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ABSTRACT 
This paper mainly concentrates on different mixture structures 

which include affine and convex combinations of several 

parallel running adaptive filters. The mixture structures are 

investigated using their final MSE values and the tracking of 

the nonlinear system is done using an ANN model that 

updates the filter weights using nonlinear learning strategies(it 

uses stochastic gradient descent to update the filter weights 

based on MSE’s of mixture structures).the mixture structures 

greatly improve the convergence and performance of the of 

the constituent filters compared to traditional adaptive 

methods. The mixture structures employed in this paper can 

be applied to the constituent filters that employ different 

adaptation algorithms. We describe an adaptive neural 

network model that updates the weights of the filter using 

nonlinear methods. 
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1. INTRODUCTION 
This paper mainly concentrates on unknown system 

identification property of adaptive filter and convergence rate 

of mixture approaches. The filter performance is effected by 

the step size, filter order and the choice of  algorithm made. 

Recently there has been an interest in combination structures, 

where the output of several constituent filters are combined 

using different mixing structures for improved performance of 

the overall system. In [7 ]we have presented a combination of 

two least-mean square(LMS) with different learning rates that 

was effective at combining fast convergence low residual 

adjustment, the parallel running adaptive branches  are 

considered as alternative hypothesis  about data model as well 

as different diversity sources, which can be used to achieve 

better performance than individual filter. The intelligent 

combining approaches  may be well suited for wide variety of  

adaptive filtering applications which specially the application 

that involve  non-stationary data environment(the applications 

that has lack of apriori and posteriori data) 

we consider the mixture approaches that are convex(the 

weights are Constrained to be nonnegative and sum up to one) 

and affine combination(where the linear mixture weights are 

constrained to sum up to one)[1],[2],[4]  .the objective here is 

to combine different adaptive filters(that use different 

algorithms and have different learning rates) running in 

parallel on a given task with a goal of achieving better 

performance or at least as good as the best  constituent 

algorithm for all sequences .this is achieved by exploiting the 

time-dependent nature  of the best choice of the constituent 

filter. An alternative algorithm that adapts the convex 

combination using stochastic gradient method (stochastic 

gradient descent is used to update filter weights) was studied 

in [4] Although the analysis given for the convex combination 

of two filters was generic [2], the results were then specialized 

to the case of two LMS filters with different learning rates: 

one with a comparably smaller and the other with a 

comparably larger learning rate, were combined. Hence, the 

combination approaches enjoyed fast converge in the start of 

the adaptation and smaller excess MSE at the steadystate. 

The tracking performance of the adaptive filter was measured 

using an adaptive neural network[8].The tracking of a 

nonlinear system using a linear model is difficult, since 

artificial neural networks are inherently nonlinear models, 

ANN-based filtering methods are useful for signals that are 

inherently nonlinear. An ANN model with hidden layer is able 

to approximate any nonlinear system theoretically that is 

realizable.[7]-[11].the performance of the ANN model is 

limited by the number of hidden units and the learning 

strategies employed .the ANN model employed in this paper 

has one input unit, one output unit and 10 hidden units. The 

ANN model updates the filter weights according to the MSE 

values and tracks the unknown system accurately compared to 

that of a normal adaptive filtering model.  

The organization of this paper is as follows: section2 includes 

the model description (i.e. the calculation of excess MSE’s 

and minimization of MSE.section 3 consist of different 

combination structures i.e., convex and affine combinations. 

Section4 includes the adaptive methods to update the weights 

of mixture structures.section4 consist of an ANN model that is 

meant for tracking the unknown system (nonlinear system 

identification).section5 consists of simulation results and 

conclude the paper by producing the results obtained by the 

simulations of section5. 

Table1: Notations 
Row and column vectors Bold phase lower case  

letters(ex:  ) 

matrices Bold phase capital  

letters(ex:R ) 

β:β 
Denotes the 

thi individual 

entry 

t  Transpose of   

a: a  
Represents absolute value 

of integer 

 
i

R  Represents the Eigen values 

sorted in descending order 
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THE MODEL 
This model aims at converting the input signal to the expected 

output with minimum possible error. Adaptive tuning helps in 

changing the filter coefficients inline with the input signal, 

thereby reducing the gap between the observed output and the 

output predicted by our model. 

The model has two parts 

i. The first part consists of estimating the desired signal 

using ‘m’ parallel running adaptive algorithms. 

ii. The second part consists of the        combination 

methods used and analysing the tracking performance 

of the filter. 

Objective: 

The main objective is to minimize MSE using different 

combination methods. 

, ( ) ( ) ( )T

o i o ie t d t u t 
                                

Where    
, ( )o ie t represents the error, the filter coefficients are

1

, io i iR p                      

The optimal value or the “clean” part of the desired signal will 

be 

,
ˆ ( ) ( ) [ ( )] ( )T T

i i o i id t x t t x t    
 

And the output of the model is 

,( , )i i o iy f x 
 

EXAMPLE: 

Consider an example where a linear model with two 

coefficients is to be found (here we consider the system 

without noise) 

1i o iy x  
 

The optimal values of o and 1  are to be found in                   

order to minimize the MSE.       

  
ˆ( )i i ie y y 

                          
2 2

1( ( ))i i o ie y x                 

Let      

2 2

iE e
 

Hence               
21
ie MSE

n
    (1) 

From (1) we have,    

 

                          1

0
MSE







  (2) 

                                 

       0

0
MSE







 (3) 

Hence by solving the equations (2) and (3) we get the optimal 

values of o and 1 . 

The second part of the model is the combination of the 

constituent filters or the mixing stage. 

               ˆ( ) ( ) ( )Td t t y t           (4) 

 

 Where 1
ˆ ˆ( ) [ ( ),........ ( )]my t d t d t

similar       to the 

constituent algorithm ,we consider only the combination stage 

in the output. Hence the final estimation error is given by 

              
ˆ( ) ( ) ( )e t d t d t 

 

With the above definitions, the autocorrelation matrix for 

input of the combination stage is ( ) [ ( ) ( )]TR t E y t y t ,

lim ( )
t

R R t


  and the cross-correlation Vector is given by

( ) [ ( ) ( )], lim ( )
t

P t E y t d t p P t


  , when limit exist.to 

calculate R,we observe that for any filter pairs i ,j: 

                      

, ,

, ,

2

, ,

[ ( ) ( )][ ( ) ( )]

[ ( ) ( )] [ ( ) ( )]

lim

lim

i a i i a j
t

i j a i a j
t

g ij ex ij

E g t e t g t e t

E g t g t E e t e t

J





 

 

 

        

2

, 0, 0,[ ( ) ( )]T T

g ij i i j jE x t x t   wherein we use a 

separation assumption similar to the one used in[8] 

   , ,[ ( ) ( )] [ ( )] [ ( )]i a ij i a ijE g t e t E g t E e t  for all i,j in 

the limit as  t     .with this result by orthogonality we 

have   

                 

2 2

,1 ,11 ,1 ,1

2 2

, , 1 , ,
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.............................................
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Hence the steady-state autocorrelation vector, since

,lim [ ( ){ ( ) ( )}]t i a iE d t g t e t  =
2

,g ii ,or by 

orthogonality we have 

                                   

2

,11

2

,

.

.

g

g mm

P





 
 
 

  
 
  

 

Hence from the above basic model, we observe that different 

filters have different autocorrelation matrices and cross-

correlation vectors. with the above basic model ,we consider 

two different combination structures that are constrained 

affine and convex combinations. we analyse the tracking 

performance and MSE  of the achieved by the structures by 

formulating the minimum MSE (as shown in the example) 

levels corresponding to the optimal combination weights for 

each structure. 

2. THE MIXTURE STRUCTURES  
Here we consider different methods to combine the 

constituent filters that use different algorithms that provide an 

optimal solution. The different combinations we use are affine 

combination and convex combination. the derivations in this 

section are generic and can be used for  constituent filters of 

any order and any algorithm. 

2.1 Affine combination 
The system under investigation is shown in fig.2 .here the 

filter uses one LMS and one RLS filter with different step 

sizes                                                         

( 1) ( ) ( ) ( )i i i i it t e t x t    
     (5)                                                                                                          

Where                                        
( ) ( ) ( ) ( )T

i ie t d t t x t 
                                             

0 0( ) ( ) ( )Td t e t x t 
 

 

         Fig1.combination of two adaptive filters 

The output of the two filters is combined as shown in in fig:  

as 

                                   

1 2( ) ( ) ( ) [1 ( )] ( )aff affy t t y t t y t   
         (6) 

The MMSE of the affine combination can be solved by 

                               

 2 1min ( ) ( )T T

d o op R p R        
       

(7) 

The optimal affine combination weights are given by  

                                      
1

1

(1 1)
1

1 1

T
a o
o o T

R
R


  




   

for this optimal affine combination, the MSE is given by 

2
2 1

min 1

(1 1)

1 1

T
a T o

d T
J p R p

R


 




  

        

2.2 Convex combination 
The adaptive scheme is studied from an optimal convex 

combiner viewpoint    

1 2( ) ( ) ( ) [1 ( )] ( )cvx cvxy t t y t t y t   
 

Where 
( )cvx t

is the optimal convex mixing combiner. The 

MMSE of this combination is given as                                    

 2 1min ( ) ( )T T

d o op R p R        
             

(9)              

Subject to    
1 1T  

and

( ) 0, 1,.....,i i m  
where  

(1) ( )[ ,.........., ]m T  
   i.e, we have a  

quadratic minimization problem which is the intersection 

plane of the affinity constraints  and nonnegative orthant the 

cost function in (9) can be written as 

                                             

2

min 0

c

R
J J    

 

Which is in terms of the weighted norm of( 0 

).therefore, ignoring the constant term minJ
the optimization 

problem in (9)  as 

                                 

2

0min R
w

 
    (10) 

Which is the projection of 0 to the simplex with respect to 

the weighted norm. We can further Write 
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2 0
min 0 01

(1 1)
2 ( ) 1

1 1

T
c a a T

TR
J J

R


   




    

 

The constant term  min

aJ
can be ignored and we can 

reformulate the optimization problem(10) Corresponding to 

the best convex coefficient as 

                    

2

0min
a

R
w

 
 

Which is the projection of 0

a
 to the unit simplex with 

respect to the weighted norm. 

 If 0 0, . .,a ai e 
  consists only nonnegative 

elements, then 0

c a

o 
; 

 Otherwise,

c

o is at the boundary of the constraint 

set  . 

When there are two adaptive branches to be combined, then 

the projection is 

            (11) 

Where 0  means all the entries of vector is nonnegative. 

As example, we present the case given in the first line of(11) 

in fig.3(a) and 3(b) represents  the second and third entries of 

(11).with the level set cost function as the ellipse segment 

corresponding to the minimum achievable cost. The excess 

MSE corresponding to convex combination approach, relative 

to affine combination  approach, is given by 

 

Where 11 22 122R R R   
 and ijR

is the element in 

row i and column jj. 

 

Fig2.Optimal mixture weights for affine versus convex 

combination of two adaptive filters 

3. THE ADAPTIVE METHODS TO 

UPDATE AFFINE AND CONVEX 

COMBINATIONS 

3.1 The LMS approach 
When weights are constrained to be affine, we can use the 

following parameterization involving m-1 unconstrained 

weights 

( ) ( )( ) ( ), 1,......., 1i it z t i m   
 

                                      

1
( ) ( )

1

( ) 1 ( )
m

m i

i

t z t




 
 

Here, the m-1 dimensional vector 
(1) ( 1)( ) [ ( ),........, ( )]m Tz t z t z t is the unconstrained 

weight vector. Hence, we transformed the constrained 

optimization problem into an unconstrained quadratic 

optimization problem. we note that when we combine just two 

filters, this update corresponds to stochastic gradient update 

given in[4].observing that 

( ) ( ) ( ) ( )Te t d t t y t 
and if we z(t) as our weight 

vector, we have 

                                      

^

( ) [ ( ) ( )] ( ) ( )T
me t d t d t z t t



  
 

Where 
^ ^ ^ ^

1 1( ) [ ( ) ( ),........., ( ) ( )]T
m mmt d t d t d t d t   

.hence we have an adaptive filter problem with 
^

[ ( ) ( )]md t d t
as the desired signal and 

( )t
as the input 

vector. 
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Since we have transformed affine constrained weights 
( )t

 

into unconstrained weights z(t),we apply LMS update directly 

on  z(t). 

The update to minimize the variance of e(t) is given by 

                                             

21
( 1) ( ) ( )

2
zz t z t e t   

 

                                                             
( ) ( ) ( )z t e t t  

 

3.2Adapting mixture weights using the RLS 

update 

We apply the RLS update on z(t)using the desired signal 
^

[ ( ) ( )]md t d t
and the input vector 

( )t
.the RLS update 

for the combination weights are given as 

                                               

1( 1) ( ) ( 1) ( ) ( )z t z t t e t t   
 

With 

^

( ) ( ) ( ) ( ) ( )T
me t d t d t z t t  

and  

                         

1 1 1
1 1

1 1

( ) ( ) ( ) ( )
( 1) [ ( ) ]

1 ( ) ( ) ( )

T

T

t t t t
t t

t t t

  


  

  
 

 

 
    

 
 

Where  0<
( )t

<1 is the forgetting factor,

1

1
( ) ( ) ( )

t t T t

l
t l l I   


   

is the estimated 

correlation matrix,
(0) ,I  

 is a small positive 

number. 

4. TRACKING ANALYSIS USING 

ADAPTIVE NEURAL NETWORK 
The original idea of applying artifical neural network (ANN) 

was to imitate the way the human brain processes information. 

For our purpose, ANN will simply be regarded as a 

convenient way to model the nonlinear input-output mapping 

of the process. 

4.1 Identification of nonlinear system: 

The structure for identification of nonlinear system is shown 

in fig:3   and requires the error between the output of the 

neural network
( )NNy t

 and the output of the unknown 

system 
( )y t

.in this case the cost function can be minimized 

as 

1
( ( ) ( ))

2
NN

k

J y t y t


 
           (12) 

The output of the neural network can be modelled by 

                                          

( ) ( ( 1), ( 1))NN NNy t f x t y t  
 

Where  
(.)NNf

    represents the transfer function of the 

neural network which replaces the nolinear system    

( ), ( )x t k y t k 
 are vectors contain k delayed elements 

of x and y respectively starting from (t-1) i.e., 

( ) ( 1), ( 2),......., ( ) ,

( ) ( 1), ( 2),........., ( )

T

T

x t k x t x t x t k

y t k y t y t y t k

    

    
 

Fig3.identification of nonlinear system using ANNs 

In this work, a two layered feed forward neural network 

architecture is been adopted to track the unknown system. The 

neural network structure of the neural network model has a 

two layer perceptron system and one output variable
()nny

. 

The neural network model has the following input/output 

mapping relationship: 

   

0

1

( ) ( ( 1) ( 1) )
N

x y

nn j j j j j

j

y t x t y k b b   


     
 

Where j  is the activation function of 

thj
in the hidden 

layer; 

x

j represents the weight vector for the 

thj
neuron with 

respect to the inputs stored in 
( 1)x t 

; 

y

j  represents the weight vector for the 

thj
neuron with 

respect to the inputs stored in 
( 1)y k 

; 

jb
 represents the bias function for 

thj
neuron in hidden layer 
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0

j represents the weight for output layer corresponding to

thj
neuron from hidden layer; 

B represent the bias function for the output layer; 

To determine the mathematical model of the unknown system, 

weights are updated by  the cost function(12).the weights can 

be recursively adjusted to minimize the cost function
( )j t



 to 

its minimum value by gradient descent method. The weights 

are updated using: 

( )
( 1) ( )

( )

J t
t t

t
  






  


 

Where mu is the positive learning rate 

5. SIMULATIONS 
In this section we demonstrate the performance of mixture 

approaches through simulation using stationary data. The 

combination structures provide improved performance over 

constituent filters. 

The first set of experiments involves different combination 

structures which include constrained affine and convex 

combinations. To observe the accurateness of the results under 

different input parameters and different learning rates

[0.0008,0.0010,0.500,0.100] 
.We select the 

constituent algorithms as linear filters of different orders using 

both LMS and RLS updates to train their weight vectors 

( ) i

i t IR 
.the input vectors that are fed to the unknown 

system model and the constituent filters are generated using 

the data model
( ) ( ) ( )T

i i id t t x t
.In fig(5) we plot 

weights and the error plots of different constituent filters with 

different learning rates. The simulation results show that the 

mixture  

approach gives a better convergence rate over constituent 

filters. 

Fig5.filter weights of the combination structure 

 

In Fig5. x-axis represents the time and y-axis represents the 

filter weights of the convex combination structure. 

The second set of experiments include training of a neural 

network  with the input vectors calculated above as inputs to 

the neural network and the unknown system  and the outputs 

obtained by the constituent filters as targets to the neural 

network. We train the neural network for tracking the 

unknown system and calculating the MSE at each iteration. 

Neural network plots the MSE for the constituent filters, the 

gradient plot (stochastic gradient descent by which the 

weights are updated during tracking) and the regression plot 

for different learning rates of the constituent filters. 

 

                  Fig.6 the mean square error plot 

Fig6.shows the MSE and performance of the tracking 

system(the neural network).the x-axis represents the number 

of iterations performed and the y-axis gives the MSE value at 

each iteration and the tracking performance is estimated based 

on value of the MSE. 

 

Fig7.regression plot of the tracking system 

Fig7.shows the regression analysis of the tracking system for 

different learning rates. 

6. CONCLUSION AND FUTURE SCOPE 
In this paper, we investigated adaptive linear mixture 

approaches in terms of their final MSE in the steady state for 

stationary and non stationary environments. Our analysis is 
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generic such that the mixtures can be constructed based on 

several different adaptive filters each having a different 

adaptation method, structure or length. We demonstrated the 

performance gains when we use unconstrained  affine and 

convex combination weights, and provided adaptive methods 

to achieve these results. We show that by using these mixture 

approaches, we can greatly improve upon the performance of 

the constituent filters by exploiting the cross-correlation 

information between the constituent filter outputs and biasing 

the combination weights toward zero for low SNR. 
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