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ABSTRACT 
Classification is a data analysis technique. The decision tree is 

one of the most popular classification algorithms in current 

use for data mining because it is more interpretable. Training 

data sets are not error free due to measurement errors in the 

data collection process.  Traditional decision tree classifiers 

are constructed without considering any errors in the values of 

attributes of the training data sets. We extend such classifiers 

to construct effective decision trees with error corrected 

training data sets. It is possible to build decision tree 

classifiers with higher accuracies especially when the 

measurement errors in the values of the attributes of the 

training data sets are corrected appropriately before using 

those training data sets in decision tree learning. Error 

corrected data sets can be used not only in decision tree 

learning but also in many data mining techniques. 

In general, values of attributes in training datasets are always 

inherently associated with errors. Data errors can be properly 

handled by using appropriate error models or error correction 

techniques. Also, sometimes for preserving data privacy, 

attribute values in the original training data sets are modified 

so that modified data sets contain data values with some 

errors. Later on, these modified data sets are reconstructed 

before applying those tuples to data mining technique. 

This paper introduces an effective decision tree (EDT) 

construction algorithm that uses a new error adjusting 

technique (NEAT) in constructing more accurate decision tree 

classifiers. The idea behind this new error adjusting technique 

is that ‘many data sets with numerical attributes containing 

point data values have been collected via repeated 

measurements‘ and the process of repeated measurements is 

the common source of data errors in the training data sets. 

EDT describes an approach to correct the errors in the values 

of attributes of the training data sets and then error corrected 

attribute values of the data sets are used in decision tree 

learning.  
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1.  INTRODUCTION 
Data mining has many applications in research, science, 

engineering and business. Classification is an important 

technique in machine learning and data mining. Decision tree 

is the most commonly used data classification technique [1]. 

When decision trees are used for classification they are called 

classification trees [2].  

Traditional decision trees are constructed by using training 

data sets as it is without considering inherent errors present in 

the training data sets. But in real life many training data sets 

contain errors in the values of the attributes of the training 

datasets. We introduce an effective decision tree (EDT) 

construction algorithm by using error corrected training data 

sets. In contrast to the traditional decision tree (TDT), our 

approach, effective decision tree (EDT) construction, 

produces more accurate decision tree classifiers by 

considering error adjusting technique. No data set is available 

without error. That is, there are no error free data sets 

particularly when the data sets containing numerical 

attributes. 

EDT algorithm uses error correction or error adjustment 

technique based on the assumption that data sets are not 

always error free and it is likely that some sort of 

measurement errors are present in the collection process of 

data sets. Errors are inevitable in all training data sets 

particularly in the training data sets with numerical attributes 

containing point data. 

2.  PROBLEM STATEMENT 
Traditional decision tree (TDT) classifiers are constructed by 

using training data sets directly without considering inherent 

data errors associated with values of attributes in the training 

data sets. Hence, traditional decision tree (TDT) classifiers 

produce incorrect or less accurate data mining results. As 

errors are associated with training data sets, it is important to 

develop effective, efficient and more accurate data mining 

techniques by taking error decreased attribute values of the 

training data sets. 

Also, for preserving data privacy sometimes training data sets 

are modified or injected certain error values into the values of 

attributes in the training data sets in a systematic or controlled 

way. So, in such cases data sets contain errors with modified 

attribute values. Such modified data sets must be 

reconstructed by finding and removing errors in the modified 

training data sets before applying them in any data mining 

technique. So, usually errors are present in training data sets. 

In traditional decision tree construction each tuple ti is 

associated with a feature vector, which is represented as  

                                         
 

where ‘i’ is the tuple number and ‘k’ is the number of 

attributes in the training data set. Decision tree is constructed 

using training data set and then the resulting classifier is tested 

using test data set. To find the class label of an unseen (new) 

test tuple                               it is required to 

traverse the decision tree from root node to a specific leaf 

node. 

The present study proposes an algorithm to improve 

accuracy and performance of the traditional decision tree 

(TDT) algorithm. This new algorithm is called effective 

decision tree (EDT) construction algorithm. EDT assumes 

various percentages of errors in the attribute values and 

modifies values of attributes in the training data sets 

accordingly and then decision tree classifier is constructed 

using error corrected training data sets. 
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3.  EXISTING ALGORITHM 
3.1  Traditional Decision Tree (TDT) Algorithm 

Description 
The traditional decision tree (TDT) algorithm constructs a 

decision tree splitting each node into left and right nodes. 

Initially, the root node contains all the training tuples.  The 

process of partitioning the tuples in a node into two sets based 

on the value of an attribute and storing the resulting tuples in 

its left and right nodes is referred to as splitting. Whenever 

further split of a node is not required then it becomes a leaf 

node referred to as an external node. All other nodes except 

root node are referred as internal nodes. The splitting process 

at each internal node is carried out recursively until no further 

split is required.  Further splitting of an internal node is 

stopped if one of the stopping criteria given hereunder is met. 

 

1. All the tuples in an internal node have the same 

class label. 

2. Splitting does not result nonempty left and right 

nodes.  

 

In the first case, the probability for that class label is set to 1 

whereas in the second case, the internal node becomes 

external node. The empirical probabilities are computed for all 

the class labels of that node. The best split pair comprising an 

attribute and its value is that associated with minimum 

entropy.  

Entropy is a metric or function that is used to find the degree 

of dispersion of training data tuples in a node. In decision tree 

construction the goodness of a split is quantified by an 

impurity measure. One possible function to measure impurity 

is entropy. Entropy is an information based measure and it is 

based only on the proportions of tuples of each class in the 

training data set. Entropy is used for finding how much 

information content is there in a given data. 

Entropy is taken as dispersion measure because it is 

predominantly used for constructing decision trees. In most of 

the cases, entropy finds the best split and balanced node sizes 

after split in such a way that both left and right nodes are as 

much pure as possible. 

Accuracy and execution time of TDT algorithm for 9 data sets 

are shown in Table 5.2  

    Entropy is calculated using the formula    

                        

 

   

 

    Where pi = number of tuples belongs to the ith class 

         
   

   
   

  
 

   

     
  
 
  

     

 

       

 
   

   
   

  
 

   

     
  
 
  

 
   

   
   

  
 

   

     
  
 
                               

        
   

   
              

   

   
              

Where    

Aj  is the splitting attribute. 

L is the total number of tuples to the left side of the 

split point z. 

R is the total number of tuples to the right side of 

the split point z. 

 
  

 
is the number of tuples belongs to the class label c 

to the left side of the split point z. 

             
  

 
is the number of tuples belongs to the class label c 

to the right side of the split point z. 

S is the total number of tuples in the node. 

 

3.2  Pseudo code for Traditional Decision 

Tree (TDT) Algorithm  
TRADITIONAL_DECISION_TREE (T) 

1. If all the training tuples in the node T have the same 

class label then 

2. set            

3. return(T) 

4. If tuples in the node T have more than one class 

then 

5. Find_Best_Split(T) 

6. For i ← 1 to  datasize[T]  do 

7. If split_atribute_value[ti] <= split_point[T]  then 

8. Add  tuple  ti  to  left[T] 

9. Else  

10. Add tuple  ti  to  right[T] 

11. If left[T] = NIL  or  right[T] = NIL then 

12. Create empirical probability distribution of the node 

T  

13. return(T) 

14. If left[T] != NIL  and  right[T] != NIL then 

15. TRADITIONAL_DECISION_TREE( left[T] ) 

16. TRADITIONAL_DECISION_TREE( right[T] ) 

17. return(T) 

 

4.  PROPOSED ALGORITHM 

4.1  Proposed Effective Decision Tree 

(EDT) Algorithm Description 
The proposed algorithm called effective decision tree (EDT) 

algorithm constructs a decision tree classifier splitting each 

node into left and right nodes. Initially, the root node contains 

all the training data tuples with numerical attributes 

containing point data. The process of partitioning the tuples in 

a node into two sets based on the best split value of an 

attribute and storing the resulting tuples in its left and right 

nodes is referred to as splitting. Whenever further split of a 

node is not required then it becomes a leaf node referred to as 

an external node. All other nodes except root node are referred 

as internal nodes. The splitting process at each internal node is 

carried out recursively until no further split is required.  

Further splitting of an internal node is stopped if one of the 

stop stopping criteria given hereunder is met. 

1. All the tuples in an internal node have the same 

class label. 

2. Splitting does not result nonempty left and right 

nodes.  

 

In the first case, the probability for that class label is set to 1.0 

whereas in the second case, the internal becomes external (or 

leaf) node. The empirical probabilities are computed for all 

the class labels of that node. The best split pair comprising an 

attribute and its value is that associated with minimum 

entropy.  

Entropy is computed for all values of all attributes of all the 

training data tuples in the current node. Value of an attribute 

is modified using new error adjusting technique (NEAT) 
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before computing entropy value. That is, entropy values are 

computed for modified values of attributes. 

Entropy is a metric or function that is used to find the degree 

of dispersion of training data tuples in a node. In decision tree 

construction the goodness of a split is quantified by an 

impurity measure [2]. One possible function to measure 

impurity is entropy. Entropy is an information based measure 

and it is based only on the proportions of tuples of each class 

in the training data set. Entropy is used for finding how much 

information content is there in a given data. 

Entropy is taken as dispersion measure because it is 

predominantly used for constructing decision trees. In most of 

the cases, entropy finds the best split and balanced node sizes 

after split in such a way that both left and right nodes are as 

much pure as possible. 

For the proposed effective decision tree (EDT) algorithm 

accuracy and execution time for 9 data sets are shown in 

Table 5.5 and execution time comparisons for 9 datasets are 

shown Figure 5.3. Also execution time and accuracy 

comparisons of TDT and EDT are shown in Table 6.6 and 

charted in Figure 5.3 and Figure 5.4 respectively.      

Classification accuracy improvements for 9 data sets by 

considering error adjustment technique in EDT are shown in 

Table 5.5 for different error values.        

Entropy is calculated using the formula    
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Where    

Aj  is the splitting attribute. 

L is the total number of tuples to the left side of the 

split point z. 

R is the total number of tuples to the right side of 

the split point z. 

            
  

 
is the number of tuples belongs to the class label c to 

the left side of the split point z. 

 
  

 
is the number of tuples belongs to the class label c 

to the right side of the split point z. 

 S is the total number of tuples in the node. 

 Proposed effective decision tree (EDT) algorithm uses a 

special new error adjusting technique (NEAT) in constructing 

a decision tree classifier. The idea behind this new error 

adjusting technique is that ‘many data sets with numerical 

attributes containing point data have been collected via 

repeated measurements’ and the process of repeated 

measurements is the common source of data errors in the 

training data sets. No data set is available without error. That 

is, there are no error free data sets particularly the data sets 

containing numerical attributes. EDT algorithm uses error 

correction or error adjustment technique based on the 

assumption that data sets are not always error free and it is 

likely that some sort of measurement errors are present in the 

collection process of data sets. Errors are inevitable in all 

training data sets particularly in the training data sets with 

numerical attributes containing point data. 

EDT gives more accurate results than the TDT method for 

constructing the decision tree classifier with data sets 

containing numerical attributes with point data. Error 

adjusting technique is applied for training data sets with 

numerical attributes containing point data for different error 

values and then decision tree classifiers are constructed. EDT 

is similar to the TDT algorithm in all respects except that EDT 

additionally uses error adjusting technique. Various error 

values are considered during effective decision tree (EDT) 

classifier construction. Entropy values are computed for each 

attribute value after modifying the attribute value using a 

specified error value. 

Various error correction values are: 

                                                     
                

Before finding entropy value, attribute value is modified as 

follows: 

value = value + 0.1;   or    value = value – 0.1;     or 

value  = value + error;  or  value = value – error ;    or value = 

value + value * 0.1; or  value = value – value * 0.1;  or value 

= value   +  value * 0.1 * 0.1; or    value = value   – value * 

0.1 * 0.1;     

 

4.2  Pseudo code for Effective Decision Tree 

(EDT) Algorithm 
EFFECTIVE_DECISION_TREE(T) 

1. If all the training tuples in the node T have the same 

class label then 

2. set            

3. return(T) 

4. If tuples in the node T have more than one class 

label then 

5. Apply error adjusting technique to each value of 

each attribute  and find entropy 

6. Find_Best_Split(T) 

7. For i ← 1 to datasize[T]  do 

8. If split_atribute_value[ti] <= split_point[T] then 

9. Add  tuple  ti  to left[T] 

10. Else  

11. Add tuple ti to right[T] 

12. If left[T] = NIL  or right[T] = NIL then 

13. Create empirical probability distribution of the node 

T  

14. return(T) 

15. If left[T] != NIL and right[T] != NIL then 

16. Effective_Decision_Tree ( left[T] ) 

17. Effective_Decision_Tree( right[T] ) 

18. return(T) 

 

5.  EXPERIMENTS ON EFFICIENCY 
A simulation model is developed for evaluating the 

performance of two algorithms: traditional decision tree 

(TDT) and effective decision tree (EDT) experimentally. The 

data sets shown in Table 5.1 from University of California 

(UCI) Machine Learning Repository are employed for 

evaluating the performance of the above said algorithms. 
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S 

No. 

Data  Set Training 

Tuples 

No.of 

Attributes 

No of 

Classes 

Test  

Tuples 

1 Iris 150 4 3 10-

fold 2 Glass 214 9 6 10-

fold 3 IonoSphere 351 32 2 10-

fold 4 BreastCancer 569 30 2 10-

fold 5 Vehicle 846 18 4 10-

fold 6 Segment 2310 14 7 10-

fold 7 Satellite 4435 36 6 2000 

8 PageBlock 5473 10 5 10-

fold 10 Pen Digits 7494 16 10 3498 

Table 5.1  Data Sets from the UCI Machine Learning 

Repository 

 

10-fold cross-validation technique is used for test tuples for all 

training data sets with numerical attributes except Satellite 

and PenDigits training data sets. For Satellite and PenDigits 

training data sets with numerical attributes a separate test data 

set is used for testing.  

 

The simulation model is implemented in Java 1.6 on a 

Personal Computer with 3.22 GHz Pentium Dual Core 

processor (CPU), and 2 GB of main memory (RAM). The 

performance measures, accuracy and execution time, for the 

above said algorithms are presented in Table 5.2 to Table 5.13 

and Figure 5.1 to Figure 5.4. 

 

 
Table 5.2  Accuracy and Execution Time of TDT 

Algorithm for 9 Data sets 

 

 
Figure 5.1   Execution Times for TDT Algorithm for 9 

Data Sets. 

 
Table 5.3  Accuracy and Execution Time of EDT 

Algorithm for 9 Data sets     

                       

 
Figure 5.2  Execution Times for EDT Algorithm for 9 

Data Sets. 

 
Table 5.4 Comparison of Accuracy and Execution Time 

for TDT and EDT Algorithms for 9 Data Sets 

 

 
Figure 5.3  Comparisons of Execution Times for TDT and 

EDT Algorithms 
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Figure 5.4  Comparisons of Accuracies for TDT and EDT 

Algorithms 

 

 
 

Table 5.5  Accuracy of EDT Algorithm for Various Error 

Values 

Proposed Effective Decision Tree (EDT) Algorithm with 

different error values is compared with Traditional Decision 

Tree (TDT) algorithm. EDT accuracies are calculated and 

shown in the Table 5.5. Bold values show highest 

classification accuracies when EDT is employed by using new 

error adjusting technique (NEAT). For Iris data set maximum 

error value is 0.01 and maximum classification accuracy is 98 

when maximum 0.01 is removed from training data set.  

 
 

Table 5.6  Accuracy Details of EDT Algorithm for Iris 

Data Set for Different Error Values 

 

 
Table 5.7  Accuracy Details of EDT Algorithm for Glass 

Data Set for Different Error Values 

 
Table 5.8  Accuracy Details of EDT Algorithm for 

IonoSphere Data Set for Different Error Values 

 
Table 5.9  Accuracy Details of EDT Algorithm for 

BreastCancer Data Set for Different ErrorValues 

 
 

Table 5.10  Accuracy Details of EDT Algorithm for 

Vehicle Data Set for Different Error Values 
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Table 5.11  Accuracy Details of EDT Algorithm for 

Segment Data Set for Different ErrorValues 

 

 
 

Table 5.12  Accuracy Details of EDT Algorithm for 

Satellite Data Set for Different ErrorValues 

 

 
 

Table 5.13  Accuracy Details of EDT Algorithm for 

PageBlock Data Set for Different ErrorValues 

 

 
 

Table 5.14  Accuracy Details of EDT Algorithm 
 

for PenDigits Data Set for Different ErrorValues 

For all 9 training data sets estimated errors are shown in table 

5.15 

 

S. 

No 

Data  

Set  Name 

Error value  

1 
Iris 

0.01 

2 
Glass 

0.0001 

3 
IonoSphere 

0.001 

4 
BreastCancer 

0.0001 

5 
Vehicle 

0.001 

6 
Segment 

0.00000001 

7 
Satellite 

0.001 

8 
PageBlock 

0.00001 

9 
PenDigits 

0.01 

 

Table 5.15  Estimated error values in the training data sets 

 

6.  CONCLUSIONS 

6.1  Contributions 
The performance of traditional decision tree (TDT) algorithm 

is verified experimentally. A new algorithm, Effective 

Decision Tree (EDT) is proposed and compared with 

traditional decision tree (TDT). It is found that the 

classification accuracy of EDT algorithm is better than TDT 

algorithm with almost same computational effort and same 

execution times. 

6.2  Limitations 
Construction of decision tree classifiers for large training data 

sets is less efficient and less scalable. Some privacy 

preserving techniques cause reduced utility of training data 

sets. 

6.3  Suggestions for future work  
Scalable and efficient techniques are needed for constructing 

decision tree classifiers. Special privacy preserving techniques 

are needed to maintain training data sets without loss of utility 

and accuracy when privacy preserving techniques are applied 

to training data sets. Also effective, efficient, and simple 

techniques are needed to reconstruct the modified training 

datasets before applying data mining techniques. 
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