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ABSTRACT 
In this paper we worked upon on optimal wiring on 

rectangular structure. Here we are given a rectangle 

partitioned into smaller rectangles by axis-parallel line 

segments. Find a subset of the segments such that the 

resulting structure from these segments is connected and it 

touches every smaller rectangle. 

Here we reduce the problem of exact cover by 3-sets (X3C), 

which is known to be NP-complete, into this problem and thus 

claim wiring problem to be NP-hard. This problem carries a 

special importance because very few problems in the domain 

of geometry are known to be NP-hard. 
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1. INTRODUCTION 
Given a rectangle partitioned into smaller rectangles by 

horizontal and vertical line segments, find a set of the line-

segments which touches each rectangle at least at one point on 

its boundry and these segments are connected (i.e., there is a 

path between any two points of these segments ). The 

optimization criterion is to minimize the sum of lengths of 

these segments. 

An obvious application of this problem is to how to wire a 

building using minimum wire. Same applies to laying cooling 

or heating channels. Another application is in connecting 

modules of a VLSI chips. 

2. NP_HARDNESS Of WIRING 

PROBLEM 

2.1. Wiring Problem 
A floorplan is a rectangle in a plane which is partitioned by 

horizontal and vertical line segments such that each region is 

also a rectangle. For convenience treat it as a graph where the 

vertex set is the collection of the corners of all the rectangles 

and edges are the line segments between the vertices in the 

floor plan. A side is a line segment which connects two 

corners of the same rectangle. In general a side may contain 

more than one edge. 

The wiring problem is to compute a minimum length 

connected subgraph of a floorplan (i.e., total length of the 

edges of the subgraph be minimum) which contains at least 

one vertex on the boundry of every rectangle. Observe that it 

will always be a tree. See figure 1. In this section we shall 

show that this problem is NP-hard by reducing 3-set-exact-

cover problem. The proof is adapted from the proof of 

hardness of steiner tree computation for geometric rectilinear 

graph by Garey, Graham, and Johnson[1]. 

 

 

Figure 1:  A floorplan and its solution 

2.2 3-set-Exact-Cover (X3C) Problem 
Given a family, F= {F1, F2,…..Ft}, of 3-element subsets of a 

universal set U of 3n elements, decide if there exists a 

subfamily F’ Ϲ F of pairwise disjoint sets such that the union 

of all members of F’ is equal to U. This problem is 

NP_complete[2]. We will prove the hardness of the wiring 

problem by transforming X3C into it. 

2.3 The overall plan 
Let F= {F1, F2,…..Ft} be an input to the X3C (3-set exact 

cover) problem, where the universal set is assumed to be the 

integer set {1, 2,……,3n}, we will construct a floorplan Pi 

associated with set Fi for each i. Each plan will be of the same 

dimensions. Then we shall join them side by side along the X-

axis to form a single floor-plan P for the given F. 

We will show that there is a polynomial L(n,t) such that the 

length of the wiring tree for P will be less than or equal to 

L(n.t) if and only if the given F has an exact cover. It will also 

be shown that an exact cover can be extracted from such a 

solution tree in O(L(n,t)) time. 

2.4. Construction of Pi 
We first introduce two gadgets, junction and crossover, which 

are the bulding blocks of the floor-plans Pi. Figure 1 shows 

the gadgets. There are two variants of crossover, standard and 

warped. The length parameters used in describing the gadgets 

are K = 162qnt + 2888n2t _ 9n + 1 and ϵ which will define 

later. It will be helpful to remember that ϵ <<1. 

Symbol q is defined to be sum of (ai + bi +ci) for i= 1 to t, 

where Fi = {ai, bi, ci}. 

Each junction has one and each crossover has two active 

regions which are highlighted by shading in figure 1. 

The floorplan Pi associated with the set Fi = {4, 1, 2} is 

shown in figure 3, where a junction at the bottom is connected 

to three stacks of crossover of heights ai, bi, ci respectively. 
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Each stack has one warped crossover at the top and remaining 

crossovers are standard. The width of Pi is 24K and the height 

is 24nK + 8K + ϵ. 

 

 

Figure 2: Crossover and Junction 

The floorplan P associated with F is constructed by placing 

P1, P2,………,Pt side by side so that right side of Pi coincides 

with the left side of Pi+1. In addition, a stack is attached to the 

left of the figure consisting of 8K rectangles of size 1x ϵ and 

one 24nK xϵ rectangle at the top of the stack, see figure 4 for 

P1 with the additional stack at the left wall. One way P1 and Pt 

differ from other Pi is that the leftmost rectangles in the 

horizontal chain of small rectangles in P1 end with an ϵ x ϵ 

rectangle. This is the case for all but the bottom two chains. In 

case of Pt the rightmost rectangles of all but the bottom chain 

is ϵ x ϵ. Figure 5 shows complete P. It uses q crossovers and t 

junctions. 

2.5 Optimal wiring tree for P 
In this section we will determine some properties of any 

optimal solution of the wiring on P which are crucial for the 

proof. In the following section we use these properties to 

show that the sum of the lengths of the edges in the optimal 

solution, will be less than or equal to L(n.t) if and only if the 

underlying X3C problem has a solution. 

2.5.1 Coverage of the smaller rectangles 

Let us partition the rectangles of P into 3 classes: R0 which 

have longer side upto 1 + ϵ; R1 which have longer sides in the 

range from 54nt -1 to 72nt; and R2 have each side at least 2K-

ϵ in length. This partitions all rectangles of P except the top 

rectangle at the left boundry. This  ϵ x24nK rectangle is also 

included in class R2. Observe that R1 are precisely the 

rectangles in the active regions. We further partition R0 into 

terminal and non terminal rectangles, where the former 

contains all the ϵ x ϵ sized rectangles. Observe that at least one 

vertex of each smaller side of a no-terminal rectangle is 

shared by other R0 rectangles. We shall denote these subclass 

by R0t and R0n respectively. Terminal rectangles are attached 

to the left side of P1, right side of Pt, and to each R1 rectangle. 

In the similar fashion as for the rectangles partition the edges 

also into 3 classes: E0 consists of edges of length not 

exceeding 1 + ϵ; E1 are the edged with length between 54nt-1 

to 72nt; and E2 have all the larger edges. Verify that each edge 

of E2 is longer than K. 

In order to establish polynomiality of this transformation from 

X3C, we need to determine some counts. Break the R0n class 

into four subclasses, see figure  6, and denote the number of 

(i) 1 xϵ rectangles with 4 vertices by m1, (ii) those with 5 

vertices by m2, (iii) (1- ϵ ) x ϵ sized rectangles by m3, and (iv) 

(1 + ϵ ) x ϵ sized rectangles by m4. The number of terminal 

rectangles will be denoted by m0. A trivial but cumbersome 

exercise gives m0 = 6q + 6n + 4t + 1, m1 = 14Kq + 42Kt + 

72Kn + 65K -324qnt – 288nt2 -10t +q –n -1, m2 = 2q + 5t + 1, 

m3 = 6n +7t + 8q + 1, and m4 = 4q + t + 1. Since q<9nt, each 

of these numbers is a polynomial in n, t. Each R0n rectangle 

has two major edges which are parts of the longer sides and 

which have length between 1- ϵ and 1+ ϵ . 

In this paper we adopt a convention in which  the same 

symbol will represent a set of edges as well as the graph 

induced by those edges, depending on the context. 

Symbol T will denote an optimal wiring tree on P, i.e. solution 

of the wiring problem on P. The limiting case of the floorplan 

P, where ϵ = 0, will be denoted by P’, i.e., P’ =  limϵ→0 P. 
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Henceforth P will denote the complete floorplan with ϵ = 

1(20q + 23n +28t +9). 

T0 will denote T∩ E0 and T1 = T-T0. Observe that the residue 

of each R0 rectangle in P’ is an edge of length 1. By T’ denote  

limϵ→0 T. Similarly by T’
0 and T’

1 denote the residue of T0 and 

T1 in P’. 

Observation 1 Every cycle in P has at least one edge of size 

greater than ϵ. 

Observation 2 Each cycle in P’ contains an edge which is the 

residue of the longer side of an R1 rectangle, i.e., an active 

region rectangle. 

Observation 3 There are 4q + 8t + 9n + 2 rectangles and each 

of these rectangles has at least one R0n rectangle adjacent to it. 

Proposition 4 Let X be an  R0 rectangle and C be a cycle in P. 

Let C contain a major edge e of X which is contained in side 

s. Let s’ be the side parallel to s in X. Then (i) s is a longer 

side of X, (ii) either C contain s’ or it contains a longer side of 

an R1 rectangle. 

Proof (i) Major edges are contained in the longer sides of a 

rectangle. 

(ii) As we take the limit limϵ→0, line segments e, s, and s’ will 

coincide with a single segment, say s’’ in P’. Let C reduce to 

C’ in P’. Then the edges of C’ can be partitioned into simple 

cycles and simple paths. If s’’ is in a simple path, then s’ must 

be on C. On the other hand, If s’’ is in a cycle in C’,  then due 

to the previous observation the longer side of an R1 rectangle 

must be on C. 

Lemma 5 T contains at least one major edge from each R0n 

rectangle. 

Proof Let X be a non terminal rectangle of R0 which does not 

satisfy the claim. By the definition,, X has two adjoining R0 

rectangle which are separated  by more than ϵ. Label them by 

Y and z. Since T touches all three rectangles, Y’ = T ∩ (Y U 

X) and Z’ = T ∩ (ZUX) are non-empty where the X, Y, Z may 

be treated as the sets of the edges on their sides. Since T does 

not contain any major edge of X, Y’ and Z’ must be 

unconnected. Let y belongs to Y’ and z belongs to Z’ be a pair 

of vertices which are closest to each other. 

Add the shortest path between y and z in P, to T. Let the 

resulting subgraph be called H. This added path must contain 

a major edge e of X and the length of the path canot exceed 

3x(1 + ϵ ) + ϵ since sides of each rectangle is at most 1 + ϵ and 

their width is ϵ. The subgraph H has a cycle (since T is a tree) 

and the cycle contains e. From proposition 4 either T contains 

one major edge of X or one longer side of a R1 rectangle. The 

former is not possible from the assumption. Therefore T must 

contain a longer edge p of an R1 rectangle. By deleting p from 

H we again get a tree, call it H’, and it also touches all the 

rectangles. Therefore this is also a candidate of wiring 

solution. Since the length of p is at least 54nt – 1 and the 

added edges are at most 3 + 4c in length, H’ has lesser length. 

This implies that T is not an optimal solution, which is 

contradiction. 

In a wiring solution if a wire connects diagonally opposite 

vertices of a rectangle then it has two options of equal cost 

first horizontal then vertical side or its converse. This way we 

can delay a traversal along an ϵ edge on a non-terminal 

rectangle until a 5-vertex rectangle is reached. Call such 

wiring solution normalized, see figure 7. Using this 

observation and lemma 5 we have following result. 

Corollary 6  The cost of T0 is between L0 = m1 + m4 + (1- ϵ) 

(m2 + m3) and L0 + ϵ(28q + 21n + 28t + 8). 

Proof The smaller major edge of five vertex 1 x ϵ is 1 - ϵ long. 

The smaller major edge of a (1 + ϵ ) x ϵ rectangle has length 1. 

Using these fact and the lemma we directly get the lower 

bound. For the upper bound first delete all the ϵ edges which 

are pendants ( having one vertex of degree 1 ) from T0. As 

observed earlier, the reduced graph can be transformed into 

normalized from without any extra cost. So assume that the 

reduced T0 is normalized. 

Then the cost due to five vertex  rectangles can be upto 1 + ϵ 

for 1 x ϵ rectangle and 1 + 2 ϵ for (1 + ϵ )x ϵ rectangles. In 

addition the solution may cover terminal rectangles. So the 

cost can increase upto 2 ϵ(m0 + m2 + m4). To this we add the 

cost of the pendants. The only purpose for the pendants will 

be to touch the R2 rectangles as all others are already in 

contact of T0. This can add at most 4q + 8t + 9n + 2 ϵ edges to 

T0. 

Observation 7 The graph induced by R0 rectangles has 2q + 

3n +1 connected components. 

This observation and lemma 5 imply that the subgraphs 

induced by T0 must have at least 2q + 3n + 1 components. 

Lemma 8 T0  has exactly 2q + 3n +1. 

Proof Assume that the number of components is greater than 

2q + 3n +1. Then there must be at least two components of T0 

in the same component of R0. 

Consider two such T0 components. If there is a R0n rectangle 

in this component such that each of its major edge belongs to 

some T0 component. Then these T0 components are separated 

by ϵ distance. In case no R0n rectangle contributes its major 

edge to more than one component, then there must be a 

rectangle whose one vertex is touched by one T0 component 

and one major edge belongs to another, see figure  8. Sice the 

distance between a vertex and a major edge is at most 2 ϵ (in a 

5 vertex rectangle), the two components are separated by a 

path of at most 2 ϵ length. In other words, their closest points 

are separated by a path of at most 2 ϵ length. Add this path to 

T, which will create a cycle. Delete a non- ϵ -edge from this 

cycle. The resulting tree connects the same set of vertices (or 

one more) as does T therefore it is also a candidate solution 

for the wiring problem. This tree costs lesser than T since 2 ϵ 

< 1- ϵ. but this is not possible since T is optimal. 

Corollary 9 There is one T0  component in each R0 

component. 

Lemma 10 T’  has no cycles. 

Proof We know that T is a tree. Assume that T’ has a cycle. 

Then T must have two vertices which are separated by a path 

S of ϵ-edges which is not a part of T. The longest such path in 

P has length 2 ϵ. Then T U S will have a cycle which contains 

S. Once again, as in the proof of Lemma 8 we can construct 

another solution of the wiring problem which costs less. 

Therefore the assumption must be wrong. 

2.6 Connecting the components of T0  

In this section we will establish the underlying X3C problem 

has an exact cover if and only if T costs less than L = L0 + 

162ntq + 288n2t -9n +1. Also if there is a solution of the 

wiring problem in this range, then a solution of X3C problem 

can be constructed in O(L) time. The immediate consequence 

of these claims is that if wiring problem has a polynomial 
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time solution, then X3C can also be solved in polynomial time 

since L is a polynomial in n, t. 

In order to construct the solution tree we need to include the 

edges in addition to T0 so that the resulting graph becomes 

connected. Denote the set of these edges by T1. Irrespective of 

any other criterion/consideration these edges must provide 

connections between 2q + 3n + 1 components of T0 graph. 

The additional edges will be from E1 U E2. Each E2 edge is at 

least K in length. We will show that this renders it too 

expensive to use. The T1 edges belonging to an active region 

become responsible to connect the T0 component surrounding 

the region. Therefore these edges from 1 or 2 connections, 

depending upon whether they connect 2 or 3 components. 

Figure 9 shows possible patterns of these T1 edges. Table 1  

shows the average cost of forming one connection under these 

patterns. 

 

 

 

Table 1: Patterns for active region, number of connections and their costs 

Lemma 11 If T1 Ϲ E1 then (i) the number of α1 and β1 

patterns cannot be more than q. 

(ii) if the number of α1 and β1 patterns is equal to q, then the 

number of β1 patterns cannot be more than 3n. 

Proof (i) If there are more than q patterns of α1 and β1 type, 

then at least one crossover will have two α1
’s or one α1  and 

one β1 (in case of top of the stack crossovers). Then T’ will 

have a cycle, contradicting Lemma 10. 

(ii) If q connection of the type α1 and β1 are used, then each 

crossover will have one of these connections, because as 

shown in part (i) same crossover cannot have two of these 

connections. This will connect all the chains of the same level. 

If more than 3n β1-connections are used, then some level will 

have two or more connections. This will provide more than 

one connection between the horizontal chain of that level and 

that of the level immediately above. Once again it implies that 

T’ has a cycle. 

Lemma 12 Let T1 Ϲ E1. If in a wiring tree the cost of T1 is 

less than 162qnt + 288n2t -9n + 1, then the T1 will have 3n 

patterns of β1 type, q-3n patterns of α1 type and n patterns of 

γ1 type. 

Proof Suppose in the given solution u connection (between a 

pair of T0 components) are due to β1 patterns, v connections 

are from  α1 patterns w connection from γ1 patterns and 

remaining 2q + 3n –u-v-w connections due to other patterns. 

Then from the table 1 T1 must cost off at least (81nt-1.5)u + 

(81nt)w + (108nt) (2q+3n-u-v-w). We are given that this cost 

is less than 162qnt + 288n2t – 9n + 1. Simplifying the 

inequality we get (2q + 3n –u –v-w)12nt + (2q-u-v)15nt  + 9n 

– 1.5u -1 <0. Sice there can be at most 3t patterns of β1 type, 

u≤6t. Thus 15nt > 12nt > 1.5u + 1. Lemmas 8 and 11 shows 

that 2q + 3n-u-v-w and 2q-u-v are non negative. If either of 

these quantities is positive then the left hand side expression 

will become positive. This requires that 2q + 3n –u –v –w =0 

and 2q –u  -v =0. Then inequality simplifies to 1.5(6n –u) -1 < 

0. As 2q- u –v =0, from Lemma 11 we also know that 6n-u ≥ 

0. Again observe that if 6n –u is positive then this inequality 

will be unsatisfiable. So we must have 6n – u =0. So u=6n, 

v=2q-6n and w= 3n. 

Corollary 13 If T1 Ϲ E1 and T1 costs less than 162qnt + 288 

n2t -9n +1 , then X3C problem has an exact cover. 

Proof We have seen that T1 consists of 3n patterns of β1  type, 

q-3n patterns of α1 type, and n patterns of γ1 type. As we have 

seen in the proof of Lemma 12 that every crossover has one β1 

or α1 pattern. This ensures that the T0 components on 

horizontal arms of the same level are connected. If  β1 patterns 

are at the same level, say i, then there are two  connections 

between levels i and i + 1 (above i).  This will lead to a cycle 

in T’ which is not possible. So each β1 must be at a different 

level. This ensures that each level is connected to the upper 

level through the upper arm of a warped crossover. 

Now we will argue that in any stack of crossovers either all 

active regions contributing to T1 are upper ones or all are 

lower ones. Suppose crossover C2 is directly above crossover 

C1. First assume that upper active region of C2 and lower 
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active region of C1 share edges with T1. This will render the 

T0 component I the vertical arm between the two 

disconnected. In case the lower active region of C2 and the 

upper active region of C1 contribute edges to T1, then this will 

provide a connection between the two levels. In addition, the 

β1 patterns at the level of C1 crossover also provides a 

connection between the same levels. This implies that T’ will 

have a cycle, which is not possible. 

Next we will show that β1 patterns can occur only on those 

stacks which are associated with the junction having γ1 

pattern. Suppose the top crossover of a stack has β1 where the 

corresponding junction does not have γ1. Then that junction 

does not contribute any edge to T1 This implies that the 

vertical arm of the junction corresponding to the stack 

remains unconnected since the stack above it will have upper 

active region with α1 (or β1  ) pattern. 

Therefore all β1 pattern must be associated with only the 

stacks of junctions with γ1 patterns. Since each β1 pattern is at 

a different level, the sets corresponding the junctions having 

γ1 patterns from an exact cover. 

Now we are equipped to prove the main result. 

Theorem 14 The underlying X3C problem has an exact 

cover iff the wiring tree of the corresponding floorplan has a 

solution costing less that L0 + 162 qnt + 288n2t -9n + 1. 

Proof (only if ) In Corollary 6 we have seen that a T0 can be 

constructed which touches all the rectangles, has 2q + 3n + 1 

components and costs L0 + ϵ(28q + 21n + 28t + 8). We 

construct T1 as follows. 

Let us denote the junction of Pi by Ji. Let the exact cover be F’ 

= { Fa1,………….,Fan}. 

Then a wiring tree can be formed by constituting T1 with : β1 

pattern in every top crossover of all the three stacks of Jai for 

all Fai for all Fai belongs to F’ , α1  pattern in the upper active 

regions of all the standard crossovers of these stacks; α1  

patterns in the lower active regions in all the other crossovers; 

and γ1 pattern on every Jai for all Fai belongs to F’. Total cost 

of T1 will be no more than 3n(162nt + ϵ -3) + (q -3n)(162nt + 

ϵ) + n(288nt + 2 ϵ). It simplifies to 162qnt + 288n2t  -9n + ϵ 

(q+2n). The total cost of T is at most L0 + 162qnt + 288n2t -9n 

+ ϵ(29q + 23n + 28t +8) which is less than L. 

(if) suppose the optimal wiring tree costs less than L. From 

corollary 6 we know that T0 costs at least L0 so T1 must cost 

less than 162qnt + 288n2t -9n +1. From corollary 13 we know 

that the X3C problem must have an exact cover. 

Corollary 15 If wiring problem is in class P, then X3C is 

also in class p. 

Proof Since floorplan has a polynomial number of edges (in 

terms of n and t), it is possible to verify in O(|T|) time whether 

there are 3n patterns of β1 type, 2q-3n patterns of α1 type, and 

n patterns of γ1  type. Also identify which junctions have the 

γ1 patterns in the process. As we consequence we can 

construct an exact cover. 

Theorem 16 The wiring problem on rectangular floorplan is 

NP-hard. 
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Figure 3: Floorplan of Pi with n=2 and Fi={ 4, 1, 2} 
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Figure 4: Floorplan of p1 with stack of rectangles and terminals at the left 

 

Figure 5: Floorplan of P for F={{4, 1 ,2},{6, 5, 3},{3, 1 ,2}} 
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Figure 6: R0 Rectangles 

 

Figure 7: Tree Normalization 

 

Figure 8: Two T0- components at the same R0 Rectangles 

 

 

 

Figure 9 : Active region connection Patterns

 

3. CONCLUSION  
In this paper we shows that wiring on rectangular floorplan is 

NP- hard problem by converting it  into  well known exact 3 

cover (X3C). Due to wider application of this problem discuss 

above lead to think us, is there any good approximation 

algorithms that give  good bound for this problem.. 

4. REFERENCES 
[1]. M.R. Garey, R. L. Graham, and D.s. Johnson. Some np-

complete geometric problems. In STOC 76 : Proceeding 

of the eighth annual ACM symposium on theory of 

computing, page 10-22, New York, NY, USA, 1976. 

ACM Press.  

[2]. R.M Karp. Reducibility among combinatorial problems. 

R. E. Miller and J. W. Thatcher, Plenum press, New 

York, USA, 1972. 

[3]. S. Aaronson. Is P versus NP formally independent? 

Bulletin of the European Association for Theoretical 

Computer Science, 81, Oct. 2003 

[4]. R. Impagliazzo, R. Paturi, and F. Zane, Which Problems 

Have Strongly Exponential Complexity?, Journal of 

Computer and System Sciences 63-4, (2001), pp. 512-

530.  

IJCATM: www.ijcaonline.org 


