
International Journal of Computer Applications (0975 – 8887)

Volume 82 – No.9, November 2013

1

Effective Decision Tree Learning

C.Sudarsana Reddy

Department of Computer Science
and Engineering,

S.V.University College of
Engineering, Tirupati.

V.Vasu, Ph.D
Department of Mathematics,

S.V.University, Tirupati

B.Kumara Swamy Achari
Department of Mathematics,

S.V.University, Tirupati

ABSTRACT
Classification is a data analysis technique. The decision tree is

one of the most popular classification algorithms in current

use for data mining because it is more interpretable. Training

data sets are not error free due to measurement errors in the

data collection process. Traditional decision tree classifiers

are constructed without considering any errors in the values of

attributes of the training data sets. We extend such classifiers

to construct effective decision trees with error corrected

training data sets. It is possible to build decision tree

classifiers with higher accuracies especially when the

measurement errors in the values of the attributes of the

training data sets are corrected appropriately before using

those training data sets in decision tree learning. Error

corrected data sets can be used not only in decision tree

learning but also in many data mining techniques.

In general, values of attributes in training datasets are always

inherently associated with errors. Data errors can be properly

handled by using appropriate error models or error correction

techniques. Also, sometimes for preserving data privacy,

attribute values in the original training data sets are modified

so that modified data sets contain data values with some

errors. Later on, these modified data sets are reconstructed

before applying those tuples to data mining technique.

This paper introduces an effective decision tree (EDT)

construction algorithm that uses a new error adjusting

technique (NEAT) in constructing more accurate decision tree

classifiers. The idea behind this new error adjusting technique

is that ‘many data sets with numerical attributes containing

point data values have been collected via repeated

measurements‘ and the process of repeated measurements is

the common source of data errors in the training data sets.

EDT describes an approach to correct the errors in the values

of attributes of the training data sets and then error corrected

attribute values of the data sets are used in decision tree

learning.

Keywords: Decision tree, Classification, Data mining

1. INTRODUCTION
Data mining has many applications in research, science,

engineering and business. Classification is an important

technique in machine learning and data mining. Decision tree

is the most commonly used data classification technique [1].

When decision trees are used for classification they are called

classification trees [2].

Traditional decision trees are constructed by using training

data sets as it is without considering inherent errors present in

the training data sets. But in real life many training data sets

contain errors in the values of the attributes of the training

datasets. We introduce an effective decision tree (EDT)

construction algorithm by using error corrected training data

sets. In contrast to the traditional decision tree (TDT), our

approach, effective decision tree (EDT) construction,

produces more accurate decision tree classifiers by

considering error adjusting technique. No data set is available

without error. That is, there are no error free data sets

particularly when the data sets containing numerical

attributes.

EDT algorithm uses error correction or error adjustment

technique based on the assumption that data sets are not

always error free and it is likely that some sort of

measurement errors are present in the collection process of

data sets. Errors are inevitable in all training data sets

particularly in the training data sets with numerical attributes

containing point data.

2. PROBLEM STATEMENT
Traditional decision tree (TDT) classifiers are constructed by

using training data sets directly without considering inherent

data errors associated with values of attributes in the training

data sets. Hence, traditional decision tree (TDT) classifiers

produce incorrect or less accurate data mining results. As

errors are associated with training data sets, it is important to

develop effective, efficient and more accurate data mining

techniques by taking error decreased attribute values of the

training data sets.

Also, for preserving data privacy sometimes training data sets

are modified or injected certain error values into the values of

attributes in the training data sets in a systematic or controlled

way. So, in such cases data sets contain errors with modified

attribute values. Such modified data sets must be

reconstructed by finding and removing errors in the modified

training data sets before applying them in any data mining

technique. So, usually errors are present in training data sets.

In traditional decision tree construction each tuple ti is

associated with a feature vector, which is represented as

where ‘i’ is the tuple number and ‘k’ is the number of

attributes in the training data set. Decision tree is constructed

using training data set and then the resulting classifier is tested

using test data set. To find the class label of an unseen (new)

test tuple it is required to

traverse the decision tree from root node to a specific leaf

node.

The present study proposes an algorithm to improve

accuracy and performance of the traditional decision tree

(TDT) algorithm. This new algorithm is called effective

decision tree (EDT) construction algorithm. EDT assumes

various percentages of errors in the attribute values and

modifies values of attributes in the training data sets

accordingly and then decision tree classifier is constructed

using error corrected training data sets.

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No.9, November 2013

2

3. EXISTING ALGORITHM
3.1 Traditional Decision Tree (TDT) Algorithm

Description
The traditional decision tree (TDT) algorithm constructs a

decision tree splitting each node into left and right nodes.

Initially, the root node contains all the training tuples. The

process of partitioning the tuples in a node into two sets based

on the value of an attribute and storing the resulting tuples in

its left and right nodes is referred to as splitting. Whenever

further split of a node is not required then it becomes a leaf

node referred to as an external node. All other nodes except

root node are referred as internal nodes. The splitting process

at each internal node is carried out recursively until no further

split is required. Further splitting of an internal node is

stopped if one of the stopping criteria given hereunder is met.

1. All the tuples in an internal node have the same

class label.

2. Splitting does not result nonempty left and right

nodes.

In the first case, the probability for that class label is set to 1

whereas in the second case, the internal node becomes

external node. The empirical probabilities are computed for all

the class labels of that node. The best split pair comprising an

attribute and its value is that associated with minimum

entropy.

Entropy is a metric or function that is used to find the degree

of dispersion of training data tuples in a node. In decision tree

construction the goodness of a split is quantified by an

impurity measure. One possible function to measure impurity

is entropy. Entropy is an information based measure and it is

based only on the proportions of tuples of each class in the

training data set. Entropy is used for finding how much

information content is there in a given data.

Entropy is taken as dispersion measure because it is

predominantly used for constructing decision trees. In most of

the cases, entropy finds the best split and balanced node sizes

after split in such a way that both left and right nodes are as

much pure as possible.

Accuracy and execution time of TDT algorithm for 9 data sets

are shown in Table 5.2

 Entropy is calculated using the formula

 Where pi = number of tuples belongs to the ith class

Where

Aj is the splitting attribute.

L is the total number of tuples to the left side of the

split point z.

R is the total number of tuples to the right side of

the split point z.

is the number of tuples belongs to the class label c

to the left side of the split point z.

is the number of tuples belongs to the class label c

to the right side of the split point z.

S is the total number of tuples in the node.

3.2 Pseudo code for Traditional Decision

Tree (TDT) Algorithm
TRADITIONAL_DECISION_TREE (T)

1. If all the training tuples in the node T have the same

class label then

2. set

3. return(T)

4. If tuples in the node T have more than one class

then

5. Find_Best_Split(T)

6. For i ← 1 to datasize[T] do

7. If split_atribute_value[ti] <= split_point[T] then

8. Add tuple ti to left[T]

9. Else

10. Add tuple ti to right[T]

11. If left[T] = NIL or right[T] = NIL then

12. Create empirical probability distribution of the node

T

13. return(T)

14. If left[T] != NIL and right[T] != NIL then

15. TRADITIONAL_DECISION_TREE(left[T])

16. TRADITIONAL_DECISION_TREE(right[T])

17. return(T)

4. PROPOSED ALGORITHM

4.1 Proposed Effective Decision Tree

(EDT) Algorithm Description
The proposed algorithm called effective decision tree (EDT)

algorithm constructs a decision tree classifier splitting each

node into left and right nodes. Initially, the root node contains

all the training data tuples with numerical attributes

containing point data. The process of partitioning the tuples in

a node into two sets based on the best split value of an

attribute and storing the resulting tuples in its left and right

nodes is referred to as splitting. Whenever further split of a

node is not required then it becomes a leaf node referred to as

an external node. All other nodes except root node are referred

as internal nodes. The splitting process at each internal node is

carried out recursively until no further split is required.

Further splitting of an internal node is stopped if one of the

stop stopping criteria given hereunder is met.

1. All the tuples in an internal node have the same

class label.

2. Splitting does not result nonempty left and right

nodes.

In the first case, the probability for that class label is set to 1.0

whereas in the second case, the internal becomes external (or

leaf) node. The empirical probabilities are computed for all

the class labels of that node. The best split pair comprising an

attribute and its value is that associated with minimum

entropy.

Entropy is computed for all values of all attributes of all the

training data tuples in the current node. Value of an attribute

is modified using new error adjusting technique (NEAT)

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No.9, November 2013

3

before computing entropy value. That is, entropy values are

computed for modified values of attributes.

Entropy is a metric or function that is used to find the degree

of dispersion of training data tuples in a node. In decision tree

construction the goodness of a split is quantified by an

impurity measure [2]. One possible function to measure

impurity is entropy. Entropy is an information based measure

and it is based only on the proportions of tuples of each class

in the training data set. Entropy is used for finding how much

information content is there in a given data.

Entropy is taken as dispersion measure because it is

predominantly used for constructing decision trees. In most of

the cases, entropy finds the best split and balanced node sizes

after split in such a way that both left and right nodes are as

much pure as possible.

For the proposed effective decision tree (EDT) algorithm

accuracy and execution time for 9 data sets are shown in

Table 5.5 and execution time comparisons for 9 datasets are

shown Figure 5.3. Also execution time and accuracy

comparisons of TDT and EDT are shown in Table 6.6 and

charted in Figure 5.3 and Figure 5.4 respectively.

Classification accuracy improvements for 9 data sets by

considering error adjustment technique in EDT are shown in

Table 5.5 for different error values.

Entropy is calculated using the formula

 Where pi = number of tuples belongs to the ith class

Where

Aj is the splitting attribute.

L is the total number of tuples to the left side of the

split point z.

R is the total number of tuples to the right side of

the split point z.

is the number of tuples belongs to the class label c to

the left side of the split point z.

is the number of tuples belongs to the class label c

to the right side of the split point z.

 S is the total number of tuples in the node.

 Proposed effective decision tree (EDT) algorithm uses a

special new error adjusting technique (NEAT) in constructing

a decision tree classifier. The idea behind this new error

adjusting technique is that ‘many data sets with numerical

attributes containing point data have been collected via

repeated measurements’ and the process of repeated

measurements is the common source of data errors in the

training data sets. No data set is available without error. That

is, there are no error free data sets particularly the data sets

containing numerical attributes. EDT algorithm uses error

correction or error adjustment technique based on the

assumption that data sets are not always error free and it is

likely that some sort of measurement errors are present in the

collection process of data sets. Errors are inevitable in all

training data sets particularly in the training data sets with

numerical attributes containing point data.

EDT gives more accurate results than the TDT method for

constructing the decision tree classifier with data sets

containing numerical attributes with point data. Error

adjusting technique is applied for training data sets with

numerical attributes containing point data for different error

values and then decision tree classifiers are constructed. EDT

is similar to the TDT algorithm in all respects except that EDT

additionally uses error adjusting technique. Various error

values are considered during effective decision tree (EDT)

classifier construction. Entropy values are computed for each

attribute value after modifying the attribute value using a

specified error value.

Various error correction values are:

Before finding entropy value, attribute value is modified as

follows:

value = value + 0.1; or value = value – 0.1; or

value = value + error; or value = value – error ; or value =

value + value * 0.1; or value = value – value * 0.1; or value

= value + value * 0.1 * 0.1; or value = value – value *

0.1 * 0.1;

4.2 Pseudo code for Effective Decision Tree

(EDT) Algorithm
EFFECTIVE_DECISION_TREE(T)

1. If all the training tuples in the node T have the same

class label then

2. set

3. return(T)

4. If tuples in the node T have more than one class

label then

5. Apply error adjusting technique to each value of

each attribute and find entropy

6. Find_Best_Split(T)

7. For i ← 1 to datasize[T] do

8. If split_atribute_value[ti] <= split_point[T] then

9. Add tuple ti to left[T]

10. Else

11. Add tuple ti to right[T]

12. If left[T] = NIL or right[T] = NIL then

13. Create empirical probability distribution of the node

T

14. return(T)

15. If left[T] != NIL and right[T] != NIL then

16. Effective_Decision_Tree (left[T])

17. Effective_Decision_Tree(right[T])

18. return(T)

5. EXPERIMENTS ON EFFICIENCY
A simulation model is developed for evaluating the

performance of two algorithms: traditional decision tree

(TDT) and effective decision tree (EDT) experimentally. The

data sets shown in Table 5.1 from University of California

(UCI) Machine Learning Repository are employed for

evaluating the performance of the above said algorithms.

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No.9, November 2013

4

S

No.

Data Set Training

Tuples

No.of

Attributes

No of

Classes

Test

Tuples

1 Iris 150 4 3 10-

fold 2 Glass 214 9 6 10-

fold 3 IonoSphere 351 32 2 10-

fold 4 BreastCancer 569 30 2 10-

fold 5 Vehicle 846 18 4 10-

fold 6 Segment 2310 14 7 10-

fold 7 Satellite 4435 36 6 2000

8 PageBlock 5473 10 5 10-

fold 10 Pen Digits 7494 16 10 3498

Table 5.1 Data Sets from the UCI Machine Learning

Repository

10-fold cross-validation technique is used for test tuples for all

training data sets with numerical attributes except Satellite

and PenDigits training data sets. For Satellite and PenDigits

training data sets with numerical attributes a separate test data

set is used for testing.

The simulation model is implemented in Java 1.6 on a

Personal Computer with 3.22 GHz Pentium Dual Core

processor (CPU), and 2 GB of main memory (RAM). The

performance measures, accuracy and execution time, for the

above said algorithms are presented in Table 5.2 to Table 5.13

and Figure 5.1 to Figure 5.4.

Table 5.2 Accuracy and Execution Time of TDT

Algorithm for 9 Data sets

Figure 5.1 Execution Times for TDT Algorithm for 9

Data Sets.

Table 5.3 Accuracy and Execution Time of EDT

Algorithm for 9 Data sets

Figure 5.2 Execution Times for EDT Algorithm for 9

Data Sets.

Table 5.4 Comparison of Accuracy and Execution Time

for TDT and EDT Algorithms for 9 Data Sets

Figure 5.3 Comparisons of Execution Times for TDT and

EDT Algorithms

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No.9, November 2013

5

Figure 5.4 Comparisons of Accuracies for TDT and EDT

Algorithms

Table 5.5 Accuracy of EDT Algorithm for Various Error

Values

Proposed Effective Decision Tree (EDT) Algorithm with

different error values is compared with Traditional Decision

Tree (TDT) algorithm. EDT accuracies are calculated and

shown in the Table 5.5. Bold values show highest

classification accuracies when EDT is employed by using new

error adjusting technique (NEAT). For Iris data set maximum

error value is 0.01 and maximum classification accuracy is 98

when maximum 0.01 is removed from training data set.

Table 5.6 Accuracy Details of EDT Algorithm for Iris

Data Set for Different Error Values

Table 5.7 Accuracy Details of EDT Algorithm for Glass

Data Set for Different Error Values

Table 5.8 Accuracy Details of EDT Algorithm for

IonoSphere Data Set for Different Error Values

Table 5.9 Accuracy Details of EDT Algorithm for

BreastCancer Data Set for Different ErrorValues

Table 5.10 Accuracy Details of EDT Algorithm for

Vehicle Data Set for Different Error Values

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No.9, November 2013

6

Table 5.11 Accuracy Details of EDT Algorithm for

Segment Data Set for Different ErrorValues

Table 5.12 Accuracy Details of EDT Algorithm for

Satellite Data Set for Different ErrorValues

Table 5.13 Accuracy Details of EDT Algorithm for

PageBlock Data Set for Different ErrorValues

Table 5.14 Accuracy Details of EDT Algorithm

for PenDigits Data Set for Different ErrorValues

For all 9 training data sets estimated errors are shown in table

5.15

S.

No

Data

Set Name

Error value

1
Iris

0.01

2
Glass

0.0001

3
IonoSphere

0.001

4
BreastCancer

0.0001

5
Vehicle

0.001

6
Segment

0.00000001

7
Satellite

0.001

8
PageBlock

0.00001

9
PenDigits

0.01

Table 5.15 Estimated error values in the training data sets

6. CONCLUSIONS

6.1 Contributions
The performance of traditional decision tree (TDT) algorithm

is verified experimentally. A new algorithm, Effective

Decision Tree (EDT) is proposed and compared with

traditional decision tree (TDT). It is found that the

classification accuracy of EDT algorithm is better than TDT

algorithm with almost same computational effort and same

execution times.

6.2 Limitations
Construction of decision tree classifiers for large training data

sets is less efficient and less scalable. Some privacy

preserving techniques cause reduced utility of training data

sets.

6.3 Suggestions for future work
Scalable and efficient techniques are needed for constructing

decision tree classifiers. Special privacy preserving techniques

are needed to maintain training data sets without loss of utility

and accuracy when privacy preserving techniques are applied

to training data sets. Also effective, efficient, and simple

techniques are needed to reconstruct the modified training

datasets before applying data mining techniques.

7. REFERENCES
[1] Jiawei Han, Micheline Kamber , Data Mining:Concepts

and Techniques, Morgan Kaufmann, 2006.

[2] Introduction to Machine Learning EthemAlpaydin

[3] U.M. Fayyad and K.B. Irani, “On the Handling of

Continuous –Valued Attributes in Decision tree

Generation”, Machine Learning, vol. 8, pp. 87-102,

1996.

[4] R.E.Walpole and R.H. Myers, Probability and Statistics

for Engineers and Scientists. Macmillan Publishing

Company, 1993.

[5] A. Asuncion and D. Newman, UCI Machine Learning

Repository,

http://www.ics.uci.edu/mlearn/MLRepository.html,

2007.

[6] T. Elomaa and J. Rousu, “General and Efficient

Multisplitting of Numerical Attributes,” Machine

Learning, vol. 36, no. 3, pp. 201- 244, 1999.

[7] J.R. Quinlan, “Improved Use of Continuous attributes in

C4.5” , Journal of Artificial Intelligence Research, 4,

pp. 77-90, 1996.

IJCATM : www.ijcaonline.org

