
International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 14, November 2013

64

Prioritizing Test Case Generation for Software Testing in
High Level Programming Development Environment

Dinesh Kumar Saini
Faculty of Computing and IT,

Sohar University, Oman
Faculty of Engineering and IT,

University of Queensland,
Brisbane, Australia

ABSTRACT

Abstract—Software testing is very tedious process and during

the software development, testing needs time, efforts and

money. Testing and retesting is part of development process

and lots of efforts are needed for doing this. Detecting faults

and errors in the early stages of development is the main task

of any testing team. The entire test suits are written for the

same target and the test suits grows as the software evolves

over the period of time. Resources are very limited and due to

resource constraints like cost, time and money, it is advised to

prioritize the execution of test cases so that it can increase

chances of early detection of faults in the software

development process [1]. In this paper, high level language

programming paradigm is considered for the development

environment and algorithmic approach of design is

considered. In this paper we present a new approach to

prioritize test cases of particular software based on the

requirements given by the client using high level functional

programming language. Running all test cases in a normal

Test suite, however, can consume an inordinate amount of

time so, its main purpose is to improve rate of fault detection

by prioritizing the test cases in a very short span of time and

release the updated software to the customer [2]. In this paper

a new test case prioritization algorithm, which calculates

using data mining technique K-Nearest neighbor, which in

turn uses Euclidean distance method approach to prioritize the

test cases is proposed.

General Terms
Software Systems, Software Engineering and Software

Testing

Keywords
Data Mining, Test Case, Prioritization, Software development,

Time, Cost and Efforts

1. INTRODUCTION
Software Engineering [1] is the establishment and use of

sound engineering principles in order to obtain economically

reliable and efficiently developed software. It is the

application of a systematic, disciplined, quantifiable approach

to the development, operation, and maintenance of software,

and the study of these approaches. Software testing is an

important and expensive stage in the software development

life cycle. The software testing starts even at the stage of

software architecture selection. As software changes over

time, test suites are developed and used to test the modified

software to make sure that changes do not affect the existing

functionality in unintended ways, and to test for new

functionality.

 Due to time and resource constraints, it may not be possible

to continually execute all the tests in suites, in testing iteration

process. It is therefore important to prioritize (order) the

execution of test cases in test suites so as to execute those test

cases early on during testing, whose output is more likely to

change. If prioritization can be achieved in the testing process

it will help in early detection of errors and fault. Various

techniques are addressed in the paper that can be used in test

case prioritization. In this paper a new approach for

prioritizing the execution of existing test cases with the goal

of early detection of faults in the testing process is discussed

in detail using high level programming paradigm [3].

In this paper we mainly concentrate on prioritizing the test

cases of the software which has already been developed and is

seeking modifications or further up gradations to the existing

software. The test cases and the faults corresponding to each

module are initially recorded by the programmer when the

software is developed. Later, when the client approaches for

any modification or up gradations to the prevailing software,

test suits must be revisited and all the new test cases needed

for the new updates is to be included. The modules in which

the modifications are made are the one which we are

concerned for testing [4,5].

So, consider the faults with respect to that module from the

database and also all the test cases with respect to their faults.

By correlating the faults, using the coverage of the faults and

using the data mining technique k-nearest neighbor [15]

(Euclidean distance approach) we arrive at prioritizing the test

cases.

So, this new method of prioritizing the test cases prioritizes

them based on the Euclidean distance between the module

which is modified and all the test cases with respect to the

faults (which are generated by corresponding modules). The

test case with minimum distance is the most prioritized test

case.

The faults for each test case are initially given by the

developer and this is used while calculating the Euclidean

distance. The faults with respect to each module are also

given by the developer. The weight factor is calculated by

using the line coverage (i.e. line at where fault occurred to

that of function length). The remainder of this paper is

organized as follows.

The background for the work is explained in section

3.Introduction to Data mining and its related techniques are

explained in Section 4. Proposed algorithm is mentioned in

section 5.Case study is discussed in Section 6. The

experimental study, along with results and discussion,

analysis are given in Sections (7, 8) and conclusions are given

in Section 9.

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 14, November 2013

65

2. PROBLEM STATEMENT
Some software was developed and tested and is currently in

use .Customer requires some more features and informs to

developer. The time constraint (i.e. time to update the

software is less) .Now instead of testing all test cases which

were initially tested part of them are selected by prioritizing in

the method described below.

According to Rothermel at el. [5, 9] defines the test case

Prioritization problem as follows:

Given: T, a test suite; PT, the set of permutations of T; f, a

function from PT to the real numbers

Problem: Find T’ belongs to PT such that (for all T”) (T”

belongs to PT) (T” ≠ T’) [f (T’) ≥ f(T”)].

Here, PT represents the set of all possible prioritizations

(orderings) of T and f is a function that, applied to any such

ordering, yields an award value for that ordering [2,7].

The objective of this research is to develop a test case

prioritization technique that prioritizes test cases on the basis

of detection of fault rat

2.1. Software System and Failure Cause

Failure causes can be tested using the testability concept

which can be quantified to some extent; failure is smaller part

of the big software, which is shown in the figure1.

Figure1

Testability = FC/I*100%, FC= Failure Cause and I=Input

Testability is very difficult to Measure

3. BACKGROUND
An early work on test case prioritization by Elbaum [9] and

Rothermel, [20,21] using the fault detection rate, is a measure

of how quickly faults are detected during the testing process.

These test case prioritization algorithms calculates average

faults found per minute and it states that improved rate of

fault detection during regression testing can provide faster

feedback on a system under regression test. Horgan and

London [12] present a new greedy heuristic algorithm for

selecting a minimal subset of test suite T which covers all the

requirements. Aggarwal et al.[14] describe a coverage based

technique for test prioritization , where prioritization is based

on the original test suite used for testing P and not one for

testing modified version P’. However they don’t combine

code coverage information with function coverage. The other

study by Elbaum, Malishvesky, Rothermel [5] presents an

approach to prioritize test cases based on the coverage

requirements present in the relevant slices of the outputs of

test cases. Kim and Porter [12] propose a history based

technique while Srivastava and Thiagarajan [17] have

reported Echelon, a tool used to prioritize test. Srikanth and

Williams investigate economic application of test

prioritization [19] and Doet al. performed a cost benefit

analysis of prioritizing JUnit test cases [13]. Since code and

function coverage techniques are applied separately but yet

they are not combined with each other to get better results or

to perform new experiments. The general algorithm for

prioritizing regression test cases based on functional coverage

as explained in [9].

But, unlike all the above test case prioritizations this approach

concentrates on both code and function coverage combinable.

The term weight factor has been introduced which is based on

the line at where fault occurred in the code and function

length. This new approach based on this weight factor and k-

Nearest Neighbor using Euclidean distance prioritizes the test

cases are explained in the next sections.

4. INTRODUCTION TO DATA MINING
Data mining techniques are emerging a powerful new

technology for the software development environment with

great potential to help companies focus on the most important

information in their testing databases which are produced by

the testing teams.

Using data mining tools, software development teams can

predict future trends and behaviours in the detection of errors

and faults in the development environment. The data mining

techniques will allow software testing businesses to make

proactive, knowledge-driven decisions that will help the

software development industry. The automated, prospective

analyses offered by data mining move beyond the analyses of

past events provided by retrospective tools typical of decision

support systems in the software development environment.

Data mining tools helps to answer quality and reliability

questions that traditionally were too time consuming to

resolve in the software development environment. Data

mining helps in scour databases for hidden patterns. In testing

environment finding predictive information that testing

experts may miss because it lies outside their expectations can

also be traced [10].

The most commonly used technique of data mining that is

used in this approach for test case prioritization is

4.1 K-Nearest Neighbour (k-NN)
Objects can be classified based on closest training examples

in the given feature space. K-NN is a type of instance-based

learning, or lazy learning where the function is only

approximated locally and all computation is deferred until

classification. It can also be used for regression

This method will help in this case like, after finding the

distances between the test cases and the modules with respect

to faults, the nearest distance test case is more prioritized one.

4.2 Euclidean distance:
In mathematics, the Euclidean distance or Euclidean metric is

the "ordinary" distance between two points that one would

measure with a ruler, which can be proven by repeated

application of the Pythagorean theorem. By using this formula

as distance, Euclidean space becomes a metric space

The Euclidean distance between points

and in Euclidean n-space, is defined as:

Cause

of

Failur

e

Softwa

re

Syste

m

Ou

t

http://en.wikipedia.org/wiki/Feature_space
http://en.wikipedia.org/w/index.php?title=Instance-based_learning&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Instance-based_learning&action=edit&redlink=1
http://en.wikipedia.org/wiki/Lazy_learning
http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Distance

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 14, November 2013

66

This Euclidean method is useful for calculating the distances

between the test cases and the modules with respect to faults

as explained in the next section [10].

5. PROPOSED ALGORITHM
The methodology for implementing the algorithm is that,

initially when the software was developed and tested, the

faults corresponding to each module and its functions, line

where the fault is introduced in the code and length of

function in which it is found are stored in the Fault-module

table as shown in table.1 and also the test cases and its

detected faults are stored in the Fault-test case table as shown

in table.2.

Later, when the customer approaches for any modification in

the prevailing software, the modules corresponding to the

changes are taken in to consideration and from the Fault

module table which was initially stored in the database, the

Fault-module array shown below is filled like if the fault is

present among the faults corresponding to the modules under

modification then the value is 1 otherwise it is 0.

After obtaining the array, the Euclidean distance to each of

the test cases with respect to faults is calculated. Even weight

factor is included in the calculation. The test case whose

distance is less is the more prioritized test case.

 Table.1 Fault-module

Fault

_id

Module

_id

Function

_id

line_where

_fault_inroduced

function

_length

Table.2 Fault-testcase

Test_id F1 F2 F3 F4 F5

This array consists of binary values corresponding to each

fault that are present in the modules under modification. If the

fault is present among the faults corresponding to the modules

under modification then the value is 1 otherwise it is 0.

Fault_module[n]

 F1 F2 F3 F4 F5

This array consists of calculated weighted factor for each

element in Fault_module[] array using the Fault-module table.

The weight factor for each fault is calculated as the ratio of

line where it is introduced in the code and function length in

which it is present.

Weight_factor[n]

 F1 F2 F3 F4 F5

5.1 Algorithm for Calculating Euclidean

Distance

Void compute Euclidean_distance()

{

 int final[];

j=0;

 for each Tj in Fault-testcase do

//here Tj represents each row

 in Fault-testcase table

 int sum=0, Euclidean-distance;

 for i=0 -->(n-1) do

 if(Fault_module[i]==1)

Sum=sum+[{Fault_module[i]–Tj[i]}2* Weight_factor[i]]

 end if

 end for

 Euclidean-distance=(sum)1/2 ;

 Final[j]= Euclidean-distance;

 end for

}

The algorithm is implemented using the formula of Euclidean

distance by multiplying each term in the square root by the

weight factor of corresponding fault. Looping is used to

calculate distance to each of the test cases. For this test case

table is used.

5.2 Algorithms for calculating weight

factor:

Void compute Weight_factor ()

{

 int Weight_factor[n], line_where

_fault_inroduced[n], function_length[n];

/* here function length and line_where_fault_inroduced are

obtained

from the Fault-module table */

 for i=0 -->(n-1) do

 {

 Weight_factor[i] =(line_where

_fault_inroduced[i])/function_length[i];

 }

 end for

This algorithm is used for calculating the weight factor with

help of fault-module table and storing it in the array named

weight_factor[n]. For each fault it is calculated as the ratio of

line where fault introduced and function length.

Clearly with this approach it is ensured that

1. All test cases that are initially available are considered

for implementing this process. No fault is neglected.

2. We have used the weight factor for prioritizing the faults

with respect to the function coverage and code coverage.

3. This is an efficient method for prioritizing the test cases

as it is considering all faults with respect to modules and

test cases and also the code coverage and function

coverage.

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 14, November 2013

67

When modules and functions under modification are known

and suppose ‘n’ number of faults are detected. Consider there

are m number of test cases then it takes O(m*n) to compute

distances for all test cases and it takes O(log(m)) to sort the

distances .Hence total time complexity is O(m*n).

6. CASE STUDY
The above algorithm is demonstrated with the help of the

below mentioned example. There are 2 modules given , the

first module contains two functions namely main() and

factorial(). The second modules also contains two functions

namely add() and divide() functions. The lines highlighted

in bold letters in the code mentioned above signify the lines

where the fault is introduced.

MODULE 1:
int main()

1. { printf("Enter operation: ");

2. scanf("%C",&op);

3. if (op==+)

4 {

5. printf("Enter argument 1: ");

6. scanf("%d",&arg1);

7. printf("Enter argument 2: ");

8. scanf("%d",&arg2);

 If(arg2>3)

 {

9. add(arg1,arg2/0); //add(arg1,arg2)

 }

 Else

 {

 add(arg1,arg2)

 Div(arg1,arg2)

 }

10. }

11. else if(op=='/')

12. {

13. printf("Enter argument 1: ");

14. scanf("%d",&arg1);

15. printf("Enter argument 2: ");

16. scanf("%d,&arg2);

//input(/,4,0);

//fault is syntax error ’’ missing
17. add(arg1,arg2);

div(arg1,arg2);

18. }

19. else if(op=’f')//input(f,2)

//fault is op=’f ‘ instead of op==’f’

20. {

21. printf("Enter argument 1: ");

22. scanf("%d",&arg1);

23. Factorial(arg1);

24. }

25. else

26. {

27. printf("invalid input!!");

28. }

29. }

void factorial(int x)

1.{

2. int i;

3. long int fact=1;

4. if(x>0)

5. {

6. for(i=1;i<=x;i++)

7. fact*==L;//instead of fact*=1;

8. printf("%ld",fact);

9. }

10. else

11. add(fact,2)

printf("Invalid argument");

12. }

MODULE 2:
void add(int arg1, int arg2)

1.{

2. int sum;

3. sum = =arg1+ arg2;

// instead of sum=arg1+arg2;

4. printf("Result is %d",sum);

 factorial(‘f’,arg2);

 div(arg1,arg2);

5. }

void divide(int arg1, int arg2)

1. {

2. if(arg2==0)

3. {

4. printf("Invalid argument! ");

5. }

6. else

7. printf("Result is %d",arg2/arg1);

8. }

6.1 Faults introduced

In the above code fault occurrences were written in quotes or

highlighted in bold letters and test cases which detect them are

given below in table.1. Here in this the code was divided into

two modules with each module containing two functions in it.

Table.3 Faults introduced

Fault Test

Case

Function Description Detected by

F1 Add T1(‘+’,

2 ,2)F4,F5

Sum==Arg1+arg2

F2 Mam F4,F4 add (arg1, arg2/0)
// instead of add
(arg1, arg2)

T2(+,1,4)

F3 Mam

T3(‘/’,4,0),

F5

missing double

quotes

F4 Factorial fact*==L;

//instead of

fact*=1;

T4(‘f’,3)

F5 Divide arg2/arg1 instead

of arg1/arg2

T5 (/,1,2)

From the above table it can be seen for T1 (‘+’,2,2) fault is

occurring in the add function (F1) and it is calling factorial

function and divide function in the add function which in turn

leads to occurrence of faults F4 and F5.

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 14, November 2013

68

Similarly for other test cases the faults are detected which are

shown in below table.

Table.4 Test cases-Faults detected

Test cases Faults Detected

1 F1, F4, F5

2 F2, F4, F5

3 F3, F5

4 F4

5 F5

Here in table.5 the modules and its corresponding faults,

functions, line where fault occurred and function length are

given below.

Table.5 Fault-module

Fault

_id

Module

_id

Function

_id

line_where

_fault_inroduced

function

_length

1 2 1 3 5

2 1 1 19 30

3 1 1 6 30

4 1 2 7 12

5 2 2 7 7

Here in table.6 we have the table for test cases and faults from

table .4. If the fault is detected the binary value is 1 otherwise

it is 0.

Table.6 Fault-testcase

Test_id F1 F2 F3 F4 F5

1 1 0 0 1 1

2 0 1 0 1 1

3 0 0 1 0 1

4 0 0 0 1 0

5 0 1 0 0 1

7. EXPERIMENTAL RESULTS
Consider upon customers request the modification is in

function 1(i.e. main) function 2(i.e. factorial) in MODULE 1

and function 2 (i.e. divide) in MODULE 2.

Now for these changes from table.5 it can be seen that

function 1(i.e. main) in MODULE 1 has been detected by

faults F2 and F3 and so binary value is 1 in position 2 and 3 in

Fault_module[].

For function 2(i.e. factorial) in MODULE 1 has been detected

by faults F4 and so binary value is 1 in position 4 in

Fault_module[].

For function 2(i.e. divide) in MODULE 2 has been detected

by faults F5 and so binary value is 1 in position 5 in

Fault_module[].

F1 F2 F3 F4 F5

0 1 1 1 1

Similarly Weight_factor array can be calculated from the

above Fault-module table and Weight factor computational

algorithm as

 Example: For fault1 from fault-module table in the case

study the weight factor is

 line_where_fault_inroduced = 3 = 0.6

 fuction_length 5

F1 F2 F3 F4 F5

0.6 0.63 0.2 0.58 1

Now we have both Fault_module[] and Weight_factor[] .

Therefore in proposed approach we calculate the nearest

neighbour of Fault_module array with respect to each row Tj

in Fault-testcase table.3.

According to proposed algorithm the calculation is made only

if it is 1 in Fault_module[] array otherwise we neglect that

term in the array.

In this example indexes under consideration are 2, 3, 4 and 5

from Fault_module array and the first index is not considered

as it is 0.

For test case 1 i.e T1

F1 F2 F3 F4 F5

1 0 0 1 1

By algorithm the distance is {(1-0)*0.63+ (1-0)*0.2+ (1-

1)*0.58+ (1-1)*1}1/2 = 0.911043

For test case 2 i.e. T2

F1 F2 F3 F4 F5

0 1 0 1 1

By algorithm the distance is {(1-1)*0.63+ (1-0)*0.2+ (1-

1)*0.58+ (1-1)*1}1/2

 = 0.4472135

For test case 3 i.e. T3

F1 F2 F3 F4 F5

0 0 1 0 1

By algorithm the distance is {(1-0)*0.63+ (1-1)*0.2+ (1-

0)*0.58+ (1-1)*1}1/2

 =1.1

For test case 4 i.e. T4

F1 F2 F3 F4 F5

0 0 0 1 0

By algorithm the distance is {(1-0)*0.63+ (1-0)*0.2+ (1-

1)*0.58+ (1-0)*1}1/2 =1.352774

For test case 5 i.e. T5

F1 F2 F3 F4 F5

0 1 0 0 1

By algorithm the distance is {(1-1)*0.63+ (1-0)*0.2+ (1-

0)*0.58+ (1-1)*1}1/2

 = 0.883176

Therefore by nearest neighbour concept the test case with

least distance should be checked or tested first so it has high

priority and the rest follow the same procedure.

Therefore the prioritized test cases are:

T2, T5, T1, T3, T4

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 14, November 2013

69

8. ANALYSIS OF EXPERIMENTAL

RESULTS
It can be seen that the new prioritized test cases are T2, T5,

T1, T3, T4 from the above results.

Which can be easily verified that test case 2(T2) covers fault

2 fault 4 and fault 5 from Table .6 of section 6 i.e. fault-test

case. Which are the corresponding faults of the function

which have been modified i.e. main(), factorial() and divide(

). So it proves that the test case 2 is the most prioritized one as

it is handling all the faults generated by those functions.

Similarly test case 5(T5) covers fault2 and fault5 from Table

.6 of section 6 i.e. fault-testcase which covers two functions

i.e. main() and divide() of the three functions.so it implies T5

is the second most prioritized test case.

Similarly the priority of the other test cases is validated.

9. QUANTIFYING TESTABILITY
Quantification is not an easy task in the software development

process and effort are made to formulate the process using

RIP and Mutation concept in the software. Mathematical

formulations are possible for testability [23, 24, and 25] and

faults can be induced as shown in fig.2.

Figure 2

Figure3

Testability (P) = F (Sensitivity (X)), for all X in P

Sensitivity and Testability are formulated based on the fault

induction mechanism which is shown in figure3.

10. CONCLUSION
In this paper a new approach for prioritizing the test cases that

takes in to account the test cases and its faults, modules and

its respective faults is presented. This new technique using

data mining is flawless according to the experimental results

and this new approach is promising in terms of ordering the

test cases in test suites so as to detect faults early in the testing

process.

11. ACKNOWLEDGEMENT
The author would like to thank the research department of

Sohar University and Faculty of Computing and IT, Sohar

University, Oman and Faculty of Engineering and IT,

University of Queensland, Brisbane, Australia for the research

support.

12. REFERENCES
[1] Dinesh Kumar Saini and Nirmal Gupta “Class Level Test

Case Generation in Object Oriented Software Testing,

International Journal of Information Technology and

Web Engineering, (IJITWE) Vol. 3, Issue 2, pp. 19-26

pages, march 2008. USA

[2] Dinesh Kumar Saini “Testing Polymorphism in Object

Oriented Systems for improving software Quality” ACM

SIGSOFT Volume 34 Number 2 March 2009, ISSN:

0163-5948, USA

[3] S. Elbaum, A. G. Malishvesky, and G. Rothermel. Test

case prioritization: A family of empirical studies. IEEE

Trans. on Software Engineering, 28(2):159–182,

February 2002.

[4] Dinesh Kumar Saini and Moinuddin Ahmad, “Return on

Investment and Effort Expenditure in the Software

Development Environment”, International Journal of

Applied Information Systems 4(7):35-41, December

2012. Published by Foundation of Computer Science,

New York, USA. BibTeX 10.5120/ijais12-450813

[5] G. Rothermel, R. H. Untch, C. Chu, and M. J. Harrold.

Prioritizing test cases for regression testing. IEEE Trans.

onSoftware Engineering, 27(10):929–948, Oct. 2001

[6] Sebastian Elbaum, Gregg Rothermel, Satya Kanduri,

Alexey G. Malishevsky, Selecting a Cost-Effective Test

Case Prioritization Technique, April 20, 2004.

[7] Lakshmi Sunil Prakash, Dinesh Kumar Saini and Kutti

N.S. “Integrating EduLearn Learning Content

Management System (LCMS) with Cooperating

Learning Object Repositories (LORs) in a Peer to Peer

(P2P) architectural Framework” ACM SIGSOFT

Volume 34 Number 3 May 2009, ISSN: 0163-5948,

USA.

[8] Alexey G. Malishevsky, Joseph R. Ruthruff, Gregg

Rothermel, Sebastian Elbaum, CostcognizantTest Case

Prioritization, 2006

[9] Elbaum, S., Malishevsky, A., and Rothermel, G.

Incorporating varying test costs and fault severities into

test case prioritization, IEEE Computer Society,

Washington, DC, 329-338.2001.

[10] Introductio To Data Mining by Pang-Ning Tan, Michael

Steinbach , Vipin Kumar Belur V. Dasarathy, editor

(1991) Nearest Neighbor (NN) Norms: NN Pattern

Classification Techniques, ISBN 0-8186-8930-7

Given a location X in the Software S

P:

entr

y

X

E

xi

t

Fault

Induction

Entry

and

Exit

of the

Fault

RIP

and

Mut

ation

Induce

faults

(Mutan

ts)

R = % inputs

from some

distribution

Which can reach

X

I = % inputs that

cause a fault to

 Infect

(average over N

faults)

P = % infected

states that

 Propagate to

output

Sensitivity (X) = R * I * P

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 14, November 2013

70

[11] Dinesh Kumar Saini and Nirmal Gupta “Fault Detection

Effectiveness in GUI Components of Java Environment

through Smoke Test”, Journal of Information

Technology, ISSN 0973-2896 Vol.3, issue3, 7-17

September 2007.

[12] Horgan, J.R and S. London, ATAC: A data flow

coverage testing tool for C, May 1992,pp 2-10, IEEE

press.

[13] Dinesh Kumar Saini “Software Testing for Embedded

Systems” International Journal of Computer Applications

, Published by Foundation of Computer Science, New

York, USA, Volume 43 Number 17, April 2012 Page No.

1-6. 10.5120/6192-8700.

[14] Aggarwal K. K., Y. Singh and A. Kaur (2004),“Code

Coverage based technique for prioritizing test cases for

regression testing”, SIGSOFT Software

engineeringNotes, 29(5):1-4.

[15] Dinesh Kumar Saini and Moinuddin Ahmad, “Business

Aspect of Software Reusability”, International Journal of

Applied Information Systems 4(7):28-34, December

2012. Published by Foundation of Computer Science,

New York, USA. BibTeX, 10.5120/ijais12-450812

[16] Kim J. and A. Porter, A history based test prioritization

technique for regression testing in resource constrained

environments, ICSE 2002, pp 119-129,New York.

[17] Srivastava A. and J. Thiagarajan, Effectively prioritizing

test cases in development environment, ISSTA, pp 123-

133, july-2002, New York.

[18] Dinesh Kumar Saini, Lingaraj A. Hadimani and Nirmal

Gupta “Software Testing Approach for Detection and

Correction of Design Defects in Object Oriented

Software” Journal of Computing, Volume 3, Issue 4,

April 2011, ISSN 2151-9617, Page No. 44-50

[19] Srikanth H. and L. Williams, On the economics of

requirements based test case prioritization, EDSER 2005,

pp 1-3, New York.

[20] Do, H. G. Rothermel and A. Kineer, “Empirical studies

of test case prioritization in a JUnit testing environment,

2004, pp 113-124, Los Alamitos, IEEE press.

[21] Do, H. G. Rothermel and A. Kineer, Prioritizing JUnit

Test cases : An empirical assessment and cost benefits

analysis, Empirical Software engineering, March 2006.

[22] Dinesh Kumar Saini and Lakshmi Sunil Prakash,

“Plagiarism Detection in Web based Learning

Management Systems and Intellectual Property Rights in

the Academic Environment”, International Journal of

Computer Applications 57(14):6-11, November 2012.

Published by Foundation of Computer Science, New

York, USA. BibTeX 10.5120/9180-3598.

[23] Dinesh Kumar Saini “A Mathematical Model for the

Effect of Malicious Object on Computer Network

Immune System” Applied Mathematical Modelling,

35(2011) Page No. 3777-3787 USA,

doi:10.1016/.2011.02.025.

[24] Dinesh Kumar Saini “Security Concerns of Object

Oriented Software Architectures” International Journal of

Computer Applications, Feb 2012, 40 (11), Page No. 41-

48.

[25] Dinesh Kumar Saini and Yashvardhan Sharma “Soft

Computing Particle Swarm Optimization based

Approach for Class Responsibility Assignment Problem”

International Journal of Computer Applications, Feb

2012, 40 (12), Page No 19-24.

[26] Hemraj Saini and Dinesh Kumar Saini "Malicious Object

dynamics in the presence of Anti Malicious Software”

European Journal of Scientific Research ISSN 1450-

216X Vol.18 No.3 (2007), pp.491-499 © Euro Journals

Publishing, Inc. 2007

http://www.eurojournals.com/ejsr.htm EUROPE

IJCATM: www.ijcaonline.org

