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ABSTRACT 

Computing shortest paths in graphs is one of the most 

fundamental and well-studied problems in combinatorial 

optimization. Numerous real-world applications have 

stimulated research investigations in this area. Several 

applications include large graphs involving thousands of 

nodes, which we cannot assume to be fully loaded into 

memory. The problem is of much interest, when the nodes and 

edges have several constraints to be satisfied apart from being 

large, in the computation of shortest path. Conventional 

Dijkstra’s algorithm does not serve the purpose. There has not 

been much research done in this area, although some papers 

investigate the problem of large graphs.  

The problem of finding an efficient point-to-point shortest 

path algorithm for graphs of larger sizes, satisfying node as 

well as link constraints is solved using two optimization 

strategies. First, we implement bi-directional Dijkstra’s 

algorithm with priority queue implementation using the 

heuristic value, in the path finding. The bi-directional strategy 

reduces the search space. Second, we introduce index of the 

graph table to preserve the local shortest segments, and 

exploit the table to further improve the performance. The final 

experimental results illustrates that this novel approach with 

the optimization strategies achieves high scalability and 

performance. 
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1. INTRODUCTION 
In graph theory, the shortest path problem is the problem of 

finding a path between two vertices (or nodes) in a graph such 

that the sum of the weights of its constituent edges is 

minimized. A variation of the shortest path problem evolves 

out of the following example which forms the base research of 

this paper. 

A network has nodes and links. Packets are to be transported 

from the origin to the destination through the route incurring 

minimum cost. However, not all existing paths are useful as it 

might violate node or edge constraints or both. A typical 

example of a node constraint is ‘load’. It signifies that a node 

cannot bear the load greater than a given value.  Similarly, an 

example of link constraint is ‘congestion’ which means that a 

particular route cannot be used for travel as congestion is 

present.  

Thus, the requirement is to design and implement an efficient 

point-to-point shortest path algorithm satisfying node and link 

constraints taking into consideration the fact that graph can be 

large with thousands of nodes and millions of links. 

2. BACKGROUND 

2.1 Preprocessing 
An offline stage where we pre compute all shortest paths 

using well known algorithm and store it in a distance matrix. 

Preprocessing may take hours for large graphs but further 

query on this matrix should only take milliseconds. This is not 

feasible for dynamic graphs.  

2.2 Min Heaps 
A min heap is a left complete binary tree which satisfies the 

property key (parent)  key (child) for all the nodes. Due to 

this property, the node with the lowest key will always be 

present at the root of the tree. Hence, extraction of minimum 

key node is an O (1) operation. 

In order to maintain the heap property after the extraction of 

root node, the non-leaf nodes would have to undergo percolate 

down operation (as shown below). This operation is an O (n) 

operation.   

 

Fig 1 : percolateDown operation in a heap 

2.3 Dijkstra’s algorithm 
It is a solution to the single-source shortest path problem in 

graph theory. Works on both directed and undirected graphs. 

However, all edges must have nonnegative weights. Input is a 

weighted graph G= {E, V} and source vertex vɛV, such that 

all edge weights are nonnegative. Output is the lengths of 

shortest paths (or the shortest paths themselves) from a given 

source vertex vɛV to all other vertices. 

dist[s] ←0                      (distance to source vertex is zero) 

for allvɛV–{s} 

        do  dist[v] ←∞ (set all other distances to infinity)  

S←ɸ  (S, the set of visited vertices is initially empty)  

Q←V   (Q, the queue initially contains all vertices)                

while Q ≠ ɸ  (while the queue is not empty)  
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do   u ← mindist(Q,dist)(select the element with the min. dist)  

      S←Sʊ{u}   (add u to list of visited vertices)  

       for all v ɛ neighbors[u]    

              do  if   dist[v] > dist[u] + w(u, v) (if new shortest path 

found) 

                then      d[v] ←d[u] + w(u, v)      (set new value of 

shortest path)  

return dist 

The simplest implementation is to store vertices in an array or 

linked list. This will produce a running time of O (|V|^2). 

For sparse graphs, or graphs with very few edges and many 

nodes, it can be implemented more efficiently storing the 

graph in an adjacency list using a binary heap or priority 

queue. This will produce a running time of O (|E| log |V|). 

 

Fig 2: Explored vertices in Dijkstra’s algorithm 

2.4 A* Algorithm 
1.  Create a set S that keeps track of vertices included 

in shortest path tree, i.e., whose minimum distance 

from source is calculated and finalized. Initially, 

this set is empty. 

2. Assign a cost value (heuristic + distance) to all 

vertices in the input graph. Initialize all distance 

values as INFINITE. Assign cost value as 0 for the 

source vertex so that it is picked first. This is the 

open set O. 

3. While lowest rank in S is not the GOAL 

a. Pick a vertex u from O that has minimum cost 

value. 

b. Include u to S. (if u is already there update the 

value). 

c. Update cost value of all adjacent vertices of u. 

 

 

Fig 3: Explored vertices in A* algorithm 

2.5 Comparison 
Fig 2 and Fig 3 shows the explored vertices of Dijkstra’s and 

A* algorithm respectively. Since the graph in consideration is 

huge, we would like the explored vertices to be as minimal as 

possible. So we use a modified version of A* algorithm for 

our problem. 

3. PROPOSED ALGORITHM 
WEIGHT (U, V) 

{ 

 return (actual weight (U,V) + Heuristic value) 

} 

 

NEW_DIJ (P, Q) { 

P←ɸ  (P, the set of visited vertices is initially empty)  

             

     u ← mindist(Q,dist)(select the element with the min. dist)  

      P←Pʊ{u}   (add u to list of visited vertices)  

       if u doesnot satisy node constraint RETURN 

       for all v ɛ neighbors[u]  

       if v doesnot satisy node constraint CONTINUE 

       if u-v link doesnot satisfy link constraint CONTINUE   

              do  if   dist[v] > dist[u] + WEIGHT(u, v)                                                                      

                then      dist[v] ←dist[u] + WEIGHT(u, v)         

return dist  

} 

 

MAIN_ALGO 

{ 

1. Fill vertices in min-heap S sorted by distance from s 

(source). 

dist[s] ←0         (distance to source vertex is zero) 

for allvɛV–{s} 

        do  dist[v] ←∞ (set all other distances to 

infinity) 

2. Similarly, fill vertices in min-heap T sorted by 

distance from t (target). 

3. Let S’ and T’ be two sets. 
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4. REPEAT   

{ 

 NEW_DIJ (S’, S)  

 NEW_DIJ (T’, T) 

} UNTIL (Ǝv AND vɛS’ AND v ɛT’) 

5. FOR ALL xɛS’ 

   FOR ALL yɛT’ 

       L= dist[x] in S + WEIGHT(x, y)  +  dist[y] in T. 

       If L<(dist[v] in S + dist[v] in T) return 

   } 

The above algorithm works well for graphs of larger sizes 

when we need to compute shortest path satisfying node and 

link constraints. Due to the large size of the graph the indices 

are maintained for fast retrieval of node details from the 

database. An index can be considered to be a copy of a 
database table reduced to certain fields. The data is stored in 

sorted form in this copy. This sorting permits fast access to 

the records of the table (for example using a binary search). 

Not all of the fields of the table are contained in the index. 

The index also contains a pointer from the index entry to the 

corresponding table entry to permit all the field contents to be 

read. 

Another approach to deal with the larger size of the graph is to 

run the shortest path algorithm (NEW_DIJ) from both the 

directions (i.e. source and target). We maintain two min-

heaps, S and T for the two directions sorted by distances from 

source and target respectively. The nodes extracted from the 

min-heaps during the run of algorithm are stored in sets S’ 

and T’ respectively. We stop this process until a common 

vertex v is found in both sets. The shortest path from s to t 

does not necessarily run through the vertex v. Hence we apply 

step 5 of the algorithm to search for the shortest path.  

The NEW_DIJ function extracts the root node of the min-

heap and stores it in a set. If the node doesn’t satisfy the 

constraint we return from the function. Else we look for the 

neighbors of the extracted node. If they satisfy node and link 

constraints, we update their distance if the sum of distance of 

extracted node and weight of the link is less than the present 

distance. 

Since the use of heuristic can reduce the explored vertices the 

WEIGHT function is modified to include the heuristic value. 

4. IMPLEMENTATION AND RESULTS 
An example of node constraint can be that the port Jakarta 

should allow the transportation of packets less than 101.2 
million tonnes. 

An example of link constraint is that the link between Chennai 

and Jakarta does not contain congestion. 

For testing the algorithm a few nodes are taken on the Google 

maps and links between them are marked with red lines as 

shown below. 

 

Fig 4: Initial Configuration 

Following snapshot shows the shortest path shown in blue 

when the user clicks the source and destination node. The 

constraints are not provided. 

 
        Fig 5: Shortest path calculation without constraints 

Following figure shows the results of the application when the 

source and target node are chosen and node and link 

constraints are specified. The shortest path between New 

York and Tokyo is to be determined. The node constraint is 

given as ‘Load’ with value ‘100’ and link constraint is 

specified as ‘Congestion’ with value Boolean ‘N’. Now the 

algorithm computes the shortest path from New York to 

Tokyo such that only those ports who allow load of 100 

million tonnes and only those routes where congestion is not 

present appear in the result. 

 

         Fig 6: Shortest path calculation with constraints 

5. CONCLUSION 
This paper proposes an efficient point to point shortest path 

algorithm for large graphs involving various node and link 

constraints. . The problem requirements have been met using 

modified version of Dijkstra’s algorithm with satisfactory 

results. The implemented algorithm satisfies node and link 

constraints as required per the problem statement. The speed 
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factor is taken into account by using heap for the shortest path 

algorithm implementation. Experimental results ascertains 

that the proposed technique outperform commonly used 

Dijkstra’s algorithm with adjacency matrix implementation 

qualitatively and quantitatively. 
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