
International Journal of Computer Applications (0975 – 8887) 

Volume 82 – No 16, November 2013 

15 

Control Flow Graph based Framework for effective 

Evaluation of Source Code 

Sandeep Jain, Raju Pal, Anindya Srivastava 
Department of Computer Science & Engineering 

Jaypee Institute of Information Technology University, Noida 

 

 

ABSTRACT 

A novel framework to evaluate computer programming labs is 

proposed. The primary focus is fair and effective evaluation of 

programming labs. The proposed framework includes a user 

friendly interface for instructor to detect cheating and evaluate 

submitted programs. Every submitted program is first checked 

against predefined test cases. If the program passes through 

test cases, then it is checked for plagiarism. Finally, the 

program is checked for performance. An efficient and novel 

approach to evaluate performance of submitted programs is 

proposed. The computational complexity of the submitted 

programs is evaluated using control flow graph of the 

submitted program.  

General Terms 

Computational complexity, Algorithms, static code analysis  

Keywords 

Student Evaluation, Plagiarism, Program Comprehension, 

Static Code.  

1. INTRODUCTION 
Almost all undergraduate and postgraduate technical courses 

contain one or more computer programming labs.  Also, from 

time to time various Computer Programming Competitions 

take place on the global scale [12, 13, 14 and 15] with the 

objective being to seek individuals with excellent 

programming and algorithm skills. 

Various universities and programming contests around the 

world have been using automated evaluation of submitted 

programs. For instance, the ACM International Collegiate 

Programming Contest (ICPC) [11] makes use of the PC2: 

Programming Contest Control System [10]. The Stanford 

ACM Programming Contest [16] uses the Ultra Cool 

Programming Contest Control Centre tool [16]. It is worthy to 

note that Stanford University has launched a course 

“Introduction to Competitive Programming Contests” that 

makes use of the Peking Online Judge (POJ) [9]. 

Most of the present evaluation schemes test the submitted 

programs against a set of predefined test cases, which in turn 

are designed manually. Performing manual evaluation is one 

tedious task. This evaluation scheme is largely limited by the 

ability of the individual(s) designing the test cases. Sadly, this 

is the method employed in majority of the universities around 

the world. To add further, evaluating on the basis of run-time 

performance (time and memory) is not an ideal measure as it 

depends on server load, the programming language used, the 

compiling technology, the machine architecture and mainly 

the test cases. Also, according to the Computational 

Complexity Theory, Algorithms can be analysed in terms of 

their computational complexity i.e. the amount of resources 

(time and storage) they require in order to solve a given 

computational problem [2]. However, none of the current 

evaluation systems use the concept of computational 

complexity analysis. Computational complexity of the source 

codes is a necessary metric in order to achieve effective 

evaluation. 

On a separate but related note, considering the humongous 

amount of code to be evaluated, source code plagiarism must 

also be taken into account. In the words of J. P. Gibson “At all 

stages of education and learning, students’ reuse of other 

peoples’ work and ideas is fundamental and it is to be 

encouraged. What is not encouraged is when the work of 

another person is presented as a student’s own. This is 

plagiarism and must not be tolerated.” [3]. 

In this paper, a novel evaluation framework is proposed. The 

aim is effective and fair evaluation of submitted programs. 

The framework checks for compiler errors, runs against test 

cases, checks for plagiarism and finally evaluates performance 

by analysing the source code for time complexity. 

2. RELATED WORK 
Currently, there exist two methods for evaluating source 

codes – manual and computer-aided. Computer-aided 

evaluation is more popular among Programming Contests 

where an ever large number of source codes are to be 

evaluated. PC2, the Programming Contest Control System in 

support of Computer Programming Contest activities, (used at 

ICPC [11] World Finals until 2008) [10] is one such popular 

tool. In fact, there even exist tools for designing/generating 

test cases, e.g., HATE - Harness for Algorithm Testing and 

Evaluation [5]. 

However, neither PC2 nor any other tool provides any 

mechanism to evaluate the computational complexity of the 

source codes. Neither do they address the issue of plagiarism. 

Same is the case with other online systems such as TopCoder 

[14], CodeChef [15], etc. 

The source codes written for computer programming 

assignments in universities and for programming contests 

problems are, by far, most prone to source code plagiarism 

[4]. There exist a number of tools to address this issue: MOSS 

– Measure of Software Similarity [6], JPlag [7], etc. 

3. FRAMEWORK OVERVIEW 
This paper proposes a three-phase framework for effective 

and fair evaluation of source codes (Fig. 1). 

Phase 1: Check for compiler errors, then check for 

correctness with the help of predefined test cases. 

Phase 2: Check for plagiarism. 

Phase 3: Check the computational complexity with the help 

of predefined computational model. 



International Journal of Computer Applications (0975 – 8887) 

Volume 82 – No 16, November 2013 

16 

 

Fig. 1: Framework Architecture 

4. PROPOSED FRAMEWORK 
The proposed framework is described as follows: 

Phase 1: Check for correctness 

The program is first checked for compiler errors, then for 

correctness with the help of predefined test cases. By far, the 

most practical method of evaluation is to check the run-time 

performance against a set of predefined test cases. This initial 

approach is essential in order to check the validity of the code. 

At this point, the code is expected to meet certain time and 

memory thresholds so as to consider it for further analysis. 

Apart from the limitations imposed by the hardware (machine 

architecture) and the software (server load, programming 

language used, compiling technology used), this method is 

further limited by the design of the test cases. Designing test 

cases is a tedious task. It is impractical to manually design 

them. As a consequence, test scripts are written to automate 

this process, but these test scripts themselves are prone to 

error, thereby compromising the validity of the original source 

code which is to be tested. 

Phase 2: Check for plagiarism 

Assuming that the source code qualified Phase 1, the next and 

equally important task is to check for plagiarism. Detecting 

plagiarism in source codes manually is going to require 

individuals with excellent memory and experience. To 

overcome this issue the tools like MOSS [6] and JPlag [7] are 

widely used. Depending upon the programming language an 

appropriate tool should be used. 

Phase 3: Check for Computational Complexity 

Clearing the first two phases brings to the final and the most 

important task: determining the computational complexity of 

the source code. This is done because computational 

complexity, by definition, is a necessary metric for evaluating 

source codes. Now the complexity metric obtained is to be 

tested against a best computational complexity metric of a 

model source code written by the evaluator. Surprisingly, little 

work has been done in this field. Perhaps the reason behind 

this is the non-deterministic nature of computational 

complexity. Alan Turing proved in 1936 that a general 

algorithm to solve the halting problem for all possible 

program-input pairs cannot exist [1].  

However, this paper shows that within a limit, it is possible to 

determine the worst case time complexity. This paper 

proposes an efficient and novel approach for calculating the 

worst case time complexity (WCTC) of source codes written 

in any structural programming language. 

The first step is to write down the equivalent Three Address 

Code [8] (3AC) to split the code into atomic instructions. 

Doing this also ensures the evaluation to be machine 

independent. At this point a safe assumption is made, that 

these atomic instructions take a constant time to execute, i.e. 

O(1) time.   

Using the obtained 3AC, the Control Flow Graph [8] (CFG) 

for the source code is constructed. After the construction, the 

graph G is divided into sub-graphs (Gin 's) such that the Gi's 

either have no loop or have a single first-degree loop. This 

process is repeated indefinitely for all the Gin 's hence 

obtained with the first degree loops; until there is no sub-

graph left with a nested loop. Note that while splitting the 

graph, the obtained sub-graphs are assigned an incremental 

degree-value at every repetition. This value will come in 

handy at a later stage of the calculation. It is denoted by the 

superscript n whereas the subscript i is used to identify 

different sub-graphs with same degree-value. 

Observe that now the sub-graphs (Gin 's) can be divided into 

two types - one without loops, and other having single loop. 

The WCTC of loop-less sub-graphs will be O(1). This is true 

because such a sub-graph consists of an arbitrary but constant 

number of atomic instructions each having O(1) time 

complexity. 

Next consider the other class of sub-graphs (Gin 's), those 

having a single loop. Determining the WCTC of these graphs 

means estimating the maximum number of times control can 

return in this loop. This requires a closer look into the atomic 

instructions included in the sub-graph. It is checked whether 

these instructions can safely be rewritten in the normal-form 

depicted in Fig.2, while causing no harm to the original logic 

implemented. 

 

Fig. 2: Normal Form 

This transformation is key to this calculation. By determining 

the Growth_Function working on the Iterator, the WCTC of 

the sub-graph can be determined. For example, let the 

Growth_Function be: 

1. Iterator = Iterator + C (Constant); // (C>=1)       

WCTC = O (n) 

2. Iterator = Iterator * C (Constant); // (C>=2)       

WCTC = O (logC n) 

3. Iterator = Iterator ^ C (Constant); // (C>=2)       

WCTC = O (logC logC n) 

4. Iterator = Iterator + 1 / ( Iterator ^ Limit);           

WCTC = O (a^n) where a=constant. 

Having determined the WCTC of both the classes of sub-

graphs (Gin 's) completes first part of the calculation. Next, 

the WCTCs of the sub-graphs (Gin 's) with the highest degree 

are used to determine the WCTC of their parent super-graph. 

This is done by multiplying the WCTC of the parent sub-

graph with the maximum WCTC value from the set of WCTC 

values of its child sub-graphs. Repeating this process n times 



International Journal of Computer Applications (0975 – 8887) 

Volume 82 – No 16, November 2013 

17 

gives the WCTC of the complete graph (G=Gn=0). This can 

be formulated as follows: 

WCTC of Parent Super-graph (Gik)(k<n) = WCTC of Parent 

Super-graph  (Gik)(k<n) calculated from Loop-Analysis *  

MAX { WCTCs of its Child Sub-graphs (Gik+1) } 

Thus, for a specific class of source codes whose loops can be 

transformed into the special format mentioned in this paper, 

this paper devises a novel way of computing the Worst Case 

Time Complexity. 

5. COMPLETE EXAMPLE 
Consider the sample C code-snippet Fig 3. Here is a general 

iterative function with both multiple and multi-level loops, as 

well as multiple branches. This example is used to depict the 

simplicity of the method adopted in this paper. [Note: This 

example focuses on Phase-3 of the Framework.] 

int foo(int n)/*Function=O(n^2)*/ 

{ 

   … 

   while(i<=n)/*Loop=O(n)*/ 

   { 

       … 

       i=i+1; 

   } 

   … 

   while(i<=n)/*Loop=O(nlogn)*/ 

   { 

       … 

       while(j<=n)/*Loop=O(logn)*/ 

       { 

           … 

           j=j*2; 

       } 

       i=i+1; 

   } 

   … 

   /*3-way Branch=O(n^2)*/ 

   if(test-1)/*Branch1=O(log logn)*/ 

   { 

       … 

       while(i<=n)/*Loop=O(loglogn)*/ 

       { 

           … 

           i=i*i; 

       } 

       … 

   } 

   else if(test-2)/*Branch2=O(n)*/ 

   { 

       … 

       while(i<=n)/*Loop=O(n)*/ 

       { 

           … 

           i=i+1; 

       } 

       … 

   } 

   else /*Branch3=O(n^2)*/ 

   { 

       … 

       while(i<=n)/*Loop=O(n^2)*/ 

       { 

           … 

           while(j<=n)/*Loop=O(n)*/ 

           { 

               … 

               j=j+1; 

           } 

           i=i+1; 

       } 

       … 

   } 

   … 

} /*End-of-foo(n)*/ 

 

Fig. 3: Sample Code 

 

Step 1: Convert the Program into equivalent 3AC 

This step is necessary in order to simplify the complex high-

level code and to partition it into basic blocks. A basic block 

is a maximal sequence of instructions that can be entered only 

at the first instruction in the sequence and exited only at the 

last instruction in the sequence [8]. Considering that the 3ACs 

have atomic instructions it can be safely assumed that each 

basic block corresponds to a time-complexity of O(1). 

Step 2: Generate the Control Flow Graph 

A Control Flow Graph is, basically, a graphical representation 

of all the paths that might be traversed during the program's 

execution [8]. In general use, the nodes of a CFG are shown 

as decision points from where the program control can choose 

between two paths depending upon the Boolean state of the 

test-condition (See Fig. 4).  

 

Fig. 4: Control Flow Graph 

These decision-points/nodes are basic blocks, really. This 

means every node has O(1) time-complexity, which is 

obvious. 

Intuitively, a CFG without any loop will correspond to a code 

with O(1) time-complexity. In order to not have a constant 

time-complexity, the CFG must have at least one loop. 

Moreover, even if the CFG has loops and the loops are 

independent of the input parameters (to the corresponding 

function), the function will correspond to a constant time-

complexity yet again. So, it becomes clear that not only loops 

are necessary but, the dependency of these loops upon the 

input parameters is necessary as well. 



International Journal of Computer Applications (0975 – 8887) 

Volume 82 – No 16, November 2013 

18 

For every loop whose iterations are dependent upon the input 

parameters, there exists a duplet D(loop-iterator, test-

condition), which must be a function of the input parameters. 

This relationship between the duplet D and the input 

parameters can depicted in two ways- 

a. test-condition/loop-bound is fixed, and different growth 

functions correspond to different time-complexities, e.g., 

for(i=1;i<=n;i++):O(n) and for(i=1;i<=n;i*=2):O(log n). 

b. growth-function is fixed, and different test-conditions/loop-

bounds correspond to different time-complexities, e.g., 

for(i=1;i<=n;i++):O(n) and for(i=1;i<=log n;i++):O(log 

n). 

Clearly, these two formats are inter-convertible. The 'Normal 

Form' depicted in Fig. 2 corresponds to the former 

relationship format. 

GCC, the GNU Compiler Collection [17] provides means [18, 

19] for generating the equivalent 3AC and also for generating 

the CFG. Calling gcc with -fdump-tree-gimple option 

generates the 3AC and with -fdump-tree-cfg generates the 

CFG, e.g., “gcc -fdump-tree-gimple source.c” generates a 

source.c.004t.gimple file that contains the 3AC and “gcc -

fdump-tree-cfg source.c” generates a source.c.013t.cfg file 

that contains the CFG. 

Step 3: Transform the loops into Normal Form 

The trickiest part is transforming the loops into the Normal 

Form depicted above, using the 3AC, basic-blocks and CFG 

obtained so far. First, consider an in-efficient but accurate 

compiler, i.e., a compiler that produces correct low-level 

implementation but performs almost no code-optimisation. 

Further, assume this compiler is also limited in terms of the 

machine instructions available, for example, it may implement 

only the elementary arithmetic operations – add, subtract, 

multiply, divide. 

Such a compiler is bound to generate not only un-optimised 

3ACs but also bound to implement the growth-rate of the 

loop-iterator using only the four elementary arithmetic 

operations. At this point, the transformation problem is 

reduced to determining the Growth-Function corresponding to 

the logic implemented using these four elementary arithmetic 

operations. A few examples of the same are mentioned earlier. 

With the knowledge of the corresponding basic-blocks and the 

CFG, loops having input-dependent time-complexities can be 

figured out and the above-mentioned transformation can be 

carried out. 

Step 4: Calculate the Worst-case Time-Complexity 

Consider Fig. 4, there are multiple and multi-level loops as 

well as multiple branches. Start by determining loops that 

wrap around a single basic-block – L1, L2A, B1-L1, B2-L1, 

B3-L1A. 

Next determine the time-complexities of these loops by 

looking at the C version (see Code 1: Sample Code) written 

similar to the Normal Form discussed – L1:O(n), L2A:O(log 

n), B1-L1:O(log log n), B2-L1:O(n), B3-L1A:O(n). 

Now determine the upper-level loops, i.e., loops wrapped 

around exactly one inner loop and calculate their time-

complexities by checking the growth function of the iterator 

and multiplying it with the time-complexity of the inner loop 

– L2:O(nlogn)=O(n).O(logn), B3-L1:O(n^2). 

Repeat this until the time-complexity of every loop within the 

current scope has been determined. Next, consider the 

fragment having branches, the total WCTC of this fragment 

will of course be the time-complexity of the branch having the 

maximum value. In this example it is B3-L1:O(n^2). 

Finally, consider multiple loops, the WCTC will be the same 

as the time-complexity of the loop having the maximum value 

among them. In this example, among L1, L2 and B3-L1, B3-

L1 has the maximum time-complexity and,  hence, this is the 

WCTC of the entire function. 

5. MEASUREMENTS AND EVALUATION 

Table 1 and Table 2 below show the run-time iterations 

performed with respect to varying values of the input 

parameter – n, which correspond to the growth-function 

employed. 

Table 1: Growth-Function values for increasing values of 

input loop-limit – ‘n’ 

n=input 101 102 103 104 105 106 107 108 109 

f(i):i=i+c 101 102 103 104 105 106 107 108 109 

f(i):i=i*c 4 7 10 14 17 20 24 27 30 

f(i):i=i^c 2 3 4 4 5 5 5 5 5 

 

Table 2: Growth-Function values for increasing values of 

input loop-limit – ‘n’ 

n=input 2 3 4 5 6 7 8 

i=i+ 

1/i^c 

2 17 198 2593 39971 720565 14913020 

 

Table 3 below shows the run-time iterations performed with 

respect to varying values of the input parameter – n, for the 

function discussed in the previous section (Fig. 3). Note that 

the resultant value never exceeds n^2, which corresponds to 

the WCTC of the function. In order to provide reliable results, 

the Boolean value of the test-conditions ‘test-1’ and ‘test-2’ 

were picked randomly. This ensured the function to traverse 

all the possible branches. 

Table 3: Growth-Function value never exceeds the WCTC 

value 

‘n’ ‘i’ ‘n’ ‘i’ ‘n’ ‘i’ ‘n’ ‘i’ 

1 1 11 44 21 441 31 961 

2 4 12 48 22 110 32 192 

3 6 13 52 23 529 33 198 

4 12 14 56 24 120 34 204 

5 25 15 60 25 625 35 210 

6 18 16 80 26 130 36 216 

7 49 17 289 27 729 37 222 

8 32 18 90 28 140 38 228 

9 36 19 361 29 841 39 234 

10 40 20 100 30 150 40 240 



International Journal of Computer Applications (0975 – 8887) 

Volume 82 – No 16, November 2013 

19 

6. FUTURE WORK 
There is wide scope of research and development in every 

phase of this framework. A phase-wise list depicting a few 

possibilities is presented below: 

Phase 1: The system lacks automated generation of test cases. 

Currently, the system supports only Java. 

Phase 2: The current plagiarism detection module needs to be 

enhanced with a more structure-oriented plagiarism detection 

approach. 

Phase 3:  This phase has the widest scope of research among 

all. The current system does not support the concept of 

recursion. Also, there is some ambiguity over classification of 

programs with loop structures that can be converted into the 
format specified in this paper. Complexity of library 

subroutines has not been taken into account. 

7. REFERENCES 
 Alan Turing. On computable numbers, with an 

application to the Entscheidungsproblem. Proceedings of 

the London Mathematical Society, (Ser. 2, Vol. 42, 

1937). 

 Cormen, Thomas H.; Leiserson, Charles E.; Rivest, 

Ronald L. & Stein, Clifford (2001). Introduction to 

Algorithms. Chapter 1: Foundations (Second ed.). 

Cambridge, MA: MIT Press and McGraw-Hill. pp. 3–

122. ISBN 0-262-03293-7. 

 J. Paul Gibson (2009). Software Reuse and Plagiarism: A 

Code of Practice. Proceedings of the 14th annual ACM 

SIGCSE conference on Innovation and technology in 

computer science education. pp. 55-59. ISBN: 978-1-

60558-381-5. 

 Fangfang Zhang, Yoon-Chan Jhi, Dinghao Wu, Peng 

Liu, Sencun Zhu (2012). A first step towards algorithm 

plagiarism detection. Proceedings of the 2012 

International Symposium on Software Testing and 

Analysis. pp. 111-121. ISBN: 978-1-4503-1454-1. 

 Patrick Courtney, Neil Thacker, Adrian F. Clark. 

Algorithmic modelling for performance evaluation. 

Machine Vision and Applications, (Vol. 9, Issue 5-6, 

1997). Springer-Verlag New York, Inc. Secaucus, NJ, 

USA. pp. 219-228. 

 Saul Schleimer, Daniel S. Wilkerson and Alex Aiken. 

Winnowing: local algorithms for document 

fingerprinting. Proceedings of the 2003 ACM SIGMOD 

international conference on Management of data. pp. 76-

85. ISBN:1-58113-64-X. 

 L. Prechelt, G. Malpohl, and M. Philippsen. JPlag: 

Finding plagiarisms among a set of programs. Technical 

report, University of Karlsruhe, Department of 

Informatics, 2000. 

 Aho, Ravi Sethi, Jeffrey Ullman. Compilers: Principles, 

Techniques, and Tools, Addison-Wesley, 1986. ISBN 0-

201-10088-6. 

 Ying Fuchen, Xu Pengcheng, Xie Di. Programming grid: 

a computer-aided education system for programming 

courses based on online judge. Proceedings of the 1st 

ACM Summit on Computing Education in China, 

(Article No. 10). ISBN: 978-1-60558-441-6. 

 Steve Baber, David Hoelzeman, Becky Cunningham, 

Rick Massengale. Programming contest hosting: 

conference tutorial. Journal of Computing Sciences in 

Colleges, (Volume 26 Issue 5, May 2011) pp. 113-115. 

 The ACM-ICPC International Collegiate Programming 

Contest. http://icpc.baylor.edu/ 

 Google Code Jam. http://www.google.com/codejam 

 Facebook Hacker Cup. 

http://www.facebook.com/hackercup 

 TopCoder, Inc. | Home of the world's largest 

development community. http://www.topcoder.com 

 CodeChef. http://www.codechef.com. CodeChef is a 

global programming community. 

 Stanford ACM Programming Contest - Stanford 

University. 

http://cs.stanford.edu/groups/acm/contest/help.php 

 GCC, the GNU Compiler Collection. http://gcc.gnu.org/ 

 J. Merrill. GENERIC and GIMPLE: A New Tree 

Representation for Entire Functions. In Proceedings of 

the GCC Developers Summit3, pages 171-180, May 25-

27, 2003 

 GIMPLE - GNU Compiler Collection (GCC) Internals. 

http://gcc.gnu.org/onlinedocs/gccint/GIMPLE.html

 

IJCATM: www.ijcaonline.org 


