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ABSTRACT

The present paper is devoted for investigating the existence,
unigueness and convergence properties of deficient discrete
quartic spline interpolation over uniform mesh which matches
the given functional values at mesh points, interior points and
second difference at boundary points.
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1. INTRODUCTION

Discrete splines have been introduced by Mangasarian and
Schumaker [3] in connection with certain studies of
minimization problem involving differences. Astor and Duris
[5] studied discrete L splines. Total positivity of the discrete
spline callocation matrix given by Rong Qing Jia [6]. To
compute non-linear splines iteratively Malcolm [2] used
discrete splines.  Discrete splines are useful for best
summation formula (see Mangasarian and Schumaker [4]).
Rana and Dubey [7] have obtained local behaviour of discrete
cubic spline interpolation which is some time used to smooth
histogram. For some constructive aspects of discrete splines
reference may be made to Schumaker [1]. In this paper, we
have generalized the result of Dubey and Shukla [10] for
discrete deficient quartic spline interpolation, over uniform
mesh and obtained existence uniqueness and convergence
properties of deficient discrete quartic spline interpolation
over uniform mesh which matches the given functional values
at mesh points, interior points with boundary condition of
second difference.

Let us consider a mesh P on [ a b] which is defined by
Pra=X,<X <. ,<X,=Db
For i = 1, 2,....n, pi shall denote the length of the mesh

. Xi 4y X L . U O P
interval [ i-1 '] p is said to be a uniform mesh if P; is
constant for all i. Throughout, h will represent a given

positive real number. Consider a real function S(X’ h) such

s0ch) o, D,

polynomial of degree 4 or less i=1, 2,....n. Then S(X’ h)
defines a deficient discrete quartic splines with deficiency 1
as,

Di"s, (x,,h)=Df" s, (x;,h)
j=0,1,2

S, . ..
that ' is the restriction of

1.1)
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{i}
whereas the difference operator N for a function f is
defined by

DI £ (x) = f (),
f(x+h)—f(x=h)
2h '

D& £ ()=

f(x+h)—2f(x)+ f(x—h)
h2

D™ f =Di™ D f(x), m,n>0

D £ (x)=

and

Let S(4, 1, P, h) be the class of all deficient discrete quartic
splines with deficiency I satisfying the boundary conditions,

D& s(x,,h) =D f (x,,h),

D7 s(x,,h)=D3? f(x,,h) (12)

a. =X+60,0<0<1

Now  writing ! , introducing the
following interpolatory conditions for given function f,

S(Xi ) h)= f (Xi ) h)
=0, 1. (1.3)

s(e;,h)=f (a;,h)

and pose the following.

PROBLEM 1.1 : Given h > 0, for what restriction on P
does there exist a unique S(X,h)eS(4,1 P,h) which
satisfies the conditions (1.2) and (1.3)?

2. EXISTENCE AND UNIQUENESS

Let P(z) be a discrete quartic spline polynomial on [0, 1],
then we can show that

P(2)=P(0)0,(2)+ P1) 4, (2) + P(6) s (2)
+DPPO),(@+DPPWG().

whereas
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p? +120(x—x.)* p—66(x—x)"],
1 2 3 2 2 2
Q3(Z)=W[6(1+h )(X=%) p”—6h"(x—x)"p

—12(x=x)* p+6(x—x,)*],

q,(2)=1+ %[{—66?4 +1260° —-6+6h*(6* -1}z

~6(0-1)h*z* —12(9-1)2° +6(8-1)z*],

1
q,(2)=—[60"* —120° -66°h*)z
26 | q4(z)=6A1p4[{—294+593—392+(93—92)h2}
2,2 3 pppt
rona+l20r -6’ (X=%) P° +{3(0" + 0~ 26%)+ (6 — )N} (x~x,)? p°
qg(z):g—Al[e(u h?)—6h%z2 —127° + 62*] +{(-0" ~50+ 66" —(6—6°)h*}(x—x;)’ p
! +(0° =30 +20) (x—x,)*],
q,(2) =i[—2494 +560° —36% + (6° —6°)h*}z
6A 1 4 3 2(p3 2
G(2)= g por [0 +0° =n*(0° =0} (x—x)

+{3(0* +0-26°)+(0—6*)h*}z* +{(-0"* —50 + p® +h2(8° —0)(x - x,)? p*
+((0* - 0)+(0-0*)h*) (x=x,)* p—(6° - 6)
(x=x)*1.

0 (2)=—[{-0° +6 —h?(6° —6%)}z+h? Clearly s(x,h)is a discrete quartic on [X;,X;,,] for

6A i=0,1,....n and satisfies (1.2) and (1.3). Now applying
continuity of first difference of S, (X,h)at X; given by
(1.1), we get the following system of equations.

+(60° -36% +26) 2]

(0° —0)22 +{0" —0+h*(0-0°Y2% - (6° - 0)2%]

where

A=[(0" +6-20° +(0-0*)h*] [{(6° —6+30° —36°)+(6° —O)h*}p° +

Now we are set to answer problem 1.1 in the following. {(—494 +360-60° + 4193)

THEOREM 2.1. For h > 0 and p > h there exist a —h%(@-0>)I* D s, (x,h)+[[{(26* —36° +6)

unique deficient discrete quartic spline 2113 ) )

s(x,h)eS(4,1, P,h) which  satisfies interpolatory +h™(60" +6° -20)}p

conditions (1.3) and boundary conditions (1.2). +{(0" +36-46°) + (6 — 6*)h*Ih?*]-[{(-26" +
3 2 3 2 2 2

PROOF OF THEOREM 2.1. Denoting (X—X;)/ p 50" =30" +(0°-67)h"}p

by t, 0 <t< 1 writing (2.1) in the form of restriction +{(-0* -56)+66° — (0 —-6°h*}h?]]

S, (X, h) of the quartic spline s(x, h) on [X;,X; ;] as DZs, (x, h) +[{68* — 6% + h?(6° — 0%)}p>

follows : e

+{6-6" +(0> -0)h*In* DP s, (x,h)=F,

-,hzf-lfi+12fi3
5,06 h)= ()6, (2)+ f (%) 6. (D) + F () 0 (2) + (say) 23)

where
Di?s, (x,,h)q,(2)+ D¥s, (x;,h) g5 (2) (2.2) 1
where F ZF[(—GQA' +6+120° —120)+(60° +6-120)h?)

1 4 4 3 2

ql(z):W[BAp +{—60 —6+129 +6h (0—1)} p2 +12(6_1)h2}f (Xi_l)

p3(X_Xi)_6(0_1)h2(X_Xi)2 pZ —12(0—1)(X—Xi)3 p+6(6)_1)(x_xi)4]] +{—6(l+ hz) p2 +12h2} f (ai_l)—l—{lZ@ — 6) (1+ hz) p2
+12(1—20)h?}f (x.)

1
660° -126° —6°h*) (x-x.) p* +6h%G(x-x.)*
6Ap* I Jx=x)p Y +{(60" —120° —66°h?) p* +120h°} f (x;,,)

qz(z):
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+{6(1+h?) p> —12h*} f (r)]].

Dr{12}5(xi h)= m; (h)=

Writing M toralli (say),

we can easily see that excess of the absolute value of the
- m.
coefficient of ' over the sum of the absolute values of the

coefficients of Miy and
of Theorem 2.1 is given by

Mg in (2.3) under the condition

0(1-0) p[{L+20 —26%) + h?(1—20)} p? + 4h?
{1+ 6 -6 +h*}] = Ci(h)

which is clearly positive under the condition of Theorem 2.1.
Therefore the coefficient matrix of the system of equations are
diagonal dominant and hence invertible. Thus, the system of
equations has a unique solution. This completes the proof of
Theorem 2.1.

3. ERROR BOUNDS

It may be seen that system of equations (2.3) may be written
as

A(h),m(h)=F(h)

where A(h) is coefficient matrix and m(h) = mi(h) for all i.
However, as already shown in the proof of Theorem 2.1, A(h)
is invertible. Denoting the inverse of A(h) by A-1(h), we
note that row max norm A-1(h) satisfies the following
inequality,

A7 () lI<y(h) (3.1)

where y(h)=max{l. (h)}*.
For a given h> 0, we introduce the set Rh :{Jh' J
integer} and define a discrete interval as follows -

[0.11, =[0,11NR,

is an

For a function f and three distinct points X1 X0 X in the
domain, the first and second divided difference are defined by

[X X ]f:f(xl)_f(XZ)
v (X _Xz)
[X2, X 1F =[x, X, 1€

d[x,,X,, X, ]f =
a”[l 2 3] (X3_X1)

respectively.

(3.2)

f {2} DéZ} f .I:.2

For convenience, we write for and ' for

D f(x)

and w(f,p) is the modulus of continuity of f and

I £ 1l= max [f (x)]

xe[0,1]y

is the discrete norm of a function f over the interval [0, 1]h.
Without assuming any smoothness condition on the data f, we
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shall obtain in the following the bounds for the error function

e(x)=s(x,h)—f(x)

over the discrete interval [0, 1]h.

THEOREM 3.1. Suppose S(X’ h) is the discrete quartic
spline interpolant of Theorem 2.1. Then

le I<C(h) K (p,h)w(f, p)

(3.3)
I e |<C,(h) K, (p,h)w(f, p)

(3.4)
ang 100 1< P*K (p,h)w(f, p)

(35)

where K (p, h), K1 (p, h) and K* (p,h) are positive function of
p and h.

Proof of Theorem 3.1 : Equation (3.1) may be written as
A(h)e® (x)=F, — A(h) @ =M, (h)
(say) (3.6)

When we replace

m. (h) by e{z}(xi): DEZ}S(Xi h)— fi{z} in (2.3).

To estimate row max norm of the matrix Mi(h) in (3.6), we
shall need following Lemma due to Lyche [8, 9].

m
Lemma 3.1 : Let {a}h and {o }J “Lbe a given sequence

b.
of non-negative real numbers such that Z Z
Then for any real valued function f defined on a dlscrete

interval [0.1]; we have
zai[XiO’Xili ------ Xal ¢ —ij [yjo’yjl'____y
i-1 =

<w(f%[1-p]) > alk

X,V €[0,1

where K Yik [ ]h for relevant values of i, j and k. It
may be observed that the r.h.s. of (3.6) is written as for m=8
and n=7.

|(Mi(h)|zzai[xi0’xi1]f _zbj [ij’ yjl]f |
(3.7
where a, =(60* —126° —60°h?) p*>=h,,
=p2660(1+h?)=a,,
b, =12p*0(1+h?),
a, =126h?>=b,=a, =b,,

=2—F;][{(94 —0+30% —30%)+(0° — O)h?}p?
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+{(~0* +30-60° +46°)—(0—6°)h*I* =h,

=2—";][{(494 —860° +30% + ) +2h* (0% — O)}p>

+{(20* +80—66? —46°)+2h*(0 - 6°)}h*]=b,

:2—'[;][{94 —0° +h*(0° - 0°)}p* +{(0-0")

+h?(6% —9)}*]=h,,

Y10 = Xii1 = X510 = Y20 = X40 = X1 = Y50:
Xi=Y= =Y =X =Y = =Y =Xn1=
X171 = X1 = Xs1,

Xp0 =0ty =X +EP =Yy,
X3 =0 =X +P=Y,,,
Ys, =X, +h,

X0 =Xi1 —h,

Yo, =% +h,

X=X —h,

Y7, =X +h,

Xgo =iy —h, X81=X 1= Y70

Hence Za Zb =N (d,p,h) (say).

i=1

Thus applying Lemma 3.1 in (3.7) for m=8, n=7 and k=1, we
get

(M (M) I <N (8, p,h) w(f ™, p), (38)
Now using equation (3.1) and (3.7) in (3.6) we get
leZ ) I<C,( K (p.hw(f®, p). @9

where K (p, h) is some positive function of p and h.

We now proceed to obtain an upper bound for e(x). Replacing
my(h) by ei{l} in equation (2.2), we obtain

e(x,h)=p*[Q, (1)e® (x)+Qs (1) ™ (x.,)]+ L (f)

(3.10)
Now we writt L;(f) in term of divided difference as
follows :-
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Li(f):Zui[XiO’Xil]f _ZVJ' [yjo’yjl]f

where

u, = p{(6*6-126° —66?h?)t+66h’t2 +12&° — 64 *}

v, =(6){-6(h*)t +6h°t* +12t° —6t*},
_P' 5 -
~on Q,(1)=v, .

_PPQs() _
3 2h 3
v,=6Apt.
and
XlO_X _X21 yll y20 y41’

X11= X1 = Y301
Y X +h,
Xa0 =X — h,
y X|+l +h
Xa0 =1 — Ny X531 =Xi115 Yao =X,
Y10 = =X +6p,
3 4
Thus U =V, =6Ap[{0° - 26° ~ h)
i=1 j=t
p?
1 Q0+ 0N

=N*(p, h) (say)

+h? + 2t2

We again apply Lemma 3.1 in (3.10) for i=3, j=4 and k=1, we
see that

|L(f)I<N*(p,hyw(f®, p) (3.11)
Thus, using (3.10) and (3.11) in (3.9) we get the following
le() [I<p® K*(p,h)w(f®, p) (312)

where K* (p, h) is a positive constant of p and h. This is the
inequality (3.5) of Theorem 3.1.

We now proceed to obtain an upper bound of ei{l}. From
equation (2.2) we get,

st (=1 a O+ ., 057 O+ T, 45 ©)
+p* st (x,h) g’ () + p* s (x,h) g (1)

(3.13)
Thus
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o 2 {2 A1l {2
e (x,h)=p"[e/”q, (1) +e (3.14)
g5 (H)]+U; (f)

where U, (f)

= f,a® O+ .. aP )+ £, 68 ©)

P60 O+ 12 aP O] 12 (1),

i+1

By using Lemma 3.1 and first and second divided
difference in U, () we see that :

4 3
|Ui(f)|S w(f®, p)zai :ij

i-1 =1
where
a, = p{l66* —1260° —60°h?)+12h%6t,
+126(h? +3t%)—24& (t* +h*)}
a, = p{66(1+ h2)—126hzt—12¢9(h2+3tz)

+2460t(t> +h*)}, a, ——q{l}(t) b,

a=2 40 0=b,

=q,ta,=p and
also
X10 =X = X0 =X31= Y30 = Y11,
Xo1= X1 = X400 = You
Va1 =Xg0=X; +h
X4 =X, +h

i+1

Y1o:X'_h Yo0=Xi,y—h
4 3 p
>a=>b,= [q{”(t>+qé” ®)

i=1 j=1

[JCA™: www.ijcaonline.org
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@i

From equation (3.8) putting the value of in equation

() . .
(3.13) we get upper bound of €; . This is inequality (3.4) of
Theorem 3.1.

4. CONCLUSION AND FUTURE SCOPE

Existence, uniqueness and convergence properties of deficient
discrete quartic spline interpolant matching the given function
values at mesh points and interior points of the given mesh
with appropriate boundary conditions have been investigated
in the present paper. These results can be generalized in
future for general mean averaging condition.
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