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ABSTRACT 

This paper proposes an optimal congestion management 

approach under hybrid electricity market using Self 

organizing hierarchical particle swarm optimization with 

Time Varying Acceleration Coefficients (SPSO-TVAC). The 

aim of the proposed work is to minimize deviations from 

preferred transaction schedules and hence the congestion cost 

under hybrid electricity market. The values of Transmission 

Congestion Distribution factors (TCDFs) are used to select 

redispatch of generators. Generator reactive power support is 

considered to lower the congestion cost. Numerical results on 

IEEE 57 bus system is presented for illustration purpose and 

the results are compared with Particle swarm optimization 

(PSO) in terms of solution quality. The comprehensive 

experimental results prove that the SPSO-TVAC is one 

among the challenging optimization methods which is indeed 

capable of obtaining higher quality solutions for the proposed 

problem.  
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1. INTRODUCTION 
The issue of transmission congestion is more pronounced in 

the competitive environment. Electricity markets will not be 

able to operate at its competitive equilibrium with congestion 

in the system. The main objective of congestion management 

is to take the actions or control measures in relieving 

congestion of transmission networks and increasing the power 

transfer capabilities. Hence transmission congestion 

management (TCM) plays a significant role in power system 

operation in deregulated environment. Several techniques of 

congestion management have been reported in literature [1]. 

In general ISO will manage the congestion management using 

rescheduling of generators or load curtailment. Congestion 

occurrence can be experienced in various forms as reported by 

Besharat et. al [2] which describes that the congestion can be 

caused by transmission line outages, generator outages, 

changes in demand and uncoordinated transactions. Hazra and 

Sinha [3] has formulated congestion management problem a 

bi-objective optimization problem considering alleviation of 

overloads and minimization of cost of congestion 

management as two conflicting objective functions. Talukdar 

et al [4], a computationally simple method is proposed for 

congestion management using generation rescheduling and 

load shed. Kumar et al. [5] have developed real and reactive 

power flow sensitivity factors to determine real and reactive 

rescheduling for congestion management using Zonal 

approach. Dutta and Singh [6] have used sensitivities of real 

power injection for rescheduling of real power generation for 

congestion management.  Granelli et al. [7] introduced 

network reconfiguration is used to manage congestion to 

avoid costly generation or load curtailments.  

Tao and Gross [8] worked on congestion relief in multilateral 

transaction framework, by making use of power flow over the 

lines to determine the contribution of individual contracts 

towards the congestion. Lo et al. [5] presented congestion 

management techniques applied to various kinds of electricity 

markets. Singh et al. [9], examines two approaches to dealing 

with management of costs. The first approach is based on pool 

model and the second approach is based on bilateral model. 

Shahidehpour et al. [10], OPF for coordination between 

generation companies and the ISOs for congestion 

management using the Benders cuts is discussed. Cutsem et 

al. [11], OPF is used to adjust the power injection in the least 

cost manner and optimal curtail transactions due to voltage 

instability and thermal overload. Yesuratnam and Tukkaram 

[12], relative electrical distance (RED) concept is introduced 

to mitigate the transmission overload by real power generation 

rescheduling. In this minimization of congestion cost is not 

considered. Amjady et al. [13] proposed a new congestion 

management framework considering dynamic voltage stability 

boundary of power system. Wang et al. [14], A Primal– dual 

Interior Point Linear Programming method is applied to solve 

congestion model. But these approaches have not been 

considered reactive power procurement. The reactive power 

procurement can supplement the real power to reduce the 

congestion cost, when the system is affected by congestion. 

Hence there is an urgent need for special attention to be given 

to reactive power procurement in congestion management of 

competitive electricity market.  In order to operate the system 

in a secure manner ISO has to procure adequate amount of 

reactive power from various reactive resources in the system, 

e.g. generators, synchronous condensers and shunt capacitors. 

Singh et al.[16] proposed congestion management with 

reactive power support. Zhao et al.[15] considered the reactive 

power dispatch problem is a sub problem of the optimal 

power flow (OPF).   

With the complexity of congestion management problem, an 

efficient heuristic approach is needed to provide the optimal 

solution. Different techniques have been employed to develop 

congestion management such as Genetic Algorithm (GA) [7], 

Modified benders decomposition [18], Interior Point Non-

Linear programming [17], Artificial Bee Colony [18], 

Bacterial Foraging Algorithm [19], Particle Swarm 

Optimization [3], Fuzzy Evolutionary programming [21]. 

These methods have the advantage of searching the solution 

space more thoroughly, but have limitations of their 

sensitivity to the choice of parameters such as the crossover 
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and mutation probabilities, instable convergence, slow and 

easy to premature exist in GA, scaling factor in EP and inertia 

weight and learning factors in PSO. The PSO technique can 

generate better optimal solution in less calculation time with 

stable convergence characteristic compared to other 

population-based methods.  

The PSO algorithm was introduced by Kennedy and Eberhart 

[22] and further modifications in PSO algorithm were carried 

out [23-27]. PSO is a population of random solutions, which 

each individual is referred as a particle and presents a 

candidate solution to the optimization problem. A particle in 

PSO like any living objects has a memory in which remain its 

best experience and the best experience of other particles. In 

this technique, each candidate solution is associated with a 

velocity vector, which is adjusted according to the particle’s 

memory. This procedure is repeated until almost all particles 

converge to the best solution. So in each particle’s point of 

view, its own experience and the best experience of other 

particles are considered and the experience of others is not 

regarded. Therefore the probability of becoming trapped in 

local minima or maxima is increased so as to be premature 

convergence. Kennedy and Eberhart [22] described that a 

relatively high value of the cognitive component, compared 

with the social component, will result in excessive wandering 

of individuals through the search space. In contrast, a 

relatively high value of the social component may lead 

particles to rush prematurely towards a local optimum. To 

avoid this, Wu et al. [25] proposed Particle Swarm 

Optimization with Time Varying Acceleration Coefficients 

(PSO-TVAC) would enhance convergence toward the global 

optima. Later, Ratnaweera et al. [26-27] proposed self 

organizing hierarchical particle swarm optimization with time 

varying particle swarm optimization (SPSO-TVAC) algorithm 

to enhance proper control on local optimum and global 

optimum. So that it can performs consistently and efficiently 

improves optimum solutions in the search space. So, the 

proposed approach considered SPSO-TVAC algorithm to 

manage congestion under hybrid electricity market.  

Therefore the main intent of the present work is to propose a 

new technique Self hierarchical organizing Particle Swarm 

Optimization (SPSO-TVAC) for Congestion Management 

(CM) under hybrid electricity market. Real and reactive 

power Rescheduling of GENCOs' has been considered to 

manage congestion in the system. Real and reactive power 

Transmission Congestion Distribution Factors (PTCDFs & 

QTCDFs) [5] are used for identifying sensitive GENCOs' for 

rescheduling. GENCOs' reactive power support is considered 

to reduce the congestion cost. The proposed algorithm SPSO-

TVAC has proper control on local optimum and global 

optimum. This algorithm performs consistently and efficiently 

improves optimum solutions in the search space. The 

proposed objective congestion cost minimization is solved 

using SPSO-TVAC and the obtained results are compared 

with PSO and PSO-TVAC. 

The main contributions of this paper are as follows:  

i. The proposed approach optimal congestion management 

under hybrid electricity market comprises of two steps. 

First step, step, real and reactive power Transmission 

Congestion Distribution Factors (PTCDFs & QTCDFs) 

are used to find sensitive GENCOs'. Second step 

rescheduling is performed on sensitive GENCOs' based 

on the minimization of congestion cost under hybrid 

electricity market.  

ii. Novel technique Self hierarchical organizing Particle 

Swarm Optimization (SPSO-TVAC) is used to 

implement the proposed approach for Congestion 

Management under hybrid electricity market.  

2. ADAPTIVE PARTICLE SWARM 

OPTIMIZATION 

2.1 Overview of Particle Swarm 

Optimization (PSO) 

All PSO is a simple and efficient population-based 

optimization method proposed by Kennedy and Eberhart [12]. 

PSO consists of a swarm of particles and each particle flies 

through the multi-dimensional search space with a velocity, 

which is constantly updated by the particle’s previous best 

performance and by the previous best performance of the 

particle’s neighbors. The position and velocity of each particle 

are updated at each time step (possibly with the maximum 

velocity being bounded to maintain stability) until the swarm 

as a whole converges to an optimum. Particles update their 

velocity and position through tracing two kinds of ‘best’ 

value. One is its personal best (pbest), which is the location of 

its highest fitness value. In global version, another is the 

global best (gbest), which is the location of overall best value, 

obtained by any particles in the population. Particles update 

their positions and velocities according to equation (7). 

1
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Here, Vid
K is the velocity of dth dimension of the ith particle in 

the Kth iteration, xid
K is the corresponding position and pid

K and 

pgd
K

 is personal best and global best respectively. Finally, the 

position of the ith particle for dth dimension is updated by (2). 

Here w is the inertia weight parameter which controls the 

global and local exploration capabilities of the particle. A 

large inertia weight helps in good global search while a 

smaller value facilitates local exploration. In order to improve 

the performance of the PSO, the time-varying inertia weight 

(PSO-TVIW) was proposed in [24].   
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Generally for initial stages of the search process, large inertia 

weight to enhance the global exploration searching new area 

is recommended while, for last stages, the inertia weight is 

reduced for local exploration fine tuning the current search 

area. The velocity update equation is modified by the 

construction factor C and the inertia weight w is linearly 

decreasing as iteration grows. In The first component is the 

previous velocity which provides the necessary momentum 

for particles to roam across the problem space. The second is 

the cognitive component that represents the individual 

experience of each particle. The second component 

encourages the particles to move toward their own best 

positions reached. The last component is the social 

collaboration of the particles in finding the global optimal 

solution. The particles are pulled toward the global best 

particle reached.  As 
 
increases, the factor decreases and 

convergence becomes slower because population diversity is 

reduced.  

Kennedy and Eberhart [22] described that a relatively high 

value of the cognitive component, compared with the social 
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component, will result in excessive wandering of individuals 

through the search space. In contrast, a relatively high value 

of the social component may lead particles to rush 

prematurely towards a local optimum. Generally, in 

population-based optimization methods, it is desirable to 

encourage the individuals to wander through the entire search 

space, without clustering around local optima, during the early 

stages of the optimization. On the other hand, during the latter 

stages, it is important to enhance convergence toward the 

global optima, to find the optimal solution efficiently. 

Considering those concerns, Particle Swarm Optimization 

with Time Varying Acceleration Coefficients (PSO-TVAC) 

[25] is introduced. In PSO-TVAC method, the cognitive 

component is reduced and the social component is increased 

by changing the acceleration coefficients c1 and c2. With a 

large cognitive component and small social component at the 

beginning, particles are allowed to move around the search 

space, instead of moving toward the population best. On the 

other hand small cognitive component and large social 

component allows the particles to converge to the global 

optima in the latter part of the optimization [25]. The 

acceleration coefficients are expressed as,  
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where C1i, C1f, C2i and C2f are initial and final values of 
cognitive and social acceleration factors, respectively. 

2.2 Self-organizing hierarchical Particle 

Swarm Optimization with Time Varying 

Acceleration Coefficients (SPSO-TVAC) 
In this novel PSO strategy the previous velocity term in (1) is 

made zero. With this modification the particles rapidly rush 

towards a local optimum solution and then stagnate because 

of the absence of momentum. To make this strategy effective, 

the velocity vector of a particle is reinitialized with a random 

velocity whenever it stagnates in the search space. When a 

particle stagnates, its associated pbest remains unchanged for a 

number of iterations. When more particles stagnate, the gbest 

also undergoes the same fate and the PSO algorithm 

converges prematurely to a local optima and vid becomes zero. 

A necessary push to the PSO algorithm is imparted by 

reinitializing vid  by a random velocity term. The method 

works as follows [26]: 

Main procedure 

Velocity update equation in (1) 

if vid=0 

if rand3<0.5 

vid=rand4*vdmax 

else vid=-rand5*vdmax 

end if 

vid=sign(vid)*min(abs(vid,vdmax)) 

Position update equation in (2) 

where  

  max  min

 max

d d

d

x x
v

R




,  

Here vdmax is the maximum velocity limit on the dth 

dimension where xdmax and xdmin are the maximum and 

minimum position of particles on the dth dimension, 

respectively, and R is a chosen number between 1 and 10 that 

reflects the percentage of dynamic range of the solution on 

each dimension. For example, R could be selected as 5 for the 

20% maximum velocity limit. Thus a series of particle swarm 

optimizers are generated inside the main PSO until the 

convergence criteria is reached. The variables  

3 4 5,  and  rand rand rand
 

are randomly generated numbers 

between 0 and 1. 

3. RESCHEDULING OF GENCOS' 
In real time generally congestion is managed using re-

scheduling of GENCOs and load curtailment.  In corrective 

action congestion management schemes, it is crucial for ISO 

to select the most sensitive generators to re-schedule their real 

and reactive powers. In the proposed approach selection of 

most sensitive GENCOs' for CM through sensitivity based 

approach using two sets of sensitivity indices, viz. Real and 

Reactive Power Transmission Congestion Distribution Factors 

(PTCDFs & QTCDFs) for congestion management [5]. After 

finding sensitive GENCOs', ISO will perform rescheduling of 

GENCOs' based on minimization of cost using PSO, PSO-

TVAC and SPSO- TVAC. So, the objective is to minimize the 

total costs for rescheduling power. To reduce the congestion 

cost GENCOS' reactive power support is used. So, the 

proposed objective is, 

1 1
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The solution of above equation i.e., re-scheduling amount of 

each GENCO is obtained so that the following constraints are 

satisfied.  

TCDFs: 
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Power flow equations: The power flow equations as 

determined by Kirchhoff’s laws are given by,  
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Ramp limit:            
min max
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Power limit of generation: 
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Power balance constraint: 
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Transmission line limits: Transmission line flows are 

bounded by thermal limits for short lines and stability limits 

for long lines. 

max                      1,2,......l l LS S l N   

where, PGm and QGm stand for the real and reactive  power 

transactions into the seller bus-m, respectively and PDn and 

QDn are the real and reactive powers taken out at the buyer 

bus-n, respectively and t represents the total number of such 

transactions. 't' represents bilateral/multilateral transaction.   

Rescheduling Cost: 

Here Rescheduling cost is considering both Fuel cost 

coefficients and emission coefficients.
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Minimization of Fuel Cost: 
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Cpi is the cost of the active power rescheduling according to 

the bid functions submitted by the generators participating in 

congestion management. 

Minimization of Emission: 

The total emission  iE P in (ton/hr) of atmospheric 

pollutants such as sulpher oxides (SOX) and nitrogen Oxides 

(NOX ) caused by the operation of fossil fuelled thermal 

generation can be expressed as, 
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Where , ,i i i   and 
i are coefficients of the ith generator 

emission characteristics.  

Generator Reactive Power support: 

  2 2

max max( ) (    (6)qi i pi Gi pi Gi i iC Q C S C S Q k    
   

Where, Cqi is the cost of the Reactive power rescheduling, Cpi 

is the active power generation cost, SG max is the nominal 

apparent power of the generator and k i is an assumed profit 

rate of the active power generation at bus i. Here ki is taken as 

5%.  Here
max maxGi GiS P

                                                                                                                                                                                                                                                                      
As mentioned in section II, the proposed objective is solved 

using PSO, PSO-TVAC and SPSO-TVAC. To now the 

efficiency of proposed approach is applied on IEEE- 30 bus 

and IEEE- 57 bus system. So, next section is dealing with 
results and discussion. 

4. RESULTS AND DISCUSSION 
As mentioned in section I, the proposed problem comprising 

of two steps. First step, sensitive GENCOs' are selected for 

CM through sensitivity based approach using two sets of 

sensitivity indices, viz. PTCDFs & QTCDFs. Second step, 

based on the available bids ISO will perform rescheduling of 

GENCOs' based on minimization of cost using PSO, PSO- 

TVAC and SPSO- TVAC.  To illustrate the efficiency of the 

proposed idea for congestion Management is applied on 

IEEE- 57 bus system. The parameters used for PSO, PSO- 

TVAC and SPSO- TVAC to solve the proposed problem are 

given in Table I.  

Table I:  Parameters variation for all techniques  

Parameters CPSO PSO-TVIW PSO-TVAC SPSO-TVAC 

C1 2 2 
C1i=2.5 C1i=2.5 

C1F=0.2 C1F=0.2 

C2 2 2 
C2i=2.5 C2i=2.5 

C2F=0.2 C2F=0.2 

W 0.5 
Wmin=0.4 

Wmax=0.9 

Wmin=0.4 
0 

WMAX=0.9 

C -- 4.1   4.1   -- 

Computation 

time (Secs) 
121.43 119.66

 
103.45

 
89.76 

No. of 

iterations 
60 60 50 50 

 

IEEE-57 bus system: 
The proposed approach congestion management under hybrid 

electricity market using SPSO-TVAC is tested on IEEE-57 

bus system. The numerical data for IEEE-57 bus system are 

taken from [27].  It consists of seven GENCOs' and eighty 

transmission lines. To analyze the proposed approach 

different combinations of market structures comprising pool 

model and mix of pool plus bilateral and multilateral contracts 

are considered and listed in Table II. 

Table II: Bilateral/ Multilateral transactions in IEEE-57 

bus system  

Transactions From To Power (MW) 

T1 (Bilateral) 7 33 12 

T2 (Bilateral) 
11 24 12 

7 33 10 

T3 

(Multilateral) 
7 

33 
16 

26 

T4  

(bilateral & 

Multilateral) 

11 24 

14 
7 

33 

26 

Because of these contracts congestion occurred between 3-4 

& 6-9 lines. The congested line details are given in Table III.  

Table III: Congested line details for IEEE-57bus system 

Congested 

lines 

Power flow in lines 
Line limit 

(MW) PSO PSO-TVAC 
SPSO- 

TVAC 

6-7 114.97 113.53 112.33 100 

14-15 163.77 162.45 160.03 150 

 

To perform CM firstly sensitive GENCOs' are selected based 

on PTCDFs and QTCDFs. In this system, PTCDFs and 

QTCDFs are computed for the congested lines 6-7 and 14-15 

and depicted in Fig. 1 (a) & (b). 
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Fig.1 (a). PTCDFs for IEEE- 57 bus system 

 
Fig.1 (b) QTCDFs for IEEE- 57 bus system  

Table IV: Rescheduling results for IEEE-57 bus system 
 

 Active Power Re-scheduling 

Genco Technique P T1 T2 T3 T4 

G2 

PSO +4.44     +2.21     +2.45     +2.97     +3.31 

PSO-TVAC +3.59    +2.03     +2.25     +2.73     +3.03 

SPSO-TVAC +3.03     +1.80     +1.99     +2.43     +2.70 

G12 

PSO +11.33     +7.96     +8.60     +9.11    +10.28 

PSO-TVAC +10.15     +6.55     +8.04     +8.34     +9.48 

SPSO-TVAC +9.36     +6.03     +6.53     +7.63     +8.72 

G9 

PSO -8.49    -5.81    -6.67    -6.99    -7.34 

PSO-TVAC -7.32    -5.24    -5.96    -6.34    -6.93 

SPSO-TVAC -5.95    -3.62    -4.08    -4.54    -5.16 

G3 

PSO -6.68    -3.93    -4.59    -5.38    -5.83 

PSO-TVAC -5.91    -3.66    -4.26    -4.56    -5.07 

SPSO-TVAC -4.17    -2.37    -2.93    -3.29    -3.67 

 Reactive power Re-scheduling 

Genco Technique P C1 C2 C3 C4 

G3 

PSO +3.70     +1.80     +2.14     +2.66     +3.06 

PSO-TVAC +3.13     +1.30     +1.83     +2.23     +2.60 

SPSO-TVAC +2.88     +1.73     +1.94     +2.31     +2.67 

G9 

PSO +4.16     +2.07     +2.76     +2.97     +3.48 

PSO-TVAC +3.36     +1.90     =2.11     +2.55     +2.84 

SPSO-TVAC +2.84     +1.68     +1.86     +2.28    +2.52 

G2 

PSO -1.75    -0.99    -1.19    -1.35    -1.56 

PSO-TVAC -1.68    -0.94    -1.14    -1.29    -1.48 

SPSO-TVAC -1.58    -0.90    -1.07    -1.22    -1.39 

G12 

PSO  -6.48    -4.95    -5.33    -5.54    -5.91 

PSO-TVAC -5.58    -4.55    -4.30   -4.81    -5.07 

SPSO-TVAC -4.64    -3.00    -3.57    -3.86    -4.29 

From the Fig. 1(a) it is observed that GENCOs' G2, G12, 

G9 & G3 are having large PTCDFs and are selected for real 

power rescheduling. Similarly, From the Fig. 1(b) it is 

observed that GENCOs' G3, G9, G2 & G12 are having large 

QTCDFs and are selected for reactive power rescheduling. 

After selecting sensitive GENCOs' ISO will perform 

GENCOs' rescheduling based on minimization of cost using 

PSO, PSO-TVAC and SPSO-TVAC and the amount of 

rescheduling is listed in Table IV. From the Table IV, it is 

observed that GENCOs' G2 and G12 are increased real power 

and G8 and G3 are decreased real power to manage 

congestion. Similarly, GENCOs' G3 and G9 are increased 

reactive power and G2 and G12 are decreased reactive power 

to manage congestion in the system. Under pool transaction, 

GENCO G2 increased real power 4.44 MW using PSO and it 

is reduced to 3.59 MW using PSO-TVAC and 3.03 MW using 

SPSO-TVAC. Similarly under all transactions real and 

reactive power rescheduling amount is reduced using SPSO-

TVAC than PSO and PSO-TVAC. So, SPSO-TVAC is 

performed better than PSO and PSO-TVAC for the objective 

minimization of GENCOs' rescheduling amount, hence 

congestion cost. Based on the real and reactive power 

rescheduling congestion cost is computed and listed in Table 

V. 

Table V:  Cost details for IEEE-57 bus system 

($/hr) Techniques Pool T1 T2 T3 T4 

Congestion 

cost 

PSO 875.61 683.42 721.65 769.11 810.24 

PSO-TVAC 788.68 610.53 650.16 691.15 719.79 

SPSO-TVAC 692.53 529.98 570.76 617.13 650.82 

During CM 
GENCOs' 

cost 

PSO 3044.0 2506.6 2655.4 2741.5 2896.7 

PSO-TVAC 2826.1 2448.5 2586.8 2659.5 2796.4 

SPSO-TVAC 2730.8 2379.5 2413.1 2579.9 2608.9 

After CM 

GENCOs' 
cost 

PSO 3221.8 2335.4 2493.0 2689.9 2960.0 

PSO-TVAC 3121.9 2263.0 2415.7 2606.6 2868.2 

SPSO-TVAC 3024.8 2192.7 2340.6 2525.5 2779.1 

From the Table V, it is observed that congestion cost under 

pool transaction is 875.61($/hr) using PSO and it is reduced to 

788.68 ($/hr) using PSO-TVAC and 692.53($/hr) using 

SPSO-TVAC. Similarly for all transactions congestion cost is 

reduced using SPSO-TVAC than PSO and PSO-TVAC. For 

the comparison of congestion under all transactions using 

PSO, PSO-TVAC and SPSO-TVAC is depicted in Fig. 2. 

From the Fig.2 it is cleared that congestion cost is reduced 

using SPSO-TVAC under all transactions. So, SPSO-TVAC 

is performed better than PSO and PSO-TVAC to solve the 

objective of congestion cost minimization. 
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Fig.2.Congestion cost details for IEEE- 57 bus system 

The congestion cost convergence criterion under pool 

transaction using PSO, PSO-TVAC and SPSO-TVAC is 

depicted in Fig.6. From the Fig.6, it is observed that PSO 

finds better solution after 76 iterations, PSO-TVAC finds 

better solution after 57 iterations and SPSO-TVAC finds 

better solution after 51 iterations. So, SPSO-TVAC is 

performed better than PSO-PSO-TVAC and SPSO-TVAC, 

hence convergence time.  
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Fig.3.Congestion cost convergence criterion for IEEE- 57 

bus system 

After performing CM, the power flow in the congested line is 

listed in Table VI. 

Table VI: Congested line details after CM for IEEE-57 

bus system 

Congested 

lines 

Power flow in lines Line limit 

(MW) PSO PSO-TVAC SPSO- TVAC 

6-7 99.44 98.66 98.02 100 

14-15 149.47 148.85 148.21 150 

After performing CM, based on the available bids and power 

dispatch GENCOs' cost is computed and compared with 

GENCOs' cost during CM is listed in Table V. From the Table 

V, it is observed that under pool transaction during CM using 

PSO is 3044.0 ($/hr) and it is increased to 3221.8($/hr). 

Similarly, for all transaction GENCOs' cost is increased after 

CM. under pool transaction GENCOs' cost after CM using 

PSO is 3221.8($/hr) it is reduced to 3121.9($/hr) using PSO-

TVAC and 3024.8($/hr) using SPSO-TVAC. Similarly for all 

transaction during and after CM using SPSO-TVAC 

GENCOs' cost is lesser than PSO and PSO-TVAC. From the 

obtained results, SPSO-TVAC is performed better for 

congestion management using rescheduling of GENCOs' 

under hybrid electricity market.  

5. CONCLUSION 
This paper focuses on congestion management under hybrid 

electricity market using self organizing hierarchical particle 

swarm optimization with time varying particle swarm 

optimization (SPSO-TVAC). The proposed algorithm has 

proper control on local optimum and global optimum, so that 

it can performs consistently and efficiently improves optimum 

solutions in the search space. The proposed approach is 

considered to manage congestion in the system by GENCOs' 

real and reactive rescheduling. GENCOs' reactive power 

support is helping to reduce the congestion cost. After 

Congestion Management total GENCOs' cost is increased for 

all transactions. From the results obtained demonstrate the 

performance of the proposed approach transmission 

congestion under hybrid electricity market based SPSO-

TVAC in term of solution quality and convergence 

characteristic.  
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