
International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 7, November 2013

1

Path Oriented Test Case Generation for UML State Diagram

using Genetic Algorithm

Jasmine Minj Lekhraj Belchanden

 Bilaspur, Chhattisgarh India Pune, Maharastra India

ABSTRACT
This paper presents the technique to generate test cases from

UML State diagram, that is based on path oriented approach.

Genetic algorithm is used with stack based approach to get the

optimized feasible test cases. Generated test cases are

effective, efficient and optimized.

Keywords
Test Case Generation; UML Statechart Diagram; Genetic

Algorithm; Extended Finite State Machine.

1. INTRODUCTION

Testing is one of the essential phase in software development

life cycle. Its primary goal is to find the failure so that fault

can be detected and corrected. Generating good and effective

test cases are essential keeping in view the increased

complexity of software. It ensures the quality and improves

the efficiency of the software by performing software

verification and validation. Testing is very expensive and

requires lot of extra efforts. It is also very time consuming.

Therefore the need of the hour is to reduce time, cost and

extra efforts of testing for the better performance of the

software. Testing can be carried out earlier in the development

process so that the developer will be able to find the

inconsistencies and ambiguities in the specification and hence

will be able to improve the specification before the program is

written [10]. Model based testing is specification and

requirement based testing. By generating test cases based on

requirement and specification, we are able to improve

specification before the actual execution starts. Hence, it

increase the reliability in testing and saves time, effort, cost

and also reduces the number of errors and faults. Unified

Modelling Language has become the de facto standard for

modelling and design. It is widely accepted and used by

industry [11]. Statechart represents the dynamic behavior of

the object. UML Statechart gives the pictorial representation

of both control flow as well as data flow.

Generating test cases from UML state chart method verifies

the executability during path generation which prevents

generating paths which will be discarded later. Effectiveness

of test cases generated from UML Statechart is measured by

state coverage, transition coverage and transition pair

coverage criteria. This paper presents path-oriented test data

generation which is an undecidable problem [12]. Path

oriented test case generation aims to generate feasible test

cases that covers every possible path in the program unit

under test. It is difficult to get all path coverage, as due to the

presence of loop in a program, we can have infinite number of

paths. And if the program contain predicates then the path is

exponential to the number of predicates and it may also lead

to infeasible paths. Hence, path oriented testing can be called

as a NP complete problem. In this paper we have presented an

approach for test case generation using path oriented

approach. Generated test cases are optimized using genetic

algorithm. The paper is structured as follows. Section 2 gives

a brief description about related work. Section 3 presents the

proposed work. Section 4 presents a case study. Section 5

gives conclusions and future work.

2. RELATED WORK
Researchers have proposed many test case generation

technique for state based testing. Chow T. S. [5] presented

state machine diagram automatically converted into transition

tree and test sequences obtained from transition tree satisfying

specified criteria. Raluca Lefticaru et al. [12] proposed a

method to generate feasible test sequence by applying genetic

algorithms in transition containing guards condition as

algebraic predicates. A. J. Offutt et al. [13] presented a

method to get the test inputs based on state specifications and

selecting test cases from formal criteria. Rajappa et al. [8]

proposed the method to convert the state diagram into dual

graph and Eular path has been guided by GA to produced the

test sequences. Mahesh Shirole et al. [9] presented a

methodology for generating test sequences by converting

EFSMs into extended control flow graph and generating test

cases and test data by applying GA and selection method

guided by data flow. Bosman [24] proposed test sequence

generation based on testing coverage criteria by using partial-

w method. Kansomkeat S. et al. [25] presented an approach to

convert UML Statechart into testing flow graph. Generate test

sequence from testing flow graph guided by transition guards.

Selection of test cases did by mutation analysis. Derderian K.

et al [26] presented an approach for GA based test case

generation of FSM. Fitness function is based on temporal

constraints and guard ranking. Kung et al. [27] proposed a

method for constructing state machine by using the symbolic

execution. Test cases are generated using Chow’s method.

Selection technique proposed in literature for EFSM: [15, 16,

17, 18] proposed the control flow based selection technique

and [19, 20 , 21, 22, 23] proposed the data flow selection

technique for EFSM based test sequence.

3. PROPOSED WORK
UML Statechart is drawn from software specification.UML

Statechart is used for modelling the behaviour of the software

to show the control flow and dataflow. It consists of the initial

state, final state, states, transition, guard function. It is

converted into intermediate graph. Then the predicates are

found in the intermediate graph. Predicates are represented in

the form of binary bits which is taken as chromosome. Based

on predicates, traverse the graph using DFS for test sequence

generation. Cost of each path is calculate using McCabe’s

formula :

Cost(C) = E - N + 2 (1)

E: Total number of edge in the path.

N: Total number of nodes in the path.

Selection: Fitness function is calculated by the cost of path

and stack weight for each path. Stack weight(SW) for each

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 7, November 2013

2

node is calculated by using algorithm presented in [26]. We

use roulette wheel method for selecting individuals. Individual

probability is calculated based on the fitness of the individual.

cumulative probability is calculated based on individual

probability. Random numbers are generated randomly for

each individuals. Individuals are selected for next generation

which are having random values smaller then final probability

Fitness function

F(X) = (C * C) + SW (2)

Individual Probability

P(X) = F(X)/

 (3)

where n is initial population size.

Cumulative Probability

CP(Xk) =

 (4)

Crossover: It recombines the selected pairs of individuals

from previous generation with the specified probability

known as crossover probability. It produces new individuals

for next

generation. It is applied to get the better individuals from the

existing ones. Many crossover operators are used in GA such

as single-point, double-point, shuffle crossover etc. We are

using single point crossover with crossover probability of 0.8.

Mutation: It works on bits. Bits are mutate based on mutation

probability. Here we are using mutation probability as 0.2.

Mutation helps in introducing diversity into the genetic pool.

It adds new individuals randomly to the population and

thereby avoids solution being struck in the local optima.

3.1 Proposed Approach
The Proposed method is as follows:

1) Draw the UML Statechart from given software

specification.

2) Convert the UML Statechart into intermediate graph.

3) Find the predicates and based on predicate traverse the

graph to generate test sequence.

4) Calculate the cost of each path.

5) Apply genetic algorithm until all paths are covered.

6) For each test path

a) Calculate the fitness value F(x)=(C*C)+stack

weight.

b) Calculate the individual probability.

c) Calculate the cumulative probability value.

d) Bin range is specified based on cumulative probability.

e) Random number is generated for each individual/

chromosome and the specific bin in which it

lies is found out.

f) Perform crossover operation.

g) Apply mutation operation.

4. CASE STUDY
For better understanding of the above discussed approach, we

have taken ATM system’s one transaction state chart into

consideration as shown in Fig.1. From the state chart diagram

we have the intermediate graph as shown in Fig.2. There are 4

predicates in our Intermediate graph i.e 2, 3, 4, 5. Each event

which is shown as edge of the intermediate graph is

represented by two bits. These predicates form the

chromosome the length of which is determined by the total

number of bits used to represent the events. We have chosen

initial population as 01010101, 00000101, 01001001,

01010100 as shown in Table II. We calculate fitness value of

each path using (2). Random numbers are generated between

0 and 1. In this example GA is run for 10 iterations. For the

first chromosome 01010101, Path for corresponding

chromosome is 1-2-3-5-6-7-8. Cost of this path is 6-7+2=1.

The stack weight of this path is calculated using Table I. The

stack weight is 8+7+6+9+7+20+15 72. Fitness value of this

chromosome F(x)=(1*1)+72=73.

TABLE I

Stack weight of each node in ATM system’s one

transaction

Nodes K Size, S weight=Max

stack size-K

8

7, 8

6, 7, 8

5, 7, 8, 6

4, 5, 7, 8

3, 7

2

1

7

6

5

4

3

2

1

0

8

7

6

5

4

3

2

1

1

2

3

4

5

6

7

8

After executing Iteration I to X, in tenth iteration shown in

Table VII, 01010100 individual has the highest fitness value

as compared to other individuals. Therefore highest priority is

assigned to this path. Corresponding path according to the

chromosome is 1-2-3-5-6-7-8 which act as test case. It should

be tested first in path testing.

Fig. 1. UML state chart of ATM system’s one transaction

[29]

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 7, November 2013

3

TABLE II

Iteration 1: Fitness of individual

TABLE V

Iteration 2: Selection of individual

Fig. 2. Intermediate graph of ATM system’s one

transaction

TABLE III

Iteration 1: Selection of individuals

R BIN CROSSOVER MUTATION F(X)

0.4398

0.8147

0.9058

0.4576

2

4

4

2

00000101

01010100

01010100

00000101

01010101

01010100

01010000

00000000

73

66

66

53

 TABLE IV

Iteration 2: Fitness of individual

S.No. X F(X) IP CP BIN

1

2

3

4

01010101

01010100

01010000

00000000

73

66

66

53

0.283

0.256

0.256

0.205

0.283

0.539

0.195

1

0-0.283

0.2-0.539

0.7-1

TABLE VI

Iteration 10: Fitness of individual

S.No. X F(X) IP CP BIN

1
2
3
4

01011000
01010101
01001001
00010101

73
73
42
43

0.316
0.316
0.182
0.816

0.316
0.632
0.814
1

0-0.316
0.3-0.632
0.6-0.814
0.8-1

TABLE VII

Iteration 10: Selection of individual

R BIN CROSSOVER MUTATION F(X)

0.3211
0.7956
0.8056
0.9872

2
3
2
4

01010100
01000101
01001001
00010101

01010100
01000101
01001001
00010101

73
61
42
43

5. CONCLUSION
Test case generation in path testing yields many infeasible

paths which increase the time and cost of testing. We

presented an approach for model based test case generation

from UML State diagram using path oriented approach. Test

cases generation method uses predicate coverage criteria. It is

guided by genetic algorithm to get the feasible and optimal

paths which act as test cases. Hence, all state coverage, all

transition coverage is achieved.

6. REFERENCES
[1] G., Rumbaugh J., and Jacobson I., “The Unified

Modelling Language User Guide”, Addison-Wesley,

1999.

[2] Mahesh Shirole, Amit Suthar, Rajeev Kumar,

“Generation of Improved Test Cases from UML State

Diagram Using Genetic Algorithm”, ACM, 2011.

[3] Offutt J. and Abdurazik A., “Generating Tests from

UML Specifications”, LNCS , vol. 1723/1999, issue 76,

1999.

[4] Kim Y.G., Hong H.S., Cho S.M., Bae D.B., Cha S.D,

“Test case generation from UML State diagram”, IEEE

Proceedings- Software, Vol. 146, No 4, pp. 187-192,

Aug, 1999.

[5] Chow T. S., “Testing software design modeled by Finite

state machines”, IEEE Transactions on Software

Engineering, Vol 4, no. 3, pp. 178-187, May, 1978.

[6] Rajappa V., Biradar A., and Panda S., “ Efficient

Software Test Case Generation Using Genetic

Algorithm Based Graph Theory”, IEEE in Proceedings

of the 1st International Conference on Emerging Trends

S.No. X F(X) IP CP BIN

1.

2.

3.

4.

01010101

00000101

01001001

01010100

73

53

42

66

0.312

0.226

0.176

0.283

0.312

0.538

0.717

1

0-0.312

0.3-0.538

0.5-0.717

0.7-1

R BIN CROSSOVER MUTATION F(X)

0.9876

0.1973

0.7149

0.8858

4

1

4

1

01010101

00000101

01010000

00000000

01010101

00010101

01010000

00000000

73

43

66

53

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 7, November 2013

4

in Engineering and Technology (ICETET 08), pp. 298-

303, May, 2008.

[7] Prasanna M. and Chandran K.R., “ Automatic Test Case

Generation for UML Object diagrams using Genetic

Algorithm”, Int. J. Advance. Soft Compute. Appl, Vol. 1,

No.1,pp. 19-32, July, 2009.

[8] Rajappa V., Biradar A., and Panda S, “Efficient Software

Test Case Generation Using Genetic Algorithm Based

Graph Theory”, In Proceedings of the 1st International

Conference on Emerging Trends in Engineeringand

Technology (ICETET 08) , pp. 298-303, Nagpur, 2008.

[9] Mahesh Shirole, Amit Suthar, Rajeev Kumar, “

Generation of Improved Test Cases from UML State

Diagram Using Genetic Algorithm”, ACM, 2011.

[10] Kansomkeat, S. and Rivepiboon, W., “Automated-

generating test case using UML statechart diagrams”,

ACM, pp.296 300, 2003

[11] Binder, R. V., “Testing object-oriented software: a

survey”, Software Testing Verification Reliability,

pp.125 252, 1996.

[12] Raluca Lefticaru, Florentin Ipate, “Automatic State-

Based Test Generation Using Genetic Algorithms”, IEEE

Ninth International Symposium on Symbolic and

Numeric Algorithms for Scientific Computing, 2008.

[13] A. J. Offutt, S. Liu, A. Abdurazik, and P. Ammann,

”Generating test data from state-based specifications,

Software Testing Verification Reliability, pp.2553, 2003.

[14] Byoungju Choi, Hoijin Yoon, Jin-Ok Jeon , “A UML-

based Test Model for Component Integration Test”,

Workshop on Software Architecture and Component

,pp.63-70, 1999.

[15] J. C. Fernandez, C. Jard, T Jeron, L Nedelka and C.

Viho, “using on the fly verification techniques for the

generation of test suites ”,Computer Aided Verifiction

Lecture Notes in Computer Science, springer-verlag, vol.

1102, pp. 348-359, 1996.

[16] J. Grabowski, D. Hogrefe, R. Scheurer and Z. R. Dai,

“Applying SAMSTAG to the B-ISDN protocol sscope”,

in Testing of Communicating Systems, Vol. 10,

Chapman and Hall, 1997.

[17] S. Huang, D. Lee and M Staskauskas, “Validation based

test se- quence generation for networks of EFSMs”, in

Proceedings of SDL Forum, pp. 135-151, 1996.

[18] A. Kerbrat, T. Jeron and R. Groz, “Automated test

generation from SDL Specifcations”, in Proceedings of

IFIP FORTE/PSTV, 1996.

[19] R. E. Miller and S. Paul, “Generating conformance test

Sequences for combined control and data flow of

communication protocols”, in Proceedings of PSTV’ 92,

pp. 13-27, 1992.

[20] B. Sarikaya, G. V. Bochmann and E. Cerny, “A test

design methodology for protocol testing”, IEEE

Transactions on Software Engineering, Vol. 13, No. 5,

pp. 518-531, May, 1987.

[21] H. Ural, “Test sequence selection based on static data

flow analysis”, Computer Communications, Vol. 10, No.

5, pp. 234-242, Oct, 1987.

[22] H. Ural and B. Yang, “A Test Sequence Selection

Method for Protocol Testing”, IEEE Transactions on

Communications, Vol. 39, No. 4, pp 514-523, Apr, 1991.

[23] H. Ural and A. Williams, “Test Generation by Exposing

Control and Data Dependencies within System

Specifcations in SDL”, in Proceedings International

Conference on Formal Description Techniques, pp. 339-

354, Oct 1993.

[24] Bosman O, “Object test coverage using finite state

machine”, In Technology of Object-Oriented Languages

and Systems, pp. 171-178, 1995.

[25] Kansomkeat S., Rivepiboon W, “Automated-Generating

Test Case Using UML Statechart Diagrams”, In

Proceedings of SAICSIT, pp. 296-300,2003.

[26] Derderian K., Merayo M. G., Hierons R. M., and Nunez

M., “Aiding Test Case Generation in Temporally

Constrained State Based Systems Using Genetic

Algorithms”, In Proceedings of the 10th

InternationalWork-Conference on Artificial Neural

Networks, 2003.

[27] Kung D.C., Suchak N., Gao J., Hsia P, “On object state

testing”, In Proceedings of Computer Software and

Applications Conference, pp. 222-227, 1994.

[28] Sangeeta Sabharwal, Ritu Sibal, Chayanika Sharma,

“Applying Genetic Algorithm for Prioritization of Test

Case Scenarios Derived from UML Diagrams”, IJCSI

International Journal of Computer Science Issues, Vol.8,

Issue 3, No. 2, May, 2011.

[29] http://www.mathcs.gordon.edu/courses/cps211/ATMExa

mple/Statecharts.html

IJCATM: www.ijcaonline.org

