
International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 18, November 2013

4

Area-Delay Estimation by Concurrent Optimization of

FPGA Architecture Parameters using Geometric

Programming

Y. Pandurangaiah
Head of the Department(ECE)
Vardhaman College of Engg

Hyderabad, India

J. Venkat Reddy
Student

Vardhaman College of Engg
Hyderabad, India

G. Kalyan Chakravarthy
Assistant Professor

Vardhaman College of Engg
Hyderabad, India

ABSTRACT

This paper presents the application of geometric programming

for combined high-level and low-level architecture parameter

exploration. This paper builds an geometric programming

framework for reconfigurable architectures, and presents a full

delay and area model of an FPGA. This optimization allows

high-level architectural parameter selection and the transistor

sizing to be done concurrently. The transistor values are

derived using 45nm predictive technology model. CVX

framework for MATLAB is used to run the geometric

programming framework. The area and critical path delay are

determined for given cost function by single-stage and multi-

stage approach.

General Terms

CVX framework, Field Programmable Gate Arrays (FPGAs),

Predictive Technology Model (PTM)

Keywords

Geometric Programming, Reconfigurable architectures

1. INTRODUCTION
In recent years, a considerable evolution in the architecture of

FPGAs and this enhancements in the architectures, results in a

expensive and time consuming experiments. Commercial

FPGAs of every generation contains refined or new routing,

memory, logic and embedded block structures. New or

existing CAD tools are used by FPGA architects to map

benchmark circuits to the architectures [3], [5]. Recent work,

has suggested that the analytical techniques serve as the

supplement to the experimental approach, in which the FPGA

architectures are constructed using a model of relatively

simple equations. Using this technique, the FPGA architect

can investigate a much wider range of architectures.

The advantage of analytical approach is that the values for

many architectural parameters can be optimized concurrently,

which is different from experimental approach, in which

typically one parameter is swept at a time. In [1], the

simultaneous optimization of several parameters of routing

structures of an FPGA by creating analytical equations and

the impact of these parameters on the area of an FPGA is been

shown, and a Geometric Programming (GP) framework is

used to determine the values for these parameters.

In this paper, the simultaneous optimization of transistor

sizing and architecture is done, which allows us in optimizing

the both area and critical path delay (speed) of the FPGA. The

work can be summarized as follows:

 A framework allowing, concurrent optimization of

both low-level (transistor sizing) and high-level

(architectural) parameters.

 Using geometric programming an area-delay model of

an FPGA fabric is formulated.

 Concurrent optimization of low-level and high-level

parameters will lead to a significantly different

architectural conclusions compared to a traditional

flow. Particularly, cluster size should be increased

rather than decrease leading to delay improvements as

delay becomes more important than area.

In [7], the general formulation for optimization of an electrical

design based on an iteration process, involving successive

routing and placement of circuits onto FPGA architectures is

presented. In this work, the iterative refinement is removed,

building an FPGA modeling technique and using a geometric

program, a step of transistor sizing concurrently to a number

of architectural parameters.

A geometric program is a constrained optimization problem of

the following form:

 Minimize : f0(x)

 Subject to : gi(x) = 1, for i = 1,2,, l

where x is positive n-vector of real values, and functions fi

and gi have special mathematical forms, known as

posynomials and monomials, respectively. A monomial is a

function

 g(x) = cx1
a1x2

a2 . . . xn
an

where the coefficient c must be positive. As an example, in

this paper a monomial cost function (Ttotal)
z(Atotal)

z is used,

where Ttotal and Atotal represent the variables delay and area

respectively and z is a constant. Geometric programming is

used extensively for circuit design problems, which include

wire sizing, transistor sizing and robust design. Use [6] for

extensive review of geometric programming in the context of

circuit design.

2. ARCHITECTURE FRAMEWORK
An island style FPGA is assumed in which an array of blocks

are connected using tracks organized in vertical and horizontal

channels with single driver routing, as represented in VPR 5.0

[3]. Figure 1(a) shows the structure of a logic block of an

FPGA architecture which consists of configurable logic

blocks (CLBs), which are tightly packed with K-input lookup

tables (LUTs) connected with N LUTs and with I external

inputs. A K-level pass transistor multiplexer tree is used to

implement a K-input LUT.

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 18, November 2013

5

Table 1. Model Parameters

1 (a) Structure of a logic block

1(b) Routing Fabric of an FPGA

Fig.1.Detailed view of FPGA architecture

Figure 1(b) shows the routing architecture, which consists of

switch boxes and connection boxes. Three parameters are

used to describe the routing blocks in the architecture :

 Fc,in : number of tracks that connect to each logic

block input,

 Fc,out : number of tracks that each logic block output

can connect and

 Fs : number of track end points that connect to each

channel driver.

 In FPGA except for LUT multiplexer, all other

multiplexers are implemented using a two stage pass

transistor. The multiplexers are used to configure the signal

routing paths around the device , and thus are connected to the

SRAM configuration memory.

3. DELAY MODEL
It has been shown previously that geometric programming is

capable of optimizing the transistor sizing for delay [15]. Here

this type of delay optimization technique is employed to

model the combination of pass transistor structures and

CMOS present in FPGA devices. The delay of a critical signal

path through a circuit implemented on FPGA is considered.

The critical path will pass through CLBs, CLB feedback

paths, LUTs, connection boxes and switch boxes. The formula

in (1) is used, where each term is described below.

 Ttotal = Treg to OMUX + DiTLUT F/B path + (Dk - 1)TLUT delay

 + DcTO/P CB delay + DcDrTSB delay

 + DcTI/P CB delay + DcTinput MUX delay

 +TLUT to reg delay. (1)

Dc represents the number of CLBs through which the critical

path travels. Dk represents depth of the netlist when

implemented in K-input LUTs.

 Di = Dk - Dc represents the number of the internal feedback

connections through which critical path traverses. Dr

represents number of switch boxes through which the each

external connection on the critical path propagates. To

estimate the net list depths Dc, Dk and Di the methods are

employed from [19].

Each transistor in the circuit can also be represented as an RC

network as shown in the figure 2. The capacitance and

resistances values can be derived from the SPICE models of

MOSFET devices. Here the values are derived using the 45nm

predictive technology model [14]. Each resistance value for a

transistor in architecture takes the form (2) and capacitance of

form (3) or (4). RC, CD and CG represent the channel

resistance, diffusion capacitance and gate capacitance of a

transistor respectively. Si represents the width of transistor

assuming all the transistors have minimum length. Rnom and

Cnom,x nominal values are dependent on the process

technology, the type of transistor and in case of capacitance,

whether it is nominal diffusion or gate capacitance.

Fig. 2. RC delay model for a MOSFET

 RC = Rnom/Si (2)

 CG = Cnom,GSi (3)

 CD = Cnom,DSi (4)

The delays through each of the paths (1) are evaluated, by

employing the Elmore delay model [13]. The Elmore delay

model is used to represent the delay in the networks of RC

trees and previously been shown to model the delay in the

FPGA routing pass transistor networks [8]. The Elmore delay

is calculated by evaluating the sum of each segment delay

from signal to its sink, as shown in (5), where delay of each

Architectural Parameters :

K

N

I

Fc,in

Fc,out

Fs

Number of inputs per lookup table

Number of lookup tables per logic block

Number of inputs per logic block

Number of tracks that connect to each logic

input pin

Number of tracks each logic block can connect

to

Number of track end points that connect to

each track driver

Circuit Parameters :

P

n2

d2

Rent parameter of a given circuit

Number of 2-LUTs in a given circuit

Depth of circuit netlist in number of 2-LUTs

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 18, November 2013

6

segment is the sum of the resistance along the path multiplied

by capacitance of that segment.

T = C Ri source to Cielmore paths i source to sink

 (5)

The expression of the total delay can be derived by breaking

down the delay terms Tx in (1) into its constituent paths. Each

path begins at VDD or GND and ends at a transistor gate

input, which leads to a number of paths as given in figure 3(a-

j).

The delay Treg to OMUX corresponds to the delay from the

register producing critical signal path over the MUX selecting

whether the LUT output is being registered or not, and over

the two-level buffer as given in Figure 3(c).

The delay TLUT F/B path corresponds to the delay from the BLE

output buffer over the pass transistor based MUX on the LUT

input to its buffer, as given in figure 3 (b).

The delay TLUT delay corresponds to the delay from the LUT

driver over all the levels of the multiplexer implementing the

LUT, the 2:1 MUX and to the LUT output driver. This delay

is the sum of the paths given in Figure 3(h) and 3(e).

The delay TO/P CB delay corresponds to the delay from the BLE

output buffer over the switch box multiplier to its first

inverting buffer, as given in Figure 3(b). In this case the

Elmore delay is through the path to the switch box driver.

The delay TSB delay corresponds to the routing path signal

between switchboxes. This represents sum of the driver delay

and delay over the two level switchbox multiplier, as given in

Figure 3(a) and 4(i).

The delay Tinput MUX delay corresponds to the delay from the

connection box output driver over the LUT input select

multiplexer to the LUT input driver.

The delay TI/P CB delay corresponds to the path over the

switchbox to the connection box, where the routed signal is

consumed. This is the sum of the delay over the connection

box, the driver delay and over the two inverting drivers in the

connection box. These are given in Figure 3(a), 3(i) and 3(j)

respectively.

Finally, the delay TLUT to reg delay corresponds to the delay over

the multiplexer implementing the LUT to the register input

where the critical path terminates, as in Figure 3(f).

Since each driving gate has two paths to consider: the charge

and discharge path from the driving gate, the terms

representing delay are given as inequalities. As an example,

the inequality for the charge path through the nMOS transistor

which corresponds to the delay TO/P CB delay as given in (6), as

in the Figure 3(b).

3 (a)

3(b)

3(c)

3(d)

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 18, November 2013

7

3(e)

3 (f)

3(g)

3(h)

 3(i)

3(j)

Fig. 3. RC delay models for circuit path

O/P CB delay C,n,LOdrv2 D,n,LOdrv2

D,mux c,out D,SB_ mux

C,LOdrv2 C,SB_ mux D,SB_mux

C,LOdrv2 C,SB_ mux

D,SB

T R (C

NKC F C)

(R R)2 C

(R 2 R)

(C

_ mux G,SB_ driverC) (6)

4. AREA MODEL
An area model of an FPGA routing fabric alone was first

presented in [1], and is summarized in section 4.2. In this

work the model is extended to deal with variable buffer sizing

and include both the routing and logic architecture. The area

model is based on minimum width transistor sizing model

employed in [5].

To evaluate how much logic area is consumed, use
2

c cN [n]
, where nc is the number CLBs and estimated

using the formula in [4]. The total area of an FPGA, Atotal

corresponds to the sum of the logic area Al and routing area

Ar, as in (7).

 total l rA A A
 (7)

4.1 Logic Block Area
The area of the logic block is sum of the area dedicated to the

following: the LUT input select multiplexer; the LUT, 2:1

multiplexer register and output buffer combination; the clock

buffer and the set/reset logic. The clock buffer sizing and

set/reset logic are assumed to be constant irrespective of the

logic block architecture, the values are taken from [5].

Similarly, the size of the register size on the LUT output is

assumed to be constant.

The LUT area is composed of pass transistors multiplexer

cells, SRAM cells and internal drivers. The pass transistors

size in the multiplexer (Sn,LM) is assumed to be equivalent.

Similarly, the input buffer scheme is assumed to have the

same size transistors. Bli represents the sum of these buffer

areas. This leads to (8) as an expression for the area consumed

by K-input LUT, where Bli, is the size of buffer driving LUT

input and SSR is the size of an SRAM cell.

K K 1

lut SR li n,LMA 2 S KB (2 2)S
 (8)

The 2:1 multiplexer consists of one level pass transistor

multiplexer. The area A21mux, given by (9), where Sn,21mux

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 18, November 2013

8

corresponds to the size of each two pass transistors

implementing 2:1 multiplexer and SSR corresponds to the one

bit configuration memory required.

21mux SR n,21muxA S 2S

 (9)

The sum of the transistor areas for the two inverters

implementing the driver gives the output buffer combination.

The area consumed by these combination of inverters is given

by (10).

n,LOdrv1 p,LOdrv1 n,LOdrv2 p,LOdrv2B S S S S lo
 (10)

where Sn,LOdrv* and Sp,LOdrv* represents the size of each nMOS

and pMOS transistors respectively in a CMOS inverter.

An expression for the approximation of multiplexer area is

given by (11) and (12). The Sn corresponds to the size of pass

transistor and E corresponds to the number of inputs.

mux n SR

E
A S (E [E]) S ([] [E])

E

 (11)

n SRS (E E) 2S E
 (12)

Each input select multiplexer is fully connected; every output

feedback path and every input from the connection box can

reach any LUT input, which leads to the expression in (13),

which gives the area devoted to each of these multiplexers.

Sn,ISmux corresponds to the size of the pass transistors

implementing the input select multiplexer. Since there are

I+N inputs to the multiplexer, in (14) EIS,tree corresponds to the

number of pass transistors in the multiplexer tree and in (15)

EIS,tree corresponds to the number of SRAM bits.

ISmux IS,tree n,ISmux IS,RAM SRA E S E S
 (13)

IS,treeE N I [N I]

 (14)

IS,RAME [N I] [N I]
 (15)

Combining the above constituent parts of the logic block leads

to an expression in (16). The total area of the FPGA fabric is

given in (17).

LB LUT reg 21mux ISmux

clkB rst

A NA NA NA KNA

NB A A

 lo (16)

 c LBA N Al (17)

4.2 Routing Area
The amount of silicon area devoted to the routing fabric to

consist of all the connection box and switch box multiplexers,

in addition to their configuration memories and output

buffers. Thus, the routing area will depend on the size of the

multiplexers used to connect the signals to and from the logic

blocks and I/O pins, the transistor sizing, the channel width

and the size of the grid of logic cells.

The estimation of multiplexer sizes in the connection and

switch boxes is based on the observation that the expression

for the area of two level multiplexer in (11) can be

approximated as given in (12). The size of these multiplexers

will depend on the channel width of the device.

The model developed in [2] is used to estimate the channel

width. The model for architectures with the wires that span

one logic block is shown in (18), where the minimum channel

width Wmin is described by (19), and β, αin, αout and pf are

empirical constants. In (19), λ corresponds to the average

number of inputs used on each logic block and R
corresponds to the average point-to-point wire length. The

methods given in [9] are used to calculate the value of point-

to-point wire-length for different logic parameters.

outinmin min min
min

s c,in c,out

W W W1
W W ()() ()

F F F

 (18)

min f

R
W p

2

 (19)

In routing fabric there are two types of multiplexers:

connection box multiplexers and switch box multiplexers.

Using the approximation of (12) gives the expression of

multiplexer area for the connection box as given in (20) and

(21) gives the approximation of switchbox area.

c,in

c,in

F
F

W

corresponds to the number of tracks that connect to the each

logic block input and

c,out

c,out

F
F

W

corresponds to the proportion

of routing tracks that the each logic block output connects to.

Combining the above models lead to (22) for the routing area.

cb n,cb c,in c,in SR c,inS S (WF WF) 2S WF
 (20)

sb,m n,sb c,out s c,out s

SR c,out s

N N
S S F F F F

2 2

N
2S F F

2

 (21)

r c cb cb io c cb,io cb,io

s,m sb,m sb,m s,e sb,e sb,e

A IN (S B) 4I N (S B)

W(S B) 6 N W(S B)

 (22)

5. GEOMETRIC PROGRAMMING

FORMULATION
This section show that the model can be expressed in a form

conformable to GP. It is essential to express the model as

posynomial terms less than or equal to one or as monomial

terms with equality to one. The cost function is considered

first, which takes the form of a monomial (23). It is possible

to by varying the exponent weight z, for example, targeting

only delay by setting z 1 , or an equal weighting by setting

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 18, November 2013

9

z 0.5 . The exponent weight must be constant for each run

of the GP.

z 1 z

total totalmin : T A

 (23)

 The model presented in before section is not in a

form that is conformable to GP. The GP representation of the

routing architecture model was given in [1], here the focus is

on presenting the logic area constraints in the correct form.

The sum of nMOS and pMOS transistors for each inverting

stage gives the area of its each respective buffer in the FPGA

, for example
Blo in (10). The expressions (24) and (25)

gives the transformation into posynomial form for buffer area,

where xB
corresponds to the area of the buffer x.

x n p

all inverters in x

B S S

 (24)

1 1

n x p x

all inverters in x

S B S B 1

 (25)

The expressions (26)-(30) gives the area constraints in a

standard form GP representation. The sum of logic area and

routing area in (7) maps directly to the inequality constraint in

(31), which gives an example, how the model maps to the

constraints.

 K 1 1 K 1 1

SR lut lut n,LM lut2 S A KB A 2 2 S A 1 li
 (26)

1 1

SR 21mux n,21mux SR 21muxS A 2S S A 1
 (27)

1 1

IS,tree n,ISmux ISmux IS,RAM SR ISmuxE S A E S A 1
 (28)

1 1 1

LUT LB reg LB 21mux LB

1 1

ISmux LB LB

1 1

clkB LB rst LB

NA A NA A NA A

KNA A NB A

A A A A 1

lo

 (29)

1

c LBN A A 1 l
 (30)

1 1

total total rA A A A 1 l (31)

The mapping of delay constraints is straightforward, as they

take the posynomial form. The expressions (32)-(41) gives an

example how delay constraints are represented in GP. The

example shows the delay and the related constraints between

the inverters used in the switch box buffer. The expressions in

(32) and (33) represent the charge/discharge path of first

inverter through pMOS and nMOS transistors respectively,

where SBinv1inv2T corresponds to the variable

representing the delay. G,SB_inv2C
 corresponds to the load

capacitance of the second inverter gate and is the sum of two

transistor gates used to make up the inverter as expressed in

(34). The expressions (35)-(40) gives the required capacitance

and resistance values, where nom,*R
 and nom,*C

 correspond

to the nominal values for a minimum gate length transistor in

given technology.
1

SB inv1inv2 C,n,SB_inv1 D,n,SB_inv1

1

SB inv1inv2 C,n,SB_inv1 G,SB_inv2

T R C

T R C 1

 (32)

1

SB inv1inv2 C,p,SB_inv1 D,n,SB_inv1

1

SB inv1inv2 C,n,SB_inv1 G,SB_inv2

T R C

T R C 1

 (33)

1

G,SB_inv2 G,p,SB_inv2

1

G,SB_inv2 G,n,SB_inv2

C C

C C 1

 (34)

1 1

nom,nMOS C,n,SB_inv1 n,SB_inv1R R S 1
 (35)

1 1

nom,pMOS C,p,SB_inv1 p,SB_inv1R R S 1
 (36)

1

nom,D,nMOS D,n,SB_inv1 n,SB_inv1C C S 1
 (37)

1

nom,D,pMOS D,p,SB_inv1 p,SB_inv1C C S 1
 (38)

1

nom,G,nMOS G,n,SB_inv2 n,SB_inv2C C S 1
 (39)

1

nom,G,pMOS G,p,SB_inv2 p,SB_inv2C C S 1
 (40)

1

TECH n,SB_inv1S S 1
 (41)

The expression in (41) used to ensure that the transistor size

does not violate the smallest feature size possible in the

process technology, where TECHS
 corresponds to the constant

representing the minimum feature size. The final constraints

must be applied to all transistors in the GP.

The Geometric program takes approximately 43 seconds to

run on a Intel Dual Core i5-2450M 2.5GHZ running windows

7. This is for each K and N logic parameters sweep.

6. RESULTS
To demonstrate the power of Geometric Programming

framework, the framework is run using CVX framework in

MATLAB [11]. Two different flows using Geometric

Programming framework are modeled, to demonstrate the

impact of concurrently optimizing the low-level and high-

level parameters.

In the first experimental approach, the K and N logic

parameters are fixed for each run of the optimization tool. To

find the optimal set of parameters, it requires to sweep across

the values of interest. Each run of the tool reports the value of

the total area, critical path delay and the objective function.

The best architecture is selected for which, the values

contributes the best value of objective function. Figure 4(a)

shows the first experimental flow.

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 18, November 2013

10

4 (a)

In the second experimental approach, each of K, N, Fc,in and

Fc,out is successively chosen. This experimental flow is as

shown in Figure 4(b). The sweep across K 2 7 , will

determine the best LUT for an randomly chosen value of N,

Fc,in and Fc,out. Then K is fixed and then sweep across the CLB

size N 2 12 . Similarly, the routing flexibility parameters

are chosen from a sweep of different values.

4(b)

Fig.4.The two flows used in the experiment

Figure.5 (a). Area of each approach

Figure.5(b) Critical path delay of each approach

During the exploration the exponent parameter z was varied to

check how each approach performs depending on the weight

of cost function. Figure 5(a) shows the area in minimum

width transistors when varying the exponent z in the objective

function of

z 1 z

total totalT A

 and Figure 5(b) shows the critical path

delay of each architecture. In single stage approach the delay

improves when the cost function is weighted towards delay as

objective. The multi-stage heuristic performs worse for both

metrics - around 1% in area and 6% in delay compared to the

best architecture.

The geometric programming approach can be rewarded in

terms of run time. The geometric program framework takes

approximately 40 seconds to solve, whereas, VPR tool takes

approximately 5 minutes to run an architecture file.

7. CONCLUSION
This paper presents the use of Geometric Programming for

fast and early stage exploration of configurable architectures.

This approach allows the concurrent optimization of high-

level and low-level architecture parameters, and shows that it

is possible to gain in performance. In this experiment, the

transistor values are derived using 45nm predictive

technology model (PTM). The graphs are plotted for area and

delay of the architectures for both single and multi-stage

approach by varying the exponent z in the objective function
z 1 z

total totalT A

.

0

0.5

1

1.5

2

2.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

First
Experiment
approach

Second
Experiment
approach

0

1

2

3

4

5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

First
Experiment
approach

Second
Experiment
approach

C
ri

ti
ca

l
P

at
h
 D

el
ay

(n
s)

 Delay Exponent z, given cost

function T
z
A

1-z

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 18, November 2013

11

In future work, spice is used to extract accurate delay

information and wire delay model can also be included to

improve the accuracy of the modeling approach.

8. REFERENCES
[1] A. M. Smith, G. A. Constantinides, and P. Y. K. Cheung,

“Area estimation and optimization of FPGA routing

fabrics,” in Int’l Conf. on Field-Programmable Logic

and Applications, Sep. 2009.

[2] W. Fang and J. Rose, “Modeling FPGA routing demand

in early-stage architecture development,” in Int’l Symp.

on Field-Programmable Gate Arrays, Feb. 2008, pp.

139–148.

[3] J. Luu, I. Kuon, P. Jamieson, T. Campbell, A. Ye, M.

Fang, and J. Rose, “Vpr 5.0: FPGA CAD and

architecture exploration tools with singledriver routing,

heterogeneity and process scaling,” in Int’l Symp. on

Field-Programmable Gate Arrays, Feb. 2009, pp. 133–

142.

[4] A. Lam, S. J. Wilton, P. Leong, and W. Luk, “An

analytical model describing the relationships between

logic architecture and FPGA density,” in Int’l Conf. on

Field-Programmable Logic and Applications, Sep. 2008.

[5] V. Betz, J. Rose, and A. Marquardt, Architecture and

CAD for Deep- submicron FPGAs. Kluwer Academic

Publishers, 1999.

[6] S. P. Boyd, S.-J. Kim, D. D. Patil, and M. A. Horowitz,

“Digital circuit optimization via geometric

programming,” Operations Research, vol. 53, no. 6, pp.

899–932, Nov-Dec 2008.

[7] I. Kuon and J. Rose, “Area and delay trade-offs in the

circuit and architecture design of FPGAs,” in Int’l Symp.

on Field-Programmable Gate Arrays, Feb. 2008, pp.

149–158.

[8] M. Lin, A. E. Gamal, Y.-C. Lu, and S. Wong,

“Performance benefits of monolithically stacked 3-D

FPGA,” IEEE Trans. on Computer Aided Design of

Integrated Circuits and Systems, vol. 26, no. 2, pp. 216–

229, Feb. 2007.

[9] A. M. Smith, J. Das, and S. J. E. Wilton, “Wirelength

modeling for homogeneous and heterogeneous FPGA

architectural development,” in Int’l Symp. on Field-

Programmable Gate Arrays, Feb. 2009, pp. 181– 190.

[10] J. Das, S. J. Wilton, P. Leong, and W. Luk, “An

analytical model describing the relationships between

logic architecture and FPGA density,” in Int’l Conf. on

Field-Programmable Logic and Applications, Sep. 2009.

[11] M. Grant and S. Boyd, “CVX: Matlab software for

disciplined convex programming (web page and

software),” Feb. 2009, http://stanford.edu/ ∼boyd/cvx.

[12] S. Joshi and S. Boyd, “An efficient method for large-

scale gate sizing,” IEEE Trans. on Circuits and Systems

I: Regular Papers, vol. 55, no. 9, pp. 2760–2773, Oct.

2008.

[13] W. C. Elmore, “The transient analysis of damped linear

networks with particular regard to wideband amplifiers,”

J. Appl. Phys., vol. 19, no. 1, pp. 55–63, Jan. 1948.

[14] W. Zhao and Y. Cao, “New generation of predictive

technology model for sub-45nm design exploration,” in

Int’l Symposium on Quality Electronic Design, 2006.

ISQED ’06., March 2006, pp. 6 pp.–590.

[15] S.-J. Kim, S. P. Boyd, S. Yun, D. D. Patil, and M. A.

Horowitz, “A heuristic for optimizing stochastic activity

networks with applications to statistical digital circuit

sizing,” Optim Eng, vol. 8, no. 4, pp. 397– 430, 2007.

IJCATM: www.ijcaonline.org

