
International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 7, November 2013

29

Probabilistic Multi Robot Path Planning in Dynamic

Environments: A Comparison between A
*
 and DFS

Safaa H. Shwail
Assist Lecturer

College of Science
University of Babylon, Babylon,

Iraq

Alia Karim
Assist Professor

Department of Computer
Sciences

University of Technology,
Baghdad, Iraq

Scott Turner
Associate Professor

Department of Computing and
Immersive Technologies

University of Northampton,
Northampton, UK

ABSTRACT

In this paper, a probabilistic roadmap planner algorithm with

the multi robot path planning problem have been proposed by

using the A* search algorithm in a dynamic environment. The

whole process consists of two phases. In the first phase:

Preprocessing phase, the work space is converted into the

configuration space, constructing a probabilistic roadmap

graph in the free space, and finding the optimal path for each

robot using a global planner that avoids the collision with the

static obstacles. The second phase: Moving phase, moves each

robot in a prioritized manner from its starting point to its

ending point through a near optimal path with avoiding

collision with the moving obstacles and the other robots. A

comparison has been done with the depth first algorithm to

see the difference. The simulation results shows that choosing

A* search algorithm affect positively the speed of the two

phases together in comparison to the depth first search

algorithm.

General Terms

Artificial intelligence, Robot path planning.

Keywords

Multi-robot, path planning, decoupled planning, A*, Depth

First Search (DFS).

1. INTRODUCTION
Path planning of both single robot and multiple robots has

been widely investigated [1] because of its potentially

usefulness in many applications such as moving containers in

harbors, storage systems in factories and luggage handling

systems at airports [2]. But the applications of path planning

are not just restricted to the field of robotics, but also can be

used in another fields such as virtual environments, computer

aided design, and maintenance planning [3].

The movement of these robots should take the shortest path

between the starting point and the ending point and avoid the

collision with the obstacles that may occur in its way such as

walls, peoples and other robots.

In most of the problem solving approaches there are measures

that specify the quality and goodness of the approach. In robot

path planning, these measures as defined by [4] are:

1. Completeness: the planner should find the solution (path

from start to goal) if there is one, in some situations the

planner can't guarantee to find the solution even if it exists;

this is due to some problems like dead-lock.

2. Optimality: the solution or the path that is found should be

the shortest between all the potential solutions exists.

3. Uncertainty: in some situations the robot may have little or

no information about the environment or its work space, so

how the planner can deal with such situation to find the path.

Path planning problems can be categorized either according to

the number of the robots in the workspace or to the type of the

environment used. In the first categorization, the problem can

be a single or a multi robot path planning.

The problem of multi robot in a 2D rectangle with moving

rectangles as obstacles is proved to be NP-hard [5]; as the

number of robots increased, the degree of freedom (DoF)

increased, which causes increased computation time and

complexity [4]. The multi-robot problems also can be

classified as centralize (coupled) or decentralized (decoupled)

according to the way that the robots are organized [6].

Decoupled approaches plan the path independently for each

robot, then modify these path to prevent the collision that may

occur between the robots. Coupled approaches deal with the

robots as one composite robot that combines the sum of all the

degree of freedom DOF [7]. The decoupled approaches can be

either prioritized or coordinated. The second type of

categorization is depend on the environment of the robots,

static or dynamic, which means static or moving obstacles.

Fig.1 shows most of the situations that can be found on the

robot path planning problem.

In this paper, a probabilistic roadmap planner algorithm with

the multi robot path planning problem has been implemented

by using the A* search algorithm in a dynamic environment.

Previously [3, 8] used a global and a local planners, in this

implementation just one planner we used that specify the near

Robot Path
Planning

Single Robot Multiple Robots

Static
Environment

Dynamic
Environment

Centralized
Planning

Decoupled
Planning

Static
Target

Moving
Target

Static

Environment
Dynamic

Environment

Fig.1: Categorization of Robot Path

Planning Problem

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 7, November 2013

30

optimal path and convert it to a trajectory. In each step in this

trajectory, a detection collision check is made to avoid the

moving obstacles. The whole process consists of two phases.

In the first phase (Preprocessing phase), the work space is

converted into the configuration space, constructing a

probabilistic roadmap graph in the free space, and finding the

optimal path for each robot that avoids the collision with the

static obstacles. The second phase (Moving phase), moves one

robot at a time according to a predefined priority from its

starting point to its ending point through its optimal path and

avoiding collision with the moving obstacles and the other

robots. The same approach is implemented using depth first

search instead of A* to see which one is best and give good

results in speed of execution and optimality.

This paper is organized as follows; section 2 shows the related

work in the literature, in section 3 we discuss the proposed

algorithm, section 4 shows the simulation results, and finally

we discuss the results in section 5.

2. PREVIOUS WORK
The multi robot path planning problem can be categorized to

either centralized approach or decoupled planner. The

centralized approaches [9] deal with the robots as a single

composite robot and any single robot path planning approach

can be applied to it to find a solution. Theoretically, it is

assumed complete, that it is find optimal solution if one exists.

But it suffer from the complexity, that if the number of robots

increased then the time needed to find the solution increased

exponentially. A global cell decomposition approach was

taken by [10], where in a unified configuration space

representation the obstacles and other robots are incorporated.

The algorithm first decomposed the free space into cells, and

then it searches for a path through the resulting adjacency

graph. An attractive potential fields used in [11] over the

workspace which applied to a specific point on the robot

body, and then these potentials are combined in configuration

space to attract the whole robot toward the desired goal. An

algorithm [12] is proposed to solve centralized multi robot

path planning specifically on a graph have at least two empty

vertices. Two primitives have been employed in this

algorithm: push and swap. The former primitive used where a

robot moves toward its goal until no progress can be made.

The later allows two robots to swap positions without altering

the position of any other robot. On the other hand, the

decoupled multi robot path planning finds the path for each

robot independently. It differs from the centralized in the

completeness and the complexity. In some problems, there is

no guarantee to find a solution even a one is exists. Planning

for each robot individually make it less complexity than the

centralized approaches. The decoupled approaches also

categorized into prioritized [13, 14, 15, 16] planning and path

coordination. The prioritized path planning was first proposed

by [17], where priorities are assigned to each robot either

from motion constraints or randomly.

Path coordination planner [1, 2, 18] decomposes the planning

problem into path planning and velocity planning. In the first

step, the path planning generates individual robot paths

independently, using any common single robot path planners.

The second step, it plans a velocity profile that each robot

should follow while it moving to avoid collisions with other

robots.

A sate time space is proposed [8, 19] as collision avoidance

approach in dynamic environments. It is represented by a two

dimensional diagram, the horizontal axis represents the time

and the vertical axis represents the moving obstacles. When

an arc of the network crosses by an object moving in the

plane, the moving object cover temporarily some portion of

the arc. This portion is represented as a polygonal area in the

diagram.

Most of the multi robot path planning used the probabilistic

roadmap method (PRM) [3, 20] to build a graph in the free

space part of the configuration space. The solution obtained

by this method represent a near optimal because of the

randomly generation of the graph. Decomposing the map of

the multi-robot path planning into subgraphs of particular

known structure (cliques, halls, and rings) [21, 22, 23], which

place constraints on which robots can enter or leave at a

particular time. It made possible to plan hierarchically which

can provide a significant improvement in planning time over a

non-hierarchical planner. A modified algorithm D* or

Dynamic A* [24], which is an extension to the original A*

used in almost all the path planning problem. The name

dynamic is used because the arc cost can change during the

problem solving process, so the algorithm can re-plan locally.

Then an extension to D* is presented [25], which reduce

computational costs and minimize state expansions by

focusses the cost updates.

3. PROPOSED ALGORITHM
The proposed algorithm consists of two phases: the

preprocessing phase and the moving phase. The former is

responsible of graph generation and path selection, and the

latter is responsible of robots moving and collision avoidance.

3.1 Preprocessing phase
The preprocessing phase is shown in Figure 2. The first step

of this phase is the dilation process. The dilation operation

grows or thickens objects in a binary image, it is controlled by

an object called "structuring element". The result of this

process is converting the work space (W) to configuration

space (C). In our work, we assumed the robots to be a rigid

body with the same shape which is a disc and the center of the

disc as a reference point. As a result of the dilation process,

the configuration space will contain point robots and

expanded obstacles. So it will be easier to move a point than

moving a circle.

Sliding the robot from its reference point around the each

obstacles in such a way that they are always in contact, as

shown in Figure 3. Where C= n for n=1, 2, and 3, and the

robot is a rigid body that is restricted to translation only, for

any two sets X, Y n the dilation is computed from

Equation 1.

(1)
In the second step, it is necessary to set the points of the

robots (starting and ending) as obstacles to prevent them from

coincide with the graph vertices when we build the graph in

the next step. The third step in this phase is the graph

generation, on which finding the solution and even the

optimality of the solution depend. It starts by randomly

generating points in the free part of the space which is not

occupied by the obstacles.

These points form the vertices of the graph are constructed to

be used in the search for a solution path. The number of points

to be generated must be chosen carefully because it affects in

execution time and the optimality of the solution. If a large

number of points are generated then this may produce a near

optimal solution, but it resulting in a high time execution

while searching for this solution.

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 7, November 2013

31

On the other hand, if a small number of points generated then

this will cause in a poor connected graph with lower coverage

in the configuration space, affecting the optimality of the

solution or even find the solution itself. The proportion of the

free space to the occupied space is also an important factor

that must be considered in choosing the number of points.

The next step will be connecting each vertex to every

reachable vertex by edges to complete building the graph. A

reachable vertex is one where there are no obstacles between

the vertexes. Now, the graph is ready to find the optimal path

to every robot by connecting robot's starting and ending points

with the nearest vertex to each. Then a check is made to see if

there is at least one path from the starting point to the ending

point. If this check is fail, this mean that there is no such a

path connect the points then we need to generate a new graph.

As a final step, the paths of the robots beginning from the

robots starting point and ending with the robots ending point

are converted to trajectories. These trajectories are represents

a small unit steps that the robots will move in each unit time

towards the goal. The steps are computed from Equation 2,

where represents the velocity of the robot, Δt is a small

amount of time between each move, and is the edge length.

(2)
Algorithm (1) state how to build the roadmap graph.

ـــ

Algorithm 1 Graph Generation

ـــ

1: i=0;

2: while i < Number_Of_Points

3: randomly generate vertex(x,y);

4: if vertex(i) Cfree then

5: Graph.add_vertex(vertex(i));

6: i= i + 1;

7: for each a neighborhood(vertex(i),Graph)

8: if ((not Graph.same_component(vertex(i), a)) and

connect(vertex(i), a)) then

9: Graph.add_edge(vertex(i), a);

10: endif

11: endfor

12: endif

13: endwhile

3.2 Moving Phase
According to a pre-assigned priority to robots, they are moved

one after another through its trajectories one step () at a

time t with a small amount of time between robots moves.

In each step, the planner will check for collision against

moving obstacles and other robots, depending on the result of

the collision checking it decides the next move. The next

move that any robot can do is either moving forward ,

stop in place , or moving backward – . The speed

 considered to be constant and one step at a time. Figure

4 shows the moving phase which starts at time zero.

.

.

.

.

.

.

.

. .

.

.

.

.

.

Robot Obstacle before

dilation

Translating the robot

around the obstacle

Obstacle after dilation

Fig.3. Dilation process

.

Set each object in the work space including

(robots start position, robot end position,

stationary obstacles) as obstacles

Randomly generate points in the free space

according to optimization factor

This will be the vertices of the graph

 Connect each vertex with every reachable vertex

without crossing any obstacle object according

to distance optimization factor

Connect each robots starting and ending points

with the nearest vertex of the graph

For each robot find the optimal path from the

starting point to the ending point through the

graph

Convert the work space to the configuration

space by dilating all obstacles to reduce the robot

to a point

Fig.2. Preprocessing Phase

Convert the paths to trajectories

Check if there is a path between stating point and

ending point No

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 7, November 2013

32

4. SIMULATION RESULTS
The simulation has been done by software built using

MATLAB R2011a. The environment represented by a binary

image of 400 * 400 dimensions. Each pixel can be either zero

(free cell) or one (occupied cell). Figure 5 shows a snapshot of

the configuration space with the static obstacles (big blocks)

and the moving obstacles (small blocks). The robots starting

points (Rsn) are in the bottom and its goal points (Rgn) in the

top.

As a part of the preprocessing phase, the node generation in

the free space part of the configuration space is shown in

Figure 6, where the process is done randomly to ensure a

uniform distribution. The number of nodes generated here is

100, representing a good balance between a high connected

graph and a poor connected graph. Figure 7 show how these

nodes are connected by edges to complete the graph that will

be used in finding the near optimal path between the robots

points. The connection is restricted to a threshold that

specifies the long of each edge in the graph and prevents the

graph to become highly connected. In Figure 8, a trace of the

robots movement can be seen through the configuration space

from its starting points to its ending points and avoiding the

obstacles in its way.

Fig.6. Nodes generated in the free space

Fig.7. Probabilistic Roadmap

Fig.8. Robots moves using PRM

Each robot will move according to predefined

priorities one unit distance in one unit time through

its optimal path

Check for collision by using interference

collision detection algorithm

Depending on the result of the collision checking

algorithm The robot either move forward (vp) or wait

in its place (0) or move backward (-vp)

Repeat until each robot arrive

its goal state

End

Start

Fig.4. Moving
Phase

Fig.5. Configuration Space

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 7, November 2013

33

Table (1) show the time needed to complete the preprocessing

phase in the A* and the depth first search and in many

different number of robots in the configuration space starting

with two robots until reach forty robots. In the table, the mean

and the standard deviation are listed of ten runs done to each

case to make ensure of the results we obtained. For each run,

the vertices of the graph were randomly produced – therefore

different mapping obtained. The change in time can be seen

for the A* from the case of two robots which is 1.49 seconds

to the case of forty robots which is 3.43, approximately

duplicated. In DFS it takes 5.79 seconds in the case of two

robots and 80.6 in the case of forty robots, approximately

duplicated eight times.

From these numbers, the time is changed slightly in A* than

the depth first as the number of robots increased. Therefore,

the depth first search takes more time in the preprocessing

phase than the A*. The standard deviation σ listed on the table

to show how much variation or dispersion from the mean

exists in the ten runs, because in each run we have a different

graph generated randomly. A low standard deviation indicates

that the data points tend to be very close to the mean; a high

standard deviation indicates that the data points are spread out

over a large range of values.

In table (2), if the case of two robots in A* taken, it spent 7.7

seconds to moves the robots from its starting points to its

goals with a pulse time 0.005 second between each move.

And 8.4 seconds in the case of forty robots. While in DFS it

spent 8.3 in the case of two robots and 9.5 seconds in the case

of forty robots. Approximately, the change from the first case

to the last case is the same, but the A* takes less time. This is

because the paths gathered in the preprocessing phase in A* is

more optimal (shortest) than the DFS.

The data gathered in the two phases is plotted in figures 8 and

9 to make it much clearer.

Table 1. Preprocessing Phase

Table 2. Moving Phase With a pulse time 0.005

5. CONCLUSION
In this paper, the problem of multi robot path planning by

using A* search algorithm in a dynamic environment have

been presented. The problem is divided into two phases:

preprocessing phase and moving phase. Most of the work is

done in the first phase to reduce the computation time needed

in the second phase. The A* is a heuristic search which use

heuristic functions when it decide which path must be taken.

In some applications, the computation of these functions need

more time which affect negatively in execution time. On the

other side, the Depth First is a blind search and it doesn't

Fig.9. Plotting the times of the A* and

DFS search algorithms in Preprocessing

Phase

Fig.10. Plotting the times of the A* and

DFS search algorithms in Moving Phase

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 7, November 2013

34

spend any time in the process of path selection because it

chooses blindly the first path founded. The main reasons

behind choosing depth first search against A* is to see the

impact of computing the heuristic function in the speed and if

there is optimality in choosing A* rather than depth first.

From the obtained results in table (1) which represents the

preprocessing phase, the time needed by A* is less than the

time needed by DFS. And the increasing in time from case to

case is also less than the DFS. From this, it can be concluded

that A* is better than DFS because as the number of robots

increased to very large numbers in a planner using DFS, the

time needed to execution also become very large. In the

second phase and from table (2) we noticed the time of

execution of the A* is also less than the DFS, this means that

the paths chosen in the first phase are more optimal than those

chooses by Depth First which led to less execution time.

6. REFERENCES
[1] P. Svestka and M. H. Overmars, "Coordinated path

planning for multiple robots," Robotics and Autonomous

Systems, Elsevier, pp. 125-152, 1998.

[2] S. Carpin and E. Pagello, "An experimental study of

distributed robot coordination," Robotics and

Autonomous Systems, Elsevier, pp. 129-133, 2009.

[3] J. P. van den Berg and M. H. Overmars, "Roadmap-

Based Motion Planning in Dynamic Environments,"

IEEE TRANSACTIONS ON ROBOTICS, vol. 21, no. 5,

pp. 885-897, 2005.

[4] J. C. Latombe, Robot Motion Planning, Kluwer

Academic Publishers, 1991.

[5] J. E. Hopcroft, J. T. Schwartz and M. Sharir, "On the

complexity of motion planning for multiple independent

objects; PSPACE hardness of the "warehouseman's

problem"," The International Journal of Robotics

Research, vol. 3, no. 4, pp. 76-88, 1984.

[6] S. M. LaValle, PLANNING ALGORITHMS, Cambridge

University Press, 2006.

[7] P. Velagapudi, K. Sycara and P. Scerri, "Decentralized

prioritized planning in large multirobot teams," Taipei,

2010.

[8] K. Fujimura, "Time-Minimum Routes in Time-

Dependent Networks," IEEE TRANSACTIONS ON

ROBOTICS AND AUTOMATION, vol. 11, no. 3, pp.

341-351, 1995.

[9] J. T. Schwartz and M. Sharir, "On the piano movers'

problem: III. Coordinating the motion of several

independent bodies: the special case of circular bodies

moving amidst polygonal barriers," The International

Journal of Robotics Research, vol. 2, no. 3, pp. 46-75,

1983.

[10] D. Parsons and J. Canny, "A Motion Planner for Multiple

Mobile Robots," Cincinnati, OH, 1990.

[11] J. Barraquand and J.-C. Latombe, "Robot Motion

Planning: A Distributed Representation Approach," The

International Journal of Robotics Research, vol. 10, no.

6, pp. 628-649, 1991.

[12] R. Luna and K. E. Bekris, "Efficient and Complete

Centralized Multi-Robot Path Planning," IEEE/RSJ

International Conference on Intelligent Robots and

Systems, 2011.

[13] S. J. Buckley, "Fast Motion Planning for Multiple

Moving Robots," Scottsdale, AZ, 1989.

[14] J. P. van den Berg and M. H. Overmars, "Prioritized

motion planning for multiple robots," 2005.

[15] M. Bennewitz, W. Burgard and S. Thrun, "Finding and

optimizing solvable priority schemes for decoupled path

planning techniques for teams of mobile robots path

planning techniques for teams of mobile robots,"

Robotics and Autonomous Systems, vol. 41, no. 2-3, pp.

89-99, 2002.

[16] P. Velagapudi, K. Sycara and P. Scerri, "Decentralized

prioritized planning in large multirobot teams," Taipei,

2010.

[17] M. Erdmann and T. Lozano-Perez, "On multiple moving

objects," 1986.

[18] S. S. Chiddarwar and N. R. Babu, "Conflict free

coordinated path planning for multiple robots using a

dynamic path modification sequence," Robotics and

Autonomous Systems, Elsevier, pp. 508-518, 2011.

[19] T. Fraichard and I. Rhone-Alpes, "Trajectory Planning in

a Dynamic Workspace: a 'State-Time Space' Approach,"

Advance Robotics, vol. 1, no. 13, pp. 75-94, 1999.

[20] L. E. Kavraki, P. Svestka and J.-C. Latombe,

"Probabilistic Roadmaps for Path Planning in High-

Dimensional Configuration Spaces," IEEE

TRANSACTIONS ON ROBOTICS AND

AUTOMATION, vol. 12, no. 4, pp. 566-580, 1996.

[21] M. Ryan, "Multi-Robot Path-Planning with Subgraphs,"

Australia, 2006.

[22] M. Ryan, "Graph Decomposition for Efficient Multi-

robot Path Planning," San Francisco, CA, USA, 2007.

[23] M. Ryan, "Constraint-based multi-robot path planning,"

IEEE International Conference on Robotics and

Automation, 2010.

[24] A. Stentz, "Optimal and Efficient Path Planning for

Partially-Known Environments," IEEE International

Conference on Robotics and Automation, 1994.

[25] A. Stentz, "The Focussed D* Algorithm for Real-Time

Replanning," International Joint Conference on Artificial

Intelligence, 1995.

IJCATM: www.ijcaonline.org

