
International Journal of Computer Applications (0975 – 8887)

Volume 82 – No.8, November 2013

37

Heuristic-based Approach to detect Global Touch

Gestures performed on Touch Devices

Hrishikesh Pardeshi
Adobe systems Pvt. Ltd
No. 5, Salarpuria Infinity,

Bangalore -29, India

Chandranath Bhattacharyya
Adobe systems Pvt. Ltd
No. 5, Salarpuria Infinity,

Bangalore -29, India

ABSTRACT

Global gestures on touch devices need to be detected so that

this information can later be used to create checkpoints in a

screen recording of the touch device. Currently, there is no

uniform and legal solution to do so on devices like the iPad.

We propose a system with two cameras (RGB cameras) which

will be able to detect global gestures performed on any touch

device (or in fact, any surface like a book). The system will be

able to track all touch gestures performed on a surface and

either associate live actions with it or store the metadata for

later use.

This paper primarily focuses on the heuristics applied to be

able to make the system robust. It also aims to counter

problems arising out of motion blur, lighting variations etc.

Keywords

Touch gestures, Touch devices, heuristics, and global gesture

recognition.

1. INTRODUCTION
Touch Devices like the iOS and Android Tablets, phones etc.

do not permit global gesture recognition. A particular

application on these devices is unable to recognize gestures

performed for other applications. For example, your

application won’t be able to record gestures performed while

playing different games.

Global gestures on touch devices need to be detected so that

this information can later be used to create checkpoints in a

screen recording of the touch device. This facilitates creation

of training sessions. For example, in order to teach a user how

to browse the photo gallery on a smartphone, the author can

create a screen recording of a real-time usage of the photo

gallery. Then, if the gestures performed by the author are

detected, these can be used to create checkpoints for the user

and thereby, ask the user to perform the specific gesture at

that specific location and point in time to be able to proceed.

In this paper, we propose a system with two cameras (RGB

cameras) which will be able to detect global gestures

performed on any touch device (or in fact, any surface like a

book).

The system will detect the following:

1. Type of gesture – single tap, multiple taps, long

press, left/right/down/top swipe, pinch, zoom.

2. Location of gesture – start and end.

3. Duration of gesture.

1. SETUP

1.1 Setup specifications

Figure 1. Image of the setup

1. The front camera has a projected 2D view of the

entire surface and is mainly responsible for location

handling.

2. The side camera can only observe the side view of

the surface and will primarily be used to determine

if a touch happens or not.

3. Figure 1 shows the fingertips of the user covered

with colored tapes. Colored tapes are used to

facilitate finger tracking.

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No.8, November 2013

38

Figure 2. Perspective view of the front camera and side

camera

With this setup, we will have two camera feeds/video streams.

Each of the video streams is independently processed and

both the streams are synchronized on global time.

1.2 Setup rationale
The setup of the cameras is an important part since no matter

how you place the cameras; each camera will have its own

perspective view of the 3D world.

1. A touch will indicate the start of a gesture. Hence,

we need a camera to exclusively determine the

touch event and thereby, details about the start and

end of a gesture. The side camera does this in the

setup.

2. We need a front camera having an entire view of the

surface. This allows the front camera to define

surface boundary and discard any random

movement outside the surface boundary. The front

camera is primarily responsible for determining the

location of touch.

The front camera could have been placed again as a

side camera on the side perpendicular to the first

camera. However, a camera placed on the side will

have a perspective view (figure 3) and hence, we

won’t be able to find the correct location of touch.

3. The fingers need to be tracked throughout the

recording. The user will have colored tapes attached

to his/her fingers. This enables color detection

methods to do finger tracking.

Figure 3. Perspective view of the side camera

2. PROBLEM STATEMENT
With the setup mentioned above, all global touch gesture

algorithms from touch devices can be ported to this setup.

Touch gestures are performed with the fingers and hence, it is

necessary to track the fingers. As mentioned in the setup, we

use colored tapes on the tip of fingers, which will be tracked

as colored blobs. In our particular implementation, we aimed

to detect single and two finger gestures. Hence, the index

finger with color A and thumb with color B will be tracked.

When the cameras perform gesture detection, we run into

problems of motion blur, lighting variations etc. These

problems cause the blob tracking algorithm to loose blobs in

certain frames. In order to tackle these problems and be able

to accurately detect the gestures performed, we propose the

following heuristics on top of the standard touch gesture

algorithms.

3. RELATED WORK
Global gestures are generally detected by hooking your

process to the operating system process and receiving all

global gestures before the operating system does. On touch

devices like smartphones and tablets, hook APIs (application

programming interfaces) are not provided.

Certain applications on Android devices have found a

workaround; however, the hacks are limited to only android

devices [4].

With the setup mentioned in this paper, global gestures can be

detected irrespective of the device being a smartphone or a

tablet, iOS compatible or android compatible device etc. A

device like Leap motion [1], which uses infrared cameras for

depth awareness, can be used for tracking the fingers and

detecting touch gestures. However, the use of two web/usb

cameras is a cheaper and commonplace solution. Microsoft

Kinect [2] also uses infrared cameras; however, the official

documentation states that it is not intended and feasible for

finger tracking.

4. HEURISTICS

4.1 General Touch Heuristics
1. While a gesture is performed, the blob might not be

visible in a particular frame (frame 2, figure 4). The

question is what needs to be done for frames in

which no blob is detected. We have two options -

End the gesture or ignore the frame.

Figure 4. Blob loss during a swipe

If the camera is unable to detect any blob in a frame

amidst a gesture, we do not end the gesture and

simply, ignore that particular frame and do nothing.

A gesture which has been started off by the touch on

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No.8, November 2013

39

a surface will end only when a blob is seen in the

frame and is not touching the surface.

To summarize, frames in which no blob is detected

are all discarded and do not affect the gesture

detection logic in any way.

2. The blob might be shifted upwards (frame 3, figure

5) since the lower portion of the finger might get

blurred during the swipe movement. This results in

2 gestures being detected when actually only one

was performed.

Figure 5. A specific case of down swipe

In order to tackle this scenario, we skip/avoid

gesture detection logic for a particular time (e.g.

500ms/1s) after a gesture other than tap/long press

has been detected (this includes swipes, pinch/zoom

etc.).

In figure 5, after processing frame 3, the gesture

will be marked as a down swipe. This heuristic will

now introduce a skip time. Hence, frames 4 and 5

will not be processed for gesture detection and

thereby, the false positive of tap will be avoided.

3. Effects like motion blur or lighting variations will

create problems in blob detection. The blob size will

vary throughout the recording and will generally be

a fraction of the ideal blob size (frame 2, figure 6a).

Figure 6a. Blob size reduces during a gesture

In order to tackle this, we apply the following

heuristic:

While processing the first n frames of the camera

feed, an ideal blob size is fixed by taking the

maximum blob size/area observed among the n

frames.

Ideal blob size (area) = max (blob size during first n

frames)

If for any frame, the blob size falls below threshold

(e.g. 75% of ideal blob size), the width and height

of the blob is increased so that the modified blob

size equals the ideal blob size.

After applying the heuristic to figure 6a,

Figure 6b. Heuristic applied based on blob size

Note here that, the extension is always applied

downwards. Hence, the blob can actually be seen

lying just below the surface. This however will still

be detected as a touch since the touch threshold that

is applied is for the absolute difference. This means

a touch (hypothetically) done from below the

surface will also be deemed valid.

Also, this heuristic is applied only when the blob

does not touch the surface. If a touch is already

detected and the corresponding blob size is below

the threshold, this heuristic is not applied as in the

following case

Figure 6c. Negative example for applying the

heuristic

4.2 Front Camera Heuristics
1. Only the gestures performed on the device are to be

considered. So, we need to determine if the gesture

is performed within the bounds of the device.

The front camera has a complete (perspective) view

of the device /surface. Hence, the front camera is

used to check if the blob lies inside the device for

every frame. When the side camera stream is being

processed, we keep on checking if the blob was

inside the surface bounds for the corresponding

frame in the front camera stream. Only those frames

for which the blob lies inside the device are

considered for gesture detection by the side camera.

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No.8, November 2013

40

The default behavior for this heuristic is to return

true, i.e. if the front camera is unable to detect any

blob in a particular frame, it returns true by default.

Figure 7. Blobs corresponding to random user

gestures
2. The system with two cameras requires that there be

a synchronization mechanism for both the cameras.

Whenever the side camera sees a touch happening,

the corresponding blob position in the front camera

is noted. For this purpose, the front camera frame

time closest to the side camera frame time is chosen.

The synchronization mechanism or motion blur

might lead to a loss of blob in the frame of interest

of the front camera. In a rapid swipe movement, this

might actually result in the left/right swipe being not

detected at all. As an example, the side camera

observes touch events in frames x, x+1, x+2 and

x+3. It checks for blob position in corresponding

frames from front camera. If there was no blob seen

in frame x and x+1, it will hamper detection of

left/right swipe.

To avoid this scenario, if the front camera is not

able to see a blob in the current frame, we check for

blob in frames with offset -1 (previous), +1 (next), -

2 (previous to previous), +2 (next to next).

3. The side camera view can be restricted to a

white/neutral background. However, for the front

camera, the background is difficult to be avoided.

This increases the chance for losing the colored blob

to a portion in the background. For example, if the

user is wearing a shirt which is of the same color as

the blob, the blob detection algorithm may go ahead

and find the blob in the user’s shirt.

To avoid this, if the blob is displaced by a huge

distance (threshold which is higher than swipe

threshold) between consecutive frames, it cannot be

part of a gesture/movement. It must be a false blob

detected in the background. Hence, such a

movement is prohibited (figure 8). In this case, the

position of blob from the previous frame itself is

marked as the current position of the blob.

However, if such a movement occurs from a blob

outside the device to a blob now lying inside the

device, it is accepted.

Figure 8. Random blobs in the background

getting detected

4.3 Tap Heuristics
1. Consider the scenario in figure 9. Suppose that the

user had actually performed a swipe but during

processing, this event does not satisfy swipe gesture

logic. Hence, it will be falsely detected as a tap/long

press.

Figure 9. False positive of tap/long press

In order to avoid the false positive, an additional

distance threshold is put in for tap/long press. We

assert that during a tap/long press, the finger won’t

make such a large displacement in the horizontal

direction.

2. Consider the case in figure 10:

a. User moves his/her hand outside the

device boundary.

b. As part of this motion, his/her finger

moves from below the device to above the

device (as seen by side camera).

c. The front camera is unable to track the

blob.

d. To the side camera, this seems like a tap

(which it isn’t)

Figure 10: Not a tap

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No.8, November 2013

41

To handle this scenario, we apply the following

secondary heuristic for taps. This states that there

are 3 states for the finger w.r.t device – a) below

device, b) on device and c) above device. For every

frame in which the blob is detected, the position of

the blob w.r.t device is marked as one of the three.

If for any frame the blob is not seen, the position is

not modified.

For a tap, the correct sequence for finger movement

is: a) Above device b) On the device c) Above

device (Figure 10).

Figure 11. Sequence for a valid tap

In frame 2 of figure 10, the finger is seen lying on

the surface of device. Using this heuristic, this

won’t be regarded as a tap (or any gesture) since the

finger was below the device before the touch

happened.

4.4 Swipe Heuristics
1. A swipe is identified by the distance it travels on the

touch device.

Figure 12a. An ideal down swipe

However, in practical scenarios, due to blob loss we

have a situation like:

Figure 12b. A practical scenario of down swipe

To tackle this, the heuristic applied is to take the

position of blob from the frame which marks the

end of the gesture i.e. the first blob detected after

the finger has been picked up from the surface.

Figure 12c. Heuristic applied to down swipe

2. In case of a 2 camera system, each camera has its

own perspective view. Hence, for e.g. when a

top/down swipe is seen by the side camera as

vertical distance travelled, there is also a small

horizontal movement seen in the front camera. The

side camera sees the movement as a top/down swipe

and the front camera sees the movement as a

left/right swipe, and, hence a clash.

In order to tackle this, we first let both the cameras

calculate the distance travelled in horizontal/vertical

directions. Now, the direction in which the distance

travelled is greater is marked as the winning

candidate.

4.5 Pinch/Zoom Heuristics
1. Single finger and multi-finger gestures have

mutually exclusive logic. By this we mean that if

the user touches the device with two fingers, he/she

is intending to perform a multi-finger gesture and

not a single finger gesture.

Hence, when both the fingers touch the device, skip

the gesture detection logic for single finger gestures.

This ensures that single finger gestures and

two/multi finger gestures have mutually exclusive

detection logic.

2. The pinch/zoom gesture is detected as follows:

a. Both fingers touching the surface indicate the

start of a pinch/zoom gesture.

b. For every consequent frame, the current

distance between both fingers is compared to

the previous distance between the fingers.

c. During the gesture event, this distance should

ideally decrease/increase for every consecutive

frame.

d. If (c) continues over a specified number of

frames, a pinch/zoom is successfully detected.

The heuristics applied are as follows:

a. A zero threshold of n (=3, say) pixels is

adopted. This means that for a frame x+1, if

the blobs from frame x have moved <= zero

threshold pixels in a direction opposite to the

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No.8, November 2013

42

intended direction, the gesture still continues

and no action is taken.

For example, if the distance between the

fingers is decreasing frame by frame

(indicating a pinch), and for a particular frame

this distance increases rather than decreasing, it

indicates end of gesture. However, if this

change is less than the zero threshold, it

indicates a minor movement which is ignored.

b. In case of (a), the previous distance update is

skipped i.e. if heuristic (a) gets applied for

frame n, then while examining frame n+1, the

previous distance would refer to distance from

frame n-1 and not frame n.

4.6 Home Button Heuristic
1. A device like the iPad has a home button which lies

outside the screen boundary. If the user does a home

button press event, it won’t be detected since the

front camera would return that the finger does not

lie inside the surface and hence, is a false tap.

To counter this, a separate module determines if at

the current moment in time, the finger is near the

home button. This is achieved by applying offset

downwards from the lower edge of the device,

where the home button resides.

Thus, if the finger is near the home button during a

touch event seen by the side camera, it is concluded

to be a home button press.

2. The gesture detection algorithm requires that the

device /surface boundary be known. This boundary

can be explicitly specified by the user or can be

detected by the algorithm. We use color detection to

detect the surface boundary. We ask the user to

open up a white screen on the device during the

process of boundary detection. We then find all

white contours in the given frame. The largest

contour corresponds to the surface bounds. We form

a quadrilateral from the contour and this

quadrilateral is the boundary of the surface.

The device bounds are essential to determine the

location of touch on the surface. The touch location

is calculated as shown in figure 13

Figure 13. Determining the touch location

In figure 13, (x, y) refers to the co-ordinates of the

point of touch in the frame. Using line extension

and intersection, we find points (X1, Y1), (X2, Y2),

(X3, Y3) and (X4, Y4) in that order. The final aim

is to calculate the intercepts a and b, which

correspond to co-ordinates within the device

bounds.

5. RESULTS
We made use of OpenCV [5] for processing video streams,

color-tracking etc.

We used the following thresholds to account for practical

usage scenario (The thresholds mentioned in terms of pixel

values are w.r.t a video resolution of 640 X 480)

1. If the distance traveled is greater than 15 pixels, the

gesture is a swipe.

2. If the finger lies within 7 pixels from the device/

surface, it is considered a touch on the surface.

3. The gesture detection logic is skipped for 500

milliseconds after a swipe or pinch/zoom is

detected.

4. All blobs having an area less than 20 pixel2 are

ignored.

5. A tap will be recognized as a long press if the touch

on the surface remains for more than 1 second.

6. Two taps are detected as a double tap if they occur

within 250 milliseconds of each other. Otherwise,

they are detected as two separate taps. This logic

extends for n taps.

7. For a successful pinch/zoom, the distance traveled

on the surface should be greater than 20 pixels.

The thresholds mentioned above are the minimum/maximum

thresholds with which the system works correctly. These

thresholds have been obtained after repetitive experiments.

The heuristics were developed considering specific use-cases

that come up since every user has a peculiar way of

performing touch gestures.

The setup was tested with 7 users with applications including

Photo gallery, temple run etc. We faced more challenges

while capturing gestures for games like temple run etc. since

the user is not consciously performing any gesture.

The following table shows the data for specific scenarios of 3

users

User
Gestures

performed

Gestures detected

correctly
Accuracy

CB 36 35 97.22%

VS 24 24 100%

KF 58 56 96.55%

Table 1. Results

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No.8, November 2013

43

The following table shows the results for an experiment

conducted with the system without using heuristics (row 1)

and the system with the heuristics (row 2)

System
Gestures

Performed

Gestures

detected

correctly

Gestures not

detected or

incorrectly

detected

Without

heuristics
22 9 15

With

heuristics
22 20 2

Table 2: Results with and without heuristics

6. FUTURE WORK
The setup mentioned in this paper was devised with an aim to

recognize global touch gestures performed on touch devices

and store the metadata for later use. However, any surface can

be used as a track pad to perform live actions on a machine

associated with the gestures detected. This would allow

porting all touch gestures like swipe, tapping etc. to non-touch

devices.

Associating live actions with gesture detection would require

the system to be fast. To improve performance, some set of

heuristics might need to be avoided in certain conditions and

can be an area of investigation.

7. REFERENCES
[1] Leap motion device: https://www.leapmotion.com/

[2] Microsoft Kinect device: http://www.microsoft.com/en-

us/kinectforwindows/

[3] D. Exner, E. Bruns, D. Kurz, A. Grundhofer, and O.

Bimber, "Fast and robust CAMShift tracking", IEEE

Computer Society Conference on Computer Vision and

Pattern Recognition Workshops (CVPRW), pp.9-16,

2010.

[4] The SwipePad application for android devices is able to

recognize global gestures

https://play.google.com/store/apps/details?id=mobi.cond

uction.swipepad.android&hl=en

[5] OpenCV, an open-source library for computer vision

http://opencv.org/

IJCATM : www.ijcaonline.org

https://www.leapmotion.com/
http://www.microsoft.com/en-us/kinectforwindows/
http://www.microsoft.com/en-us/kinectforwindows/
https://play.google.com/store/apps/details?id=mobi.conduction.swipepad.android&hl=en
https://play.google.com/store/apps/details?id=mobi.conduction.swipepad.android&hl=en
http://opencv.org/

