithm directly to mine MFI

from PMFI. Because the size of PMFIs will be very small and

instead of form a candidate set, each PMFI is passed to the

algorithm. If the size of largest PMFI is greater than the

cutoff then the infrequent large PMFIs are merged into

candidate sets and it is passed to the algorithm. GenerateMFI

algorithm returns a superset of the MFI and would require

post-pruning to eliminate non-maximal patterns.

SSR Algorithm

1. Generate Frequent 1 items and reorder them in

ascending order of their support.

2. Construct PMFIs by obtaining candidate items

(reorderd in increasing order of support) for each

frequent item.

3. Sort PMFIs with respect to their size in descending

order.

4. MaxsizePMFI=size of Largest PMFI ,

cutoff=sqrt(number of frequent itemsets)

5. For each x ε PMFIs

6. If x has no superset in MFI

a. If size of x is 1 or 2 then add x to MFI

// most of the sparse dataset the candidate

items of frequent item may be 1 or 2;

b. If x is frequent then add x to MFI;

c. Else if (MaxsizePMFI > cutoff)

d. generateMFI(x.freq,x.cand,(x.freq).tid)

e. else

f. candidate=candidate ∪ x

7. reordercandidate;

8. generateMFI(empty,candidate,empty)

generateMFI Algorithm

generateMFI (frequent ,candidate, ftids)

{

For each x ε candidate

If frequent ∪ candidate has superset in

MFI then returns

Nfrequent={}

Nfrequent.add(frequent U x)

If ftids=={}

Ntids=x.tid;

Else

Item Tidset

A T1, T3, T4, T5

C T1,T2,T3,T4,T5,T6

D T2,T4,T5,T6

T T1,T3,T5,T6

W T1,T2,T3,T4,T5

Frequent

Item

Candidate

sets

PMFIs

A C ,T, W ATWC

D W,C DWC

T W,C TWC

W C WC

C - C

http://en.wikipedia.org/wiki/%E2%88%AA
http://en.wikipedia.org/wiki/%E2%88%AA

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No.9, November 2013

35

Ntids=x.tid ∩ ftids

candidate.remove(x)

if candidate is empty && Nfrequent has

no superset in MFI

add Nfrequent to MFI

newcandidate =

generatecandidates(Nfrequent,candidate,Ntids)

If newcandidate is empty

 if Nfrequent has no superset in MFI

 add Nfrequent to MFI

Else

generateMFI (Nfrequent,

newcandidate,Ntids)

}

generatecandidates(frequent,candidate,ftids)

{cand=null;

for each x ε candidate

If(ftids ∩ tid(x) ≥ support)

cand.add(x); // candidates are stored in

increasing order of support.

return(cand);

}

Pruning

Most of the standard algorithm like mafia, depthproject,

genmax takes all frequent items as candidates and MFIs are

found from these candidates. To reduce the search space of

the MFI tree the number of candidates passed to the algorithm

is to be reduced. We propose a pruning technique to achieve

the same. Once FIs are generated, they are reordered with

respect to its support in ascending order and this technique is

introduced by Roberto Bayardo in MaxMiner algorithm for

mining maximal frequent itemsets. Once frequent items are

generated, the candidates of each frequent item are obtained.

The Frequent items and Candidates of the frequent items are

combined to form PMFIs and they are sorted in descending

order of their size. PMFIs can be directly added to MFI if they

are frequent and no superset in MFI. Every PMFI is checked

whether it is MFI or not, if it is MFI then it is not passed to

the algorithm. So we can find a MFI as early as possible.

Definition1: PMFIs- The combination of frequent item and

it’s reordered candidates is called PMFI (Possible maximal

frequent itemset). For example if A is the frequent item and

candidates of A are T, W, C then the PMFI is ATWC.

Definition2: if the PMFI is frequent then it is added to MFI

directly which in turns reduce the search space of the MFI

tree. ATWC (PMFI) is frequent then it can be added to the

MFI directly.

Definition3: PMFIs are not included in the candidate set if it

becomes MFI. The PMFI, ATWC is frequent so it is not

added to the candidate set. If x is an infrequent PMFI then it is

added to the candidate set. All infrequent PMFIs are

combined to form a candidate set and it is reordered in

ascending order with respect to the support and passed to the

GenerateMFI algorithm to mine the remaining MFIs.

4. RESUTS
The testing of the proposed algorithm has been carried out on

the real dataset (containing long itemsets) Mushroom. The

number of candidates passed to the algorithm to mine MFIs

by the SSR algorithm is compared to Genmax algorithm for

various values of minimum support. The SSR algorithm has

been compared with GenMax algorithm and results show that

the SSR algorithm passes less number of candidate itemsets

from which MFIs are mined.

Figure 1 illustrates that, the SSR algorithm passes less number

of candidate itemsets and may have better performance when

compared to conventional GenMax algorithm. Support is

taken as x axis and the number of candidate itemsets taken to

find MFI is taken as y axis.

Figure 1. Number of Candidate itemsets passed to

GenerateMFI and GenMax Algorithm from Mushroom

dataset.

5. CONCLUSION
In this paper we have introduced a pruning technique for

search space reduction. The initial candidates for every

frequent item are generated by finding association among

frequent items. PMFIs are generated and sorted in descending

order of their size. PMFIs are added to MFI directly if the

PMFI is frequent. So that the number of candidates passed to

the algorithm is relatively reduced. The infrequent PMFIs are

combined to form a candidate set and it is passed to the

generateMFI algorithm to mine remaining MFIs.

6. REFERENCES
[1] Burdick, D., M. Calimlim and J. Gehrke, “MAFIA: A

maximal frequent itemset algorithm for transactional

databases”, In International Conference on Data

Engineering, pp: 443 – 452, April 2001, doi =

10.1.1.100.6805

[2] K. Gouda and M.J.Zaki, “Efficiently Mining Maximal

Frequent Itemsets”, in Proc. of the IEEE

[3] D. Lin and Z. M. Kedem, "Pincer-Search: A New

Algorithm for Discovering the Maximum Frequent Set",

In Proceedings of VI Intl. Conference on Extending

Database Technology, 1998.

0

10

20

30

40

50

60

50 45 40 35 30 25 20 15 10

Mushroom Dataset

GenMax

GenerateMFI

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No.9, November 2013

36

[4] Don-Lin Yang, Ching-Ting Pan and Yeh-Ching Chung

An Efficient Hash-Based Method for Discovering the

Maximal Frequent Set

[5] Agrawal, R., Aggarwal, C., and Prasad, V. 2000. Depth

first generation of long patterns. In 7th Int’l Conference

on Knowledge Discovery and Data Mining, pp. 108–118.

[6] Roberto Bayardo, “Efficiently mining long patterns from

databases”, in ACM SIGMOD Conference 1998.

[7] R. Agrawal, T. Imielienski and A. Swami, “Mining

association rules between sets of items in largedatabases.

In P. Bunemann and S. Jajodia, editors, Proceedings of

the 1993 ACM SIGMOD Conference on Management of

Data, Pages 207-216, Newyork, 1993, ACM Press.

[8] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.

I. Verkamo, “Fast discovery of association rules”,

Advances in Knowledge Discovery and Data Mining,

pages 307-328, MIT Press, 1996.

[9] Tianming Hu,Sam Yuan Sung b, Hui Xiongc, Qian Fud ,

Discovery of maximum length frequent itemsets, Journal

of Information Sciences 4 February 2007,

http://datamining.rutgers.edu/publication/ins2008.pdf

[10] Jiawei Han, Hong Cheng, Dong Xin , Xifeng Yan,

Frequent pattern mining: current status and future

Directions,

http://www.cs.ucsb.edu/~xyan/papers/dmkd07_frequentp

attern.pdf

IJCATM : www.ijcaonline.org

http://datamining.rutgers.edu/publication/ins2008.pdf
http://www.cs.ucsb.edu/~xyan/papers/dmkd07_frequentpattern.pdf
http://www.cs.ucsb.edu/~xyan/papers/dmkd07_frequentpattern.pdf

