
International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 12, November 2013

15

Least Cost Path Discovery over graphs defined for large

volumes of data satisfying node and link constraints

Shom C. Abraham
Bachelor of Engineering

Manipal Institute of technology
Manipal-576104, Karnataka

ABSTRACT

Computing shortest paths in graphs is one of the most

fundamental and well-studied problems in combinatorial

optimization. Numerous real-world applications have

stimulated research investigations in this area. Several

applications include large graphs involving thousands of

nodes, which we cannot assume to be fully loaded into

memory. The problem is of much interest, when the nodes and

edges have several constraints to be satisfied apart from being

large, in the computation of shortest path. Conventional

Dijkstra’s algorithm does not serve the purpose. There has not

been much research done in this area, although some papers

investigate the problem of large graphs.

The problem of finding an efficient point-to-point shortest

path algorithm for graphs of larger sizes, satisfying node as

well as link constraints is solved using two optimization

strategies. First, we implement bi-directional Dijkstra’s

algorithm with priority queue implementation using the

heuristic value, in the path finding. The bi-directional strategy

reduces the search space. Second, we introduce index of the

graph table to preserve the local shortest segments, and

exploit the table to further improve the performance. The final

experimental results illustrates that this novel approach with

the optimization strategies achieves high scalability and

performance.

General Terms

Graph Theory, Algorithms

Keywords

Bidirectional Dijkstra’s algorithm; Point-to-point shortest path

algorithm satisfying node and link constraints; Combinatorial

Optimization

1. INTRODUCTION
In graph theory, the shortest path problem is the problem of

finding a path between two vertices (or nodes) in a graph such

that the sum of the weights of its constituent edges is

minimized. A variation of the shortest path problem evolves

out of the following example which forms the base research of

this paper.

A network has nodes and links. Packets are to be transported

from the origin to the destination through the route incurring

minimum cost. However, not all existing paths are useful as it

might violate node or edge constraints or both. A typical

example of a node constraint is ‘load’. It signifies that a node

cannot bear the load greater than a given value. Similarly, an

example of link constraint is ‘congestion’ which means that a

particular route cannot be used for travel as congestion is

present.

Thus, the requirement is to design and implement an efficient

point-to-point shortest path algorithm satisfying node and link

constraints taking into consideration the fact that graph can be

large with thousands of nodes and millions of links.

2. BACKGROUND

2.1 Preprocessing
An offline stage where we pre compute all shortest paths

using well known algorithm and store it in a distance matrix.

Preprocessing may take hours for large graphs but further

query on this matrix should only take milliseconds. This is not

feasible for dynamic graphs.

2.2 Min Heaps
A min heap is a left complete binary tree which satisfies the

property key (parent)  key (child) for all the nodes. Due to

this property, the node with the lowest key will always be

present at the root of the tree. Hence, extraction of minimum

key node is an O (1) operation.

In order to maintain the heap property after the extraction of

root node, the non-leaf nodes would have to undergo percolate

down operation (as shown below). This operation is an O (n)

operation.

Fig 1 : percolateDown operation in a heap

2.3 Dijkstra’s algorithm
It is a solution to the single-source shortest path problem in

graph theory. Works on both directed and undirected graphs.

However, all edges must have nonnegative weights. Input is a

weighted graph G= {E, V} and source vertex vɛV, such that

all edge weights are nonnegative. Output is the lengths of

shortest paths (or the shortest paths themselves) from a given

source vertex vɛV to all other vertices.

dist[s] ←0 (distance to source vertex is zero)

for allvɛV–{s}

 do dist[v] ←∞ (set all other distances to infinity)

S←ɸ (S, the set of visited vertices is initially empty)

Q←V (Q, the queue initially contains all vertices)

while Q ≠ ɸ (while the queue is not empty)

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 12, November 2013

16

do u ← mindist(Q,dist)(select the element with the min. dist)

 S←Sʊ{u} (add u to list of visited vertices)

 for all v ɛ neighbors[u]

 do if dist[v] > dist[u] + w(u, v) (if new shortest path

found)

 then d[v] ←d[u] + w(u, v) (set new value of

shortest path)

return dist

The simplest implementation is to store vertices in an array or

linked list. This will produce a running time of O (|V|^2).

For sparse graphs, or graphs with very few edges and many

nodes, it can be implemented more efficiently storing the

graph in an adjacency list using a binary heap or priority

queue. This will produce a running time of O (|E| log |V|).

Fig 2: Explored vertices in Dijkstra’s algorithm

2.4 A* Algorithm
1. Create a set S that keeps track of vertices included

in shortest path tree, i.e., whose minimum distance

from source is calculated and finalized. Initially,

this set is empty.

2. Assign a cost value (heuristic + distance) to all

vertices in the input graph. Initialize all distance

values as INFINITE. Assign cost value as 0 for the

source vertex so that it is picked first. This is the

open set O.

3. While lowest rank in S is not the GOAL

a. Pick a vertex u from O that has minimum cost

value.

b. Include u to S. (if u is already there update the

value).

c. Update cost value of all adjacent vertices of u.

Fig 3: Explored vertices in A* algorithm

2.5 Comparison
Fig 2 and Fig 3 shows the explored vertices of Dijkstra’s and

A* algorithm respectively. Since the graph in consideration is

huge, we would like the explored vertices to be as minimal as

possible. So we use a modified version of A* algorithm for

our problem.

3. PROPOSED ALGORITHM
WEIGHT (U, V)

{

 return (actual weight (U,V) + Heuristic value)

}

NEW_DIJ (P, Q) {

P←ɸ (P, the set of visited vertices is initially empty)

 u ← mindist(Q,dist)(select the element with the min. dist)

 P←Pʊ{u} (add u to list of visited vertices)

 if u doesnot satisy node constraint RETURN

 for all v ɛ neighbors[u]

 if v doesnot satisy node constraint CONTINUE

 if u-v link doesnot satisfy link constraint CONTINUE

 do if dist[v] > dist[u] + WEIGHT(u, v)

 then dist[v] ←dist[u] + WEIGHT(u, v)

return dist

}

MAIN_ALGO

{

1. Fill vertices in min-heap S sorted by distance from s

(source).

dist[s] ←0 (distance to source vertex is zero)

for allvɛV–{s}

 do dist[v] ←∞ (set all other distances to

infinity)

2. Similarly, fill vertices in min-heap T sorted by

distance from t (target).

3. Let S’ and T’ be two sets.

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 12, November 2013

17

4. REPEAT

{

 NEW_DIJ (S’, S)

 NEW_DIJ (T’, T)

} UNTIL (Ǝv AND vɛS’ AND v ɛT’)

5. FOR ALL xɛS’

 FOR ALL yɛT’

 L= dist[x] in S + WEIGHT(x, y) + dist[y] in T.

 If L<(dist[v] in S + dist[v] in T) return

 }

The above algorithm works well for graphs of larger sizes

when we need to compute shortest path satisfying node and

link constraints. Due to the large size of the graph the indices

are maintained for fast retrieval of node details from the

database. An index can be considered to be a copy of a
database table reduced to certain fields. The data is stored in

sorted form in this copy. This sorting permits fast access to

the records of the table (for example using a binary search).

Not all of the fields of the table are contained in the index.

The index also contains a pointer from the index entry to the

corresponding table entry to permit all the field contents to be

read.

Another approach to deal with the larger size of the graph is to

run the shortest path algorithm (NEW_DIJ) from both the

directions (i.e. source and target). We maintain two min-

heaps, S and T for the two directions sorted by distances from

source and target respectively. The nodes extracted from the

min-heaps during the run of algorithm are stored in sets S’

and T’ respectively. We stop this process until a common

vertex v is found in both sets. The shortest path from s to t

does not necessarily run through the vertex v. Hence we apply

step 5 of the algorithm to search for the shortest path.

The NEW_DIJ function extracts the root node of the min-

heap and stores it in a set. If the node doesn’t satisfy the

constraint we return from the function. Else we look for the

neighbors of the extracted node. If they satisfy node and link

constraints, we update their distance if the sum of distance of

extracted node and weight of the link is less than the present

distance.

Since the use of heuristic can reduce the explored vertices the

WEIGHT function is modified to include the heuristic value.

4. IMPLEMENTATION AND RESULTS
An example of node constraint can be that the port Jakarta

should allow the transportation of packets less than 101.2
million tonnes.

An example of link constraint is that the link between Chennai

and Jakarta does not contain congestion.

For testing the algorithm a few nodes are taken on the Google

maps and links between them are marked with red lines as

shown below.

Fig 4: Initial Configuration

Following snapshot shows the shortest path shown in blue

when the user clicks the source and destination node. The

constraints are not provided.

 Fig 5: Shortest path calculation without constraints

Following figure shows the results of the application when the

source and target node are chosen and node and link

constraints are specified. The shortest path between New

York and Tokyo is to be determined. The node constraint is

given as ‘Load’ with value ‘100’ and link constraint is

specified as ‘Congestion’ with value Boolean ‘N’. Now the

algorithm computes the shortest path from New York to

Tokyo such that only those ports who allow load of 100

million tonnes and only those routes where congestion is not

present appear in the result.

 Fig 6: Shortest path calculation with constraints

5. CONCLUSION
This paper proposes an efficient point to point shortest path

algorithm for large graphs involving various node and link

constraints. . The problem requirements have been met using

modified version of Dijkstra’s algorithm with satisfactory

results. The implemented algorithm satisfies node and link

constraints as required per the problem statement. The speed

International Journal of Computer Applications (0975 – 8887)

Volume 82 – No 12, November 2013

18

factor is taken into account by using heap for the shortest path

algorithm implementation. Experimental results ascertains

that the proposed technique outperform commonly used

Dijkstra’s algorithm with adjacency matrix implementation

qualitatively and quantitatively.

6. REFERENCES
[1] Ahuja, R. K., Magnanti, T. L. and Orlin, J. B. (1993),

Network Flows: Theory, Algorithms and Applications,

Prentice Hall, Englewood Cliffs, NJ .

[2] Bellman, R. (1958), On a Routing Problem, Quart. Appl.

Math. 16, 87-90.

[3] Cai, X., Klocks, T. and Wong, C.K. (1997), Time-

Varying Shortest Path Problems with Constraints,

Networks, 29 , 141-149

[4] Cooke, K. L. and Halsey, E. (1966), The shortest route

through a network with time-dependent internodal transit

times, Journal of Mathematical Analysis and

Applications, 14, 493-498.

[5] Dijkstra, E. W. (1959), A Note on Two Problems in

Connexion with Graphs, Numerishe Mathematic 1 , 269-

271

[6] Dreyfus, S. E. (1969), An Appraisal of Some Shortest-

Path Algorithms, Operations Research, 17, 395-412

[7] Floyd, R.W. (1962), Algorithm 97: shortest path. Comm.

ACM 5345.

[8] Klein, P.N. and Subramanian, S. (1997), A Randomized

Parallel Algorithm for Single-Source Shortest Paths,

Journal of Algorithms, Vol. 25, No. 2, pp. 205-220

[9] Henzinger, M. R., P. Klein, P., Rao, S. and Sairam

Subramanian (1997), Faster Shortest-Path Algorithms for

Planar Graphs, Journal of Computer and System Science

55, 3-23.

[10] Cherkassky, B. V., Goldberg, A. V. and Radzik, T.

(1996), Shortest path algorithms: Theory and

experimental evaluation, Mathematical Programming 73,

129-174.

IJCATM: www.ijcaonline.org

