
International Journal of Computer Applications (0975 – 8887)

Volume 82 – No5, November 2013

18

Natural Language Statement to SQL Query Translator

Pranali P. Chaudhari

Asst. Professor, I.T. Department
MIT Academy of Engineering

Alandi (D), Pune

ABSTRACT

A Database is an organized collection of data. It is created to

store large amount of data and retrieve it efficiently in less

amount of time. To retrieve data from the database Structured

Query Language (SQL) is used. SQL has its own syntax of

query. To retrieve correct data from the database this query

should be written in proper or correct syntax. Thus users

should have sufficient knowledge of SQL to retrieve data. In

this paper a light weight technique of converting a natural

language statement into equivalent SQL statement is

highlighted which when executed on database provides us

with the accurate results. The main advantage of this

technique is the users which are unknown to the syntax of

SQL can also use the system and retrieve data.

General Terms

Natural Language Processing

Keywords

Structured Query Language, Natural Language Statement.

1. INTRODUCTION
Databases are very powerful means of storing and retrieving

large amounts of data quickly and efficiently. There are many

different commercially available database management

systems used around the world. However getting data out of

these databases is not an easy task. A special database

interaction language called SQL (Structured Query Language)

is used to communicate with these databases. Using Natural

Language to communicate between a database system and its

human users has become increasingly important since

database systems have become widespread and their

accessibility to non-expert users is desirable, if not essential,

to facilitate full use of the database system. Natural Language

to SQL translator (NLS-to-SQL) is aimed at reducing this

complexity of database querying. First it is necessary to use a

language that is understood by anybody, whether an expert

database programmer or person with no computer knowledge.

The best-suited language for this purpose is the English

language. This means NLS-to-SQL has to translate English or

natural language queries into SQL before retrieving data from

database. Keeping this in mind I come up with a technique

that converts a natural language statement to its equivalent

SQL statement.

To make "NLS-to-SQL Translator" more flexible a

lightweight approach is used to convert the Natural Language

input into its SQL equivalent. This Lightweight approach

extracts certain keywords and indicators from the English

query using the preprocessor and then using the post

processor, generates the SQL statement. The another

important feature of this system is it provides a method of

updating the dictionary by which we can add new word or

phrase that can be mapped further to its equivalent clause in

SQL. The rest of the paper is organized as follows: section 2

focus on the motivation for developing this system. Section 3

provides the literature survey from various papers in this area.

Section 4 and 5 describes the system architecture and

implementation in detail. The results of the system are

detailed in section 6 along with the types of statements that

are successfully implemented. Section 7, summarizes the

results of the study and draw conclusions and the potential

future work in this area.

2. MOTIVATION
Now days almost every IT applications require a database for

storing and retrieving huge amount of data. To retrieve this

data is an easy task for a person who has a good knowledge of

data retrieval language like SQL. But at the same time if the

person using the application doesn’t know SQL then it

becomes a tedious job. Thus there is a need of a system which

takes an English language statement (ie: natural language)

and converts it into an equivalent SQL statement which when

executed on the database results in accurate data. There are

various approaches available for natural Language Statement

to SQL Translator.

3. RELATED WORK
A lot of work has been done in the area of natural language

support to database. However almost all the work that has

been done uses process of applying semantic and syntactic

analysis to get an logical representation of the sentence

followed by a conversion of the representation into a database

query [3,7,9]. However all these approaches do require a

detailed syntactic and semantic analysis of the sentence which

is computationally expensive. Generic Interactive Natural

Language Interface to Database (GINLIDB) [1] is developed

which consists of two major components linguistic handling

and SQL constructing. Linguistic handling concentrates on the

grammatical structure where second generates the SQL

statement. Systems for support to a temporal database [2] has

been proposed in which a prototype approach is used but it is

limited to single sentences, multiple sentence query is not

been handled. A model for automatically translating question

in natural language to SQL using DB metadata and lexical

dependencies is proposed [4] with the relational algebra form

also. Token based and Template based methods are some of

the approaches that are used to extract the representations

[10]. A theoretical framework for reliable NLIs which is the

foundation for the fully implemented PRECISE NLI [6] is

proposed for a broad class of semantically tractable natural

language questions. An introduction to natural language

interfaces to databases (NLIDBs) [8] is provided where

NLIDB architectures, portability issues, restricted natural

language input systems (including menu-based NLIDBs), and

NLIDBs with reasoning capabilities are discussed.

SQ-HAL [5] is the powerful system that can translates

different types of select queries which include retrieving of

data from multiple tables with or without conditions. But it

cannot generalize other words which can be optional and may

be omitted while generating queries. Also the support for

synonyms for table name and column name is not present.

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No5, November 2013

19

4. LIGHT WEIGHT NLS TO SQL

TRANSLATOR
In NLS-to-SQL, input is the natural language statement which

is the requirement specified by the user in terms of questions,

which is given to the system. Internal system is divided into

preprocessor and postprocessor and input is given to the

preprocessor. Furthermore preprocessor will decide the type

of the query (Select/Delete), substitute numerals and

comparison operators, remove apostrophe and replace it by

corresponding construction and then elimination of useless

words and recognizing the keyword (extracts the noun clause

).The extracted noun clauses may be the table or column

name. Then output from the preprocessor is given to the post

processor as input in which it initially recognizes the items in

the statement(table values), extracts the tablename also

aggregate function. Now the actual query formation starts.

The postprocessor then decomposes the statement based on

the words where, whose, which, such that, etc. Then

postprocessor decide the query template type. And using this

template query is translated in to its SQL equivalent. Fig. 1

shows the detail system architecture.

Fig. 1. System Architecture

5. IMPLEMENTATION
For implementation purpose the system is divided into three

modules:

1. Pre-Processor

2. Post-Processor

3. Generation of SQL queries

5.1. Pre-Processor
Input to this module is an English sentence. Here first the type

of query is identified and based on it preprocessor replace

numerals, substitute comparison operators and also remove

apostrophe. After that the noun clauses (ie: column or table

name in the English sentence) are extracted. This output of

preprocessor i.e english sentence containing noun clauses,

substituted numerals and comparison operators is given to the

postprocessor. For this, Convert Word to Number, Noun

Clause Extractor , Numerical Operator Substituter interfaces

are created.

5.2. Post-Processor
In this module, an interface named item extractor which

extracts item (numerical value or table value), Table Extractor

(identifies tablename), Sentence Divider (breaks the sentence

as appearing keywords like where, whose, which, such that,

etc.) in java.

5.3. Generation of SQL Query
This module, implements the interfaces created in the

preprocessor and post processor and based on that SQL query

is generated.

Fig.2 shows the data flow diagram for the system.

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No5, November 2013

20

Fig. 2. Data Flow Diagram for System

6. EXPERIMENTAL RESULTS
To evaluate this system a single schema named employee

with the attributes empid, name, designation, address, salary,

age, gender, department, contactno. Mainly the select clause

is focused rather than other DML clauses. Also the system is

capable of translating the queries consisting of two

conditions, having Apostrophe, aggregate functions etc. also

there is a provision of converting numbers into words and

vice versa (ie: 123 into one hundred twenty three and vice

versa.). here a provision of updating a dictionary is also

provided for the synonyms of words that are not being

considered. If such a word comes in the natural sentence then

the dictionary can be updated accordingly and then generate

SQL query and execute it. Fig. 3 & 4 shows some snapshots

of the system.

Fig. 3. Executing statement with two conditions

It is statement with two conditions. Here after substituting

the noun clauses (ie: salary , age, dept) and extracting items (

ie: 23, IT) also recognizing comparison operator (ie: below),

identifying the table name with the help of them, forms the

equivalent SQL query.

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No5, November 2013

21

Fig. 4. Executing statement containing apostrophe and without table name

Figure 4 shows the statement which contain apostrophe .Here

the item with apostrophe (ie: vivek's) is substituted by “of

vivek" and put it after the immediate noun clause (ie:

address). So the original English statement now becomes

“address of vivek" i.e normal english statement without any

condition and table name.

Following is the list of statements that are successfully

executed by the system:

Table 1. Working Statements

7. CONCLUSION AND FUTURE WORK
A flexible Lightweight NLS to SQL translator is proposed in

this paper. The system is capable of translating almost all

English statements in an efficient way. Results show the

implementation of aggregate functions and combination of

two or more operations has been executed successfully. The

important aspect of this system is functionality of updating the

dictionary for the synonyms of the words. The system can be

further enhanced to support multiple tables for the formation

Example of Statement Comments

select dept from emp support for abbreviation

show name of employees other synonyms of 'select' and 'from'

names of employees no explicit 'select'

names, age and sex of employees Multiple columns to be displayed column_list

employee names support for missing 'from'

show id of employee with name is raj support for 'where' and 'comparison operators'

show id with name raj missing table name and comparison operator

salary of raj missing table name

raj's sal support for missing comparison column name

show name with sal thirty thousand automatic number conversion

show name with sal greater than 30000 support for comparison ops in english

show name where sal is below 40 thousand and above 20000 support for 'above' and 'below'

show where sal > 30000 and add is pune support for multiple comparison columns

name whose sal is between 30000 and 40000 support for between

name whose sal is between 40000 and 30000 inverted range

salary where name is karan, vivek or sagar Multiple items mapped to same comparison column

select where karan, vivek are names and 30000 is salary inverted column_list order

select details where vivek and karan are names and address

is pune and 30000 is salary

support for complex statements with 'are' and

mixed order column_list

show highest sal support for aggregate functions

show youngest employee support for ambigious aggregate functions

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No5, November 2013

22

of SQL query. Also some mechanism of query optimization

can also be used for better performance.

8. REFERRENCES
[1] Faraj A. El-Mouadib, Zakaria Suliman Zubi, Ahmd A.

Almagrous, "Generic interactive natural language

interface to databases (GINLIDB)", EC'09 Proceedings

of the 10th WSEAS international conference on

evolutionary computing, ISBN: 978-960-474-067-3

[2] Rani Nelken, Nissim Francez, "Querying temporal

databases using controlled natural language", Proceeding

COLING '00 Proceedings of the 18th conference on

Computational linguistics - Volume 2

[3] Alessandra Giordani, Alessandro Moschitti, "Semantic

mapping between natural language questions and SQL

queries via syntactic pairing", Proceeding NLDB'09

Proceedings of the 14th international conference on

Applications of Natural Language to Information

Systems, ISBN:3-642-12549-2 978-3-642-12549-2

[4] Alessandra Giordani and Alessandro Moschitti,

"Translating Questions to SQL Queries with Generative

Parsers Discriminatively Reranked", Proceedings of

COLING 2012: Posters, pages 401–410, COLING 2012,

Mumbai, December 2012.

[5] SQ-HAL: Natural language to SQL Translator,

http://www.csse.monash.edu.au/hons/projects/2000/Supu

n.Ruwanpura/

[6] Popescu, A.M., A Etzioni, O., A Kautz, H.: Towards a

theory of natural language interfaces to databases. In:

Proceedings of the 2003 International Conference on

Intelligent User Interfaces, Miami, Association for

Computational Linguistics (2003).

[7] Frank S.C. Tseng, Chun-Ling Chen, "Extending the UML

concepts to transform natural language queries with

fuzzy semantics into SQL" Information and Software

Technology, Volume 48, Issue 9, September 2006, Pages

901–914

[8] Thanisch P Androutsopoulos I, Ritchie G. 1995.Natural

language interfaces to databases - an introduction.

Journal of Language Engineering.

[9] I-S. Kang, J-H. Bae, J-H. Lee, "Database Semantics

Representation for Natural Language Access", CW '02

Proceedings of the First International Symposium on

Cyber Worlds (CW'02), ISBN:0-7695-1862-1

[10] Desai B Stratica, N. 2004. "Schema-based natural

language semantic mapping." In Proceedings of the 9th

International Conference on Applications of Natural

Language to Information Systems.

IJCATM: www.ijcaonline.org

