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ABSTRACT
In this paper, you study (strong) generalized closure operators
and their interactions with generalized topologies, (strong)
generalized interior operators (ascending, complete) generalized
neighbourhood systems and extend the commuting diagram of Cao,
Wang and Wang [1] to include strong generalized closure operators.
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1. INTRODUCTION

In a series of papers, Császár ([2], [3] and references there in)
has laid the foundation of generalized topological spaces which
contains the class of topological spaces. These are mathematical
structures in which generalized topologies are collections of
subsets of a set closed under arbitrary unions. Similarly, the notions
of neighbourhood systems and interior operators, are weakened
to obtain the notions of generalized neighbourhood system and
generalized interior operator. Then their interactions with each
other were studied in Császár [2], Shen [5], Min [4], Cao et al.
[1]. The notion of complete neighbourhood system was introduced
in [5] and it is used to establish that there is a one-to-one
correspondence between complete neighbourhood systems and
generalized topological spaces. Cao et al. [1], further extended
the above result and obtained one-to-one correspondence between
the class of generalized topological spaces and the class of strong
generalized interior operators and hence also between the class
of complete generalized neighbourhood system and the class of
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strong generalized interior operators. In this paper, we supplement
the above work by including in the framework the notion of
(strong) generalized closure operators. Then the interaction of
generalized closure operator with the generalized topological
spaces (complete, ascending) generalized neighbourhood systems
and (strong) generalized interior operator is investigated. This
brings in analogues of all the relevant results in [5, 4, 1]. Further
some new results are required to extend the commuting diagram
of Cao et al. [1] to include in it the strong generalized closure
operators.
The paper is organized as follows. Section 2 contains preliminaries.
Section 3 contains the interaction among generalized topological
spaces,(ascending, complete) generalized neighbourhood systems
and strong generalized closure operators, which essentially
completes the proof that the outer triangles in the diagram in
Theorem 4.9 commutes. In Section-4, we establish that the other
triangles in the above diagram also commute.

2. PRELIMINARIES

Let X be a set and ExpX be the power set of X . A subset µ
of ExpX is called a generalized topology (GT) on X if µ is
closed under arbitrary unions. Note that the empty set φ is in µ
and the set X may not be in µ. A generalized topological space is
a pair (X,µ), where µ is a GT on X . In a generalized topological
space (X,µ) the elements of µ are called µ-open sets and their
complements are called µ-closed sets. A mapping Ψ : X →
Exp(ExpX) is called a generalized neighbourhood system (GNS)
if for each x ∈ X and the set A ∈ Ψ(x), x ∈ A. A GNS Ψ is
called ascending if for each x ∈ X , V ∈ Ψ(x) and V ⊆ A implies
that A ∈ ψ(x).
A GNS Ψ is said to be complete (CGNS) if for each x ∈ X and
x ∈ A ∈ Ψ(x) there is a set O such that x ∈ O ⊆ A and y ∈ O
implies that there exists a set B ∈ Ψ(y) with B ⊆ O.
A mapping I : ExpX → ExpX is called a generalized interior
operator (GIO) if

(i) I(A) ⊆ A, and
(ii) A ⊆ B implies I(A) ⊆ I(B) for all A,B ∈ Exp(X).

A GIO is said to be strong (SGIO) if I(I(A)) = I(A) for all
A ∈ Exp(X).

1



International Journal of Computer Applications (0975 8887)
Volume 82 - No. 15, November 2013

Given one of GT, GNS and GIO on a set X , the other two are
related via the following definitions [1,2,4,5].
Given µ:

Ψµ(x) = {A : x ∈M ⊆ A for some M ∈ µ}.
Iµ(A) = ∪{M ⊆ A : M ∈ µ}.

Given µ:

µΨ = {M ⊆ X : x ∈M implies that there exists a V ∈ Ψ(x)

such that V ⊆M}.
ΨI(A) = {x ∈M : there exists a set V ∈ Ψ(x) such that V ⊆ A}.

Given I:

µI = {A ⊆ X : A = I(A)}.
ΨI(x) = {A ⊆ X : x ∈ I(A)}.

It is obvious that Ψµ and ΨI are GNSs, Iµ and IΨ are GIOs, and
µΨ and µI are GTs on X . Moreover, Ψµ is always complete and
Iµ is always strong. It is a shown in Cao et al. [1] that the following
diagram commutes:

Fig. 1.

THEOREM 2.1 [5, THEOREM 2.4]. . For a GNS Ψ on a setX ,
the following statements are equivalent.

(1) ψ is complete.
(2) Ψ = Ψµψ .
(3) Ψ = Ψµ for some GT µ on X .

A mapping C : Exp(X) → Exp(X) is said to a generalized
Closure operator (GCO) if

(i) A ⊆ C(A) and
(ii) A ⊆ B implies C(A) ⊆ C(B) for all A,B ∈ Exp(X).

A GCO is said to be strong (SGCO) if C(C(A)) = C(A) for allA
in ExpX .
It may be noted that if we define the relation
C(A)=X−I(X−A), then I is a GIO if and only if C is
GCO, and I is SGIO and if and only if C is SGCO. In this sense
C and I are considered to be dual operations.

3. ON GT, GNS, GCO

Given a GT µ, we define

Cµ(A) = ∩{F : A ⊆ F and F ′ = X − F ∈ µ}.

Given a GNS Ψ, we define

CΨ(A) = ∩{x : V ∈ Ψ(x) implies V ∩A 6= ∅}.

Given a GCO C, we define

µC = {A : C(X −A) = X −A}.
ΨC(x) = {A : x ∈ X − C(X −A)}.
IC(A) = X − C(X −A).

Given GIO I , we define

IC(A) = X − I(X −A).

It is obvious that Cµ is always a SGCO.

THEOREM 3.1. For each GT µ on a set X . The following
statements hold.

(1) µ = µCµ .
(2) µ = µΨµ .
(3) Cµ = CΨµ .
(4) Ψµ = ΨCµ .
(5) µ = µCΨµ

.
(6) µ = µΨCµ

.

PROOF. (1). LetA ∈ µ. SinceX−A is µ-closed,Cµ(X−A) =
X − A. Therefore, A ∈ µCµ . Conversely A ∈ µCµ . Then
Cµ(X −A) = X −A. This means that A is µ-open.
(2). See [1, Theorem 2.1].
(3). x ∈ Cµ(A) if and only if x is in every µ-closed set containing
A if and only if x is not in any µ-open set disjoint from A if and
only if every µ-open set containing x intersects A if and only if
every V ∈ Ψµ(x) intersects A if and only if x ∈ CΨµ(A).
(4). A ∈ ΨCµ(A) if and only if x ∈ X − Cµ(X − A) if and
only if x /∈ Cµ(X − A) if and only if there exists a µ-closed set
F containing X − A such that x /∈ F if and only if there exists a
µ-open set M such that x ∈M ⊆ A if and only if A ∈ Ψµ(x).
(5). (1) and (3) imply (5).
(6). (4) and (2) imply (6).

LEMMA 3.2. For GCO C on a set X we have

(1) C = CΨC .
(2) µC = µΨC .

PROOF. (1). We show that C(A) = CΨC (A) for each subset
A of X . Let x ∈ CΨC (A). Then for each V ∈ ΨC(x), V ∩ A
is non-empty. Since (X − A) ∩ A = φ, X − A is not in ΨC(x).
That is, x is not in X − C(A). So that, x is in C(A). Conversely,
let x is in C(A). Let V ∈ ΨC(x). Then x is not in C(X − V ). So
X − V 6= A. Thus, V ∩A 6= φ.
(2). A ∈ µC if and only if C(X − A) = X − A if and only if
A = X − C(X − A) if and only if A ∈ ΨC(x) for all x in A if
and only if A ∈ µΨC .

EXAMPLE 3.3. However, the equality C = CµC may not
hold. We take Example 2.3 in Cao et al. [1] and take C as the
dual of the generalized interior operator I defined there, that is
C(A) = X − A(X − A). So that C(φ) = φ, C({a}) = {a, c},
C({b}) = {a, b}, C({c}) = {b, c}, C({b, c}) = C({b, c}) =
C({a, c}) = C({a, b}) = C({a, b, c}) = X . So that µC =
{φ,X}. Thus, C({a}) = {a, c} and CµC ({a}) = X .
For a GCO C there may not be any GT µ such that GCO generated
by µ is C. For instance, if in the above example µ is a GT such
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that Cµ = C then µC = µCµ and CµC = CµCµ = Cµ by
Theorem 3.1(1). Thus, CµC = C, a contradiction. So it is natural
to study the additional restriction necessary on a GCO so that it
can be generated by a GT.

LEMMA 3.4. For a GNS Ψ on a set X , µΨ = µCΨ
.

PROOF. Let A ∈ µΨ and x be a point in A. Then there exists,
a V ∈ Ψ(x) such that V ⊆ A. So V ∩ (X − A) = φ. This
means that x /∈ CΨ(X − A). Therefore, CΨ(X − A) = X − A.
Thus, A ∈ µCΨ

. Conversely, let A ∈ µCΨ
and x ∈ A. Then

A = X − CCΨ(X − A). Therefore, x /∈ CΨ(X − A). So there
exist a V in Ψ(x) such that V ∩ (X −A) = φ. Therefore, V ⊆ A.
Thus A ∈ µΨ.

THEOREM 3.5. If Ψ is ascending GNS then Ψ = ΨCΨ
.

PROOF. If A ∈ ΨCΨ
(x) then x is not in CΨ(X − A). So

there exist a V ∈ Ψ(x) such that V ∩ (X − A) = φ. That is,
V ⊆ A. Since Ψ is ascending, A ∈ Ψ(x). Conversely, let A be in
Ψ(x). Since A ∩ (X − A) = φ, x is not in CΨ(X − A). Thus,
x ∈ X − CΨ(X −A). Consequently, A ∈ ΨCΨ

(x).

THEOREM 3.6. For an ascending GNS Ψ on a set X , the
following statements are equivalent.

(1) Ψ is complete.
(2) CΨ is strong.
(3) CΨ = Cµ for some GT µ on X .
(4) CΨ = CµΨ

.
(5) CΨ = CµCΨ

.
(6) Ψ = ΨµΨ

.
(7) Ψ = ΨCµΨ

.
(8) Ψ = ΨµCΨ

.

PROOF. (4)⇒(3), (3)⇒(2) and (4)⇔(5) are obvious. So we
prove (2)⇒(1)⇒(4).
(2)⇒(1) follows from the fact thatCΨ and IΨ are dual of each other
and the fact (2)⇒(1) in [2, Theorem 3.2].
(1)⇒(4). Let F be a µΨ-closed set containing A. Let x ∈ X − F .
Then there exists a set V ∈ Ψ(x) such that V ⊆ X − F . So
V ∩ A = φ. So that x is not in CΨ(A). Therefore, CΨ(A) ⊆ F .
So CΨ(A) ⊆ CµΨ

(A). Note that in this part we have not used
the completeness of Ψ. Conversely, let V ∈ Ψ(x) be such that
V ∩ A = φ. Since Ψ is complete there exist a set O such that
x ∈ O ⊆ V and y ∈ O implies that there is a B ∈ Ψ(y) with
B ⊆ O. Then O ∈ µΨ and O ∩ A = φ. Therefore X − O is a
µΨ-closed set containingA and x is not inX−O. Thus, x /∈ CµΨ

.
This proves that CµΨ

(A) ⊆ CΨ(A). This proves that the first five
statements are equivalent.
(6)⇔(8) follows from Lemma 3.4.
(1)⇔(6) comes from Theorem 2.1.
(4)⇒(7) comes from Theorem 3.5.
(7)⇒(1). Since µΨ is a GT, CµΨ

is strong. Therefore ΨCµΨ
= Ψ

is complete by the implication (2)⇒(1).

THEOREM 3.7. For a GCO C on a set X , the following
statements are equivalent.

(1) C is strong.

(2) ψC is complete.

(3) ψC = ψµ for some GT µ on X .

(4) ψC = ψµC .

(5) ψC = ψψµC .

(6) C = CµC .

(7) C = CµψC .

(8) C = CψµC .

PROOF. (1)⇒(2). ΨC is complete if and only if CψC is strong
by Theorem 3.6 if and only if C is strong by Lemma 3.2.
(1)⇒(4) µC = µψC by Lemma 3.2. Since C is strong, ΨC is
complete. So by Theorem 2.1 ΨC = ΨµψC

= ψµC .
(4)⇒(3). Obvious.
(4)⇒(2) follows from definition of Ψµ.
(4)⇔(5). From Lemma 3.2, µC = µψC so that ΨµC = ΨµψC

, that
is, ΨC = ΨµψC

by (4). Similarly, ΨC = ΨµψC
= ΨµC using

Lemma 3.2.
(1)⇒(6). If C is strong then CA is a µC -closed set containing A.
Consequently, CµC (A) ⊆ CA. On the other hand, if A ⊆ F and
F is µC -closed, then CA ⊆ CF = F . So CA ⊆ CµC (A).
(6)⇒(1). We prove CCA ⊆ CA. Suppose that x is not in CA
and CA = CµC (A). So there exists a µC -closed set F such that
A ⊆ F and x is not in F . Now CCA ⊆ CCF = CF = F .
Therefore, x is not in CCA. Thus C is strong.
(6)⇔(7) follows from Lemma 3.2(2).
(4)⇒(8) follows from Lemma 3.2(1).
(8)⇒(1). Since µC is a GT, ΨµC is complete. So CψµC = C is
strong by Theorem 3.6.

4. ON GT, GNS, GIO AND GCO

THEOREM 4.1. For a GCO C on a set X the following
statements hold

(1) ψC = ψIC .

(2) IC = IψC .

(3) C = CIC .

PROOF. (1). LetA∈ψIC (x). Then x∈IC(A)=X−C(X−A).
Thus,A∈ΨC(x). Conversely, ifA∈ΨC(x) then x∈X−C(X−A).
Therefore, x ∈ IC(A). So A ∈ ΨIC (x).
(2). Let A be a subset of X and x ∈ IψC (A). Then there exists a
set V ∈ ψC(x) such that V ⊆ A. Then x ∈ X − C(X − V ) and
V ⊆ A. Therefore, x ∈ X − C(X − A) = IC(A). Conversely,
let x ∈ IC(A) = X − C(X − A) then A ∈ ΨC(x). Therefore,
x ∈ IψC (A).
(3). For a subset A of X , CIC (A) = X − IC(X − A) =
X − (X − CA).

THEOREM 4.2. For a GNS Ψ on a set X , the following
statement holds.

(1) IΨ = ICΨ
.

(2) CΨ = CIΨ .

PROOF. (1). Let A be a subset of X and x ∈ ICΨ
(A) =

X − CΨ(X − A). Then there exists a set V ∈ Ψ(x) such that
V ∩ (X − A) = φ. Thus, V ⊆ A. Therefore, A ∈ Ψ(x).
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Conversely, letA ∈ ψ(x). Then x is not inCΨ(X−A). Therefore,
x ∈ ICΨ

(A).
(2). Let A be a subset of X and x ∈ CIψ (A). Then for all
V ∈ Ψ(x), V ∩ A 6= φ. Thus, x ∈ CΨ(A). Conversely, let
x ∈ CΨ(A). Then every V in Ψ(x) intersects with A. Therefore,
x is not in IΨ(X −A). Thus, x ∈ CIΨ(A).

THEOREM 4.3. For a GIO I on a set X , the following
statements holds.

(1) ΨI = ΨCI .
(2) CI = CΨI .
(3) ICI = I .

PROOF. (1). Let A ∈ ΨC1
(x). Then x ∈ X − CI(X − A) =

I(A). Therefore A ∈ ΨI(A). Converse is obvious.
(2). Let x be a point not in CΨI (A). Then there exists a set V in
ΨI(x) such that V ∩A = φ. Then x ∈ I(V ) and V ⊆ X−A. Then
x ∈ I(X −A). Therefore, x is not in CI(A). Conversely, if x is a
point not inCI(A) then x ∈ I(X−A). Therefore,X−A ∈ ΨI(x)
and (X −A) ∩A = φ. Consequently, x is not in CΨI (A).
(3). Obvious.

THEOREM 4.4. For a GT µ on X , the following statements
hold

(1) µ = µICµ .
(2) µ = µCIµ .

PROOF. (1). A ∈ µICµ if and only if A = ICµ(A) =

X − Cµ(X − A) if and only if Cµ(X − A) = X − A if and
only if A ∈ µ.
(2).A ∈ µCIµ if and only ifX−A = CIµ(X−A) = X− Iµ(A)

if and only if Iµ(A) = A if and only if A ∈ µ.

THEOREM 4.5. For a SGIO I on X , the following statements
hold.

(1) I = IµCI .
(2) I = ICµI .

PROOF. (1). Let A ⊆ X and x ∈ IµCI (A). Then there exists a
setM ∈ µCI such that x ∈M ⊆ A. ThenCI(X−M) = X−M .
Therefore,X− IM = X−M . Thus, IM = M and x ∈M ⊆ A.
Therefore, x ∈ I(A). Conversely, let x ∈ I(A). Since I is
strong X − I(I(A)) = X − I(A) and x ∈ I(A) ⊆ A. Thus,
CI(X − (I(A))) = X − I(I(A)) = X − I(A). Therefore
I(A) ∈ µC . Thus, x ∈ ICµI (A).
(2). Let x ∈ ICµI (A)−X − CµI (X −A). This means that there
exists a set F such that X − A ⊆ F , F ′ = X − F ∈ µI and
x is not in F . Therefore, x ∈ F ′ ∈ µI . Thus, I(F ′) = F ′ and
x ∈ F ′ ⊆ A. So x is in I(x). Conversely, let x ∈ I(A). Since I
strong, I(A) ∈ µI . Since X − A ⊆ X − I(A) it follows that x is
not in CµI (X −A). Therefore, x is in ICµI (A).

THEOREM 4.6. For a SGCOC onX , the following statements
hold.

(1) C = CIµC .
(2) C = CµIC .
(3) C = CΨIC

.

(4) C = CIΨC .

PROOF. (1). For a subset A of X , let x ∈ CIµC (A) =
X − IµC (X − A) = X − ∪{M ⊆ X − A : M ∈ µC} =
X − ∪{M ⊆ X − A : C(X − M) = X − M}. Then
for M ⊆ X − A such that C(X − M) = X − M , x /∈M .
Let us take M = X − C(A). Then M ⊆ X − A and
C(X −M) = C(C(A)) = C(A) = X −M . So that x is not
in X − CA. Conversely, let x be in CA. Let M ⊆ X − A be
such that C(X − M) = X − M . Then A ⊆ X − M so that
CA ⊆ X − M . Thus, M ⊆ X − CA. Therefore, x is not in
∪{M ⊆ X − A : C(X −M) = X −M} = IµC (X − A). It
means that x ∈ CIµC (A).
(2). For a subset A of X , we have CµIC (A) = ∩{F : A ⊆ F and
X − F ∈ µIC} = ∩{F : A ⊆ F and IC(X − F ) = X − F =
∩F : A ⊆ F and X − CF = X − F = ∩{F : A ⊆ F and
CF = F} ⊆ C(A) since C is strong, A ⊆ C(A) = C(C(A)).
Conversely, if A ⊆ F and C(F ) = F then C(A) ⊆ (F ) = F .
Consequently, C(A) ⊆ CµIC (A).
(3) follows from Lemma 3.2 and Theorem 4.1.
(4) follows from Theorem 4.1(2) and (3).

THEOREM 4.7. If Ψ is ascending GNS on X . Then the
following statements hold.

(1) Ψ = ΨICΨ
.

(2) Ψ = ΨCIΨ
.

PROOF. (1) Ψ = ΨIΨ by [2, Theorem 3.5]. Now (1) follows
from Theorem 4.2.
(2). Ψ = ΨCΨ

by Theorem 3.5(2) now follows from
Theorem 4.2.

THEOREM 4.8. For GIO I on a setX , the following statements
hold.

(1) I = IΨCI .

(2) I = ICΨI
.

PROOF. (1). Follows from [5, Theorem 3.5] and Theorem 4.3.
(2). Follows from Theorem 4.3(2) and (3).

The following theorem extends the diagram mentioned earlier.

THEOREM 4.9. The following diagram commutes, where the
objects are the classes of GT’s, CGNSs, SGIOs and SGCOs.

Fig. 2.
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5. CONCLUSION

The notion of strong generalized closure operator studied in this
paper constitute a fundamental tool in the study of generalized
topological spaces.
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