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ABSTRACT 

The present paper is devoted for investigating the existence, 

uniqueness and convergence properties of deficient discrete 

quartic spline interpolation over uniform mesh which matches 

the given functional values at mesh points, interior points and 

second difference at boundary points. 
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1.  INTRODUCTION 

Discrete splines have been introduced by Mangasarian and 

Schumaker [3] in connection with certain studies of 

minimization problem involving differences.  Astor and Duris 

[5] studied discrete L splines.  Total positivity of the discrete 

spline callocation matrix given by Rong Qing Jia [6].  To 

compute non-linear splines iteratively Malcolm [2] used 

discrete splines.  Discrete splines are useful for best 

summation formula (see Mangasarian and Schumaker [4]).  

Rana and Dubey [7] have obtained local behaviour of discrete 

cubic spline interpolation which is some time used to smooth 

histogram.  For some constructive aspects of discrete splines 

reference may be made to Schumaker [1].  In this paper, we 

have generalized the result of Dubey and Shukla [10] for 

discrete deficient quartic spline interpolation, over uniform 

mesh and obtained existence uniqueness and convergence 

properties of deficient discrete quartic spline interpolation 

over uniform mesh which matches the given functional values 

at mesh points, interior points with boundary condition of 

second difference. 

Let us consider a mesh P on [ a b] which is defined by 

bxxxaP n  ........,: 10 . 

For i = 1, 2,.....n, pi shall denote the length of the mesh 

interval 
],[ 1 ii xx   p is said to be a uniform mesh if ip

 is 

constant for all i. Throughout, h will represent a given  

positive real number.  Consider a real function 
),( hxs

such 

that is
 is the restriction of 

),( hxs
 on 

],[ 1 ii xx  a 

polynomial of degree 4 or less i=1, 2,.....n. Then 
),( hxs

defines a deficient discrete quartic splines with deficiency 1 

as, 
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Let S(4, 1, P, h) be the class of all deficient discrete quartic 

splines with deficiency I satisfying the boundary conditions, 
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Now writing 
10,   pxi , introducing the 

following interpolatory conditions for given function f, 

  
),(),( hxfhxs ii 

   i 

= 0, 1......n    (1.3) 

  
),(),( hfhs ii  

  i 

= 0, 1,......n-1,   

and pose the following. 

PROBLEM 1.1 : Given h > 0, for what restriction on P 

does there exist a unique ),,1,4(),( hPShxs  which 

satisfies the conditions (1.2) and (1.3)? 

2. EXISTENCE AND UNIQUENESS 
Let P(z) be a discrete quartic spline polynomial on [0, 1], 

then we can show that 
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Now we are set to answer problem 1.1 in the following. 

THEOREM 2.1. For h > 0 and p > h there exist a 

unique deficient discrete quartic spline 

),,1,4(),( hPShxs  which  satisfies interpolatory 

conditions (1.3) and boundary conditions (1.2). 

 

PROOF OF THEOREM 2.1. Denoting pxx i /)( 

by t,  0 < t < 1 writing (2.1) in the form of restriction 

),( hxsi of the quartic spline s(x, h) on ],[ 1ii xx  as 

follows : 
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Clearly ),( hxs is a discrete quartic on ],[ 1ii xx  for 

i=0,1,....n and satisfies (1.2) and (1.3). Now applying 

continuity of first difference of ),( hxsi at ix  given by 

(1.1), we get the following system of equations. 
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Writing iiin mhmhxsD  )(),(}2{

 for all i (say), 

we can easily see that excess of the absolute value of the 

coefficient of im
over the sum of the absolute values of the 

coefficients of 1im
 and 1im

 in (2.3) under the condition 

of Theorem 2.1 is given by 
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which is clearly positive under the condition of Theorem 2.1.  

Therefore the coefficient matrix of the system of equations are 

diagonal dominant and hence invertible.  Thus, the system of 

equations has a unique solution.  This completes the proof of 

Theorem 2.1. 

3. ERROR BOUNDS 
It may be seen that system of equations (2.3) may be written 

as 

)()(),( hFhmhA   

where A(h) is coefficient matrix and m(h) = mi(h) for all i. 

However, as already shown in the proof of Theorem 2.1, A(h) 

is invertible.  Denoting the inverse of A(h) by  A-1(h), we 

note that row max norm A-1(h) satisfies the following 

inequality, 
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, we introduce the set 
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integer} and define a discrete interval as follows - 
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For a function f and three distinct points 321 ,, xxx
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For convenience, we write 
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fDh
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is the discrete norm of a function f over the interval [0, 1]h. 

Without assuming any smoothness condition on the data f, we 

shall obtain in the following the bounds for the error function 

)(),()( xfhxsxe 
 over the discrete interval [0, 1]h. 

THEOREM 3.1. Suppose 
),( hxs

is the discrete quartic 

spline interpolant of Theorem 2.1.  Then 
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where K (p, h), K1 (p, h) and K* (p,h) are positive function of 

p and h. 

Proof of Theorem 3.1 : Equation (3.1) may be written as  
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When we replace 

)(hmi by 
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in (2.3). 

To estimate row max norm of the matrix Mi(h) in (3.6), we 

shall need following Lemma due to Lyche [8, 9]. 

Lemma 3.1 : Let 
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n
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 for relevant values of i, j and k.  It 

may be observed that the r.h.s. of (3.6) is written as for m=8 

and n=7. 
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Thus applying Lemma 3.1 in (3.7) for mi=8, n=7 and k= 1, we 

get  
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We again apply Lemma 3.1 in (3.10) for i=3, j=4 and k=1, we 

see that 
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Thus, using (3.10) and (3.11) in (3.9) we get the following 
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where K* (p, h) is a positive constant of p and h. This is the 

inequality (3.5) of Theorem 3.1. 

 

We now proceed to obtain an upper bound of 
}1{

ie . From 

equation (2.2) we get, 
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From equation (3.8) putting the value of 
}2{

ie in equation 

(3.13) we get upper bound of 
)1(

ie . This is inequality (3.4) of 

Theorem 3.1. 

   

4. CONCLUSION AND FUTURE SCOPE 
Existence, uniqueness and convergence properties of deficient 

discrete quartic spline interpolant matching the given function 

values at mesh points and interior points of the given mesh 

with appropriate boundary conditions have been investigated 

in the present paper.  These results can be generalized in 

future for general mean averaging condition. 
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