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ABSTRACT  

This research work considers the properties of quantum 

computer and lattices and their relationship in cryptography.  
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1. INTRODUCTION 
In this digital age and with the ever increasing machines 

processing power, the best thing to do is to create quantum 

computers. Quantum computer (QC) is a computer that makes 

use of quantum physics to perform operations on data. 

Quantum computer has a lot of benefits over the classical 

computer as it makes use of the power of atoms and molecules 

operations. A quantum refers to a specified quantity of an 

entity. In physics, it can be defined as the smallest amount of 

any physical entity that can exist independently.  
 

Recent field of study now combine quantum and lattice for 

various results. Lattice has to do with a set points, particles or 

objects. Lattice has several definitions as it has made its roots 

in different fields. It can be defined in mathematics as a 

partially ordered set in which every subset containing 

elements has a greatest lower bound or intersection and a least 

upper bound.  
 

2. PROPERTIES OF QUANTUM 

COMPUTER 
Superposition: A qubit can exist not just in one state or 

another but in a superposition of different states. QC with 500 

qubits gives 2500 superposition states. Each state would be 

classically equivalent to a single list of 500 1's and 0's. Such 

computer could operate on 2500 states simultaneously. 

According to [1], observing the system would cause it to 

collapse into a single quantum state corresponding to a single 

answer, a single list of 500 1's and 0's, as dictated by the 

measurement axiom of quantum mechanics. This kind of 

computer is equivalent to a classical computer with 

approximately 10150 processors. 
 

Entanglement: This ties qubits inextricably to each other over 

the course of operations. According to [2], the fact that 

entanglement implies a tensor product rather than Cartesian 
product means that a system of multiple qubits has a state 

space that grows exponentially in the number of qubits. 

 
 

 

Memory: The memory of a classical computer is a string of 0s 

and 1s, and it can perform calculations on only one set of 

numbers simultaneously. The memory of a quantum computer 

is a quantum state that can be a superposition of different 

numbers. 
 

Reversible: All operations are reversible since reversible 

quantum gates exist that permit the full complement of 

familiar logical operations. [2] stated that on one level, this is 

due to the fact that classical computations dissipate heat, and 

with it information, whereas quantum operations dissipate no 

heat and therefore retain all information across each 

calculation. 
 

2.2 Cryptographic Benefits 
Artificial Intelligence: Increasing the speed of operation will 

help computers to learn faster even using the one of the 

simplest methods – mistake bound model for learning. 
 

Operations: QC is much faster and consequently will perform 

a large amount of operations in a very short period of time. 

According to [3], performing a computation on many different 

numbers at the same time and then interfering all the results to 

get a single answer, makes a quantum computer much 

powerful than a classical one.  
 

High performance: High performance according to [1] will 

allow for the development of complex compression 

algorithms, voice and image recognition, molecular 

simulations and true randomness (randomness is important in 

simulations). Molecular simulations are important for 

developing simulation applications for chemistry and biology. 
 

Quantum communication: With the help of quantum 

communication both the receiver and sender are alerted when 

an eavesdropper tries to catch the signal. Quantum bits also 

allow more information to be communicated per bit. QCs 

make communication more secure. 
 

3. LATTICE 

3.1 Properties of Lattice 
Properties of lattice that lead to interesting special classes of 

lattices [4]. 

 

Bounded lattice: A bounded lattice is an algebraic structure of 

the form (L, ∨, ∧, 1, 0) such that (L, ∨, ∧) is a lattice, 0 (the 

lattice's bottom) is the identity element for the join operation 

∨, and 1 (the lattice's top) is the identity element for the meet 

operation ∧. 

 

 
 

http://en.wikipedia.org/wiki/Data
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Completeness: A poset is called a complete lattice if all its 

subsets have both a join and a meet. In particular, every 

complete lattice is a bounded lattice. While bounded lattice 

homomorphisms in general preserve only finite joins and 

meets, complete lattice homomorphisms are required to 

preserve arbitrary joins and meets. 
 

A conditionally complete lattice is a poset in which every 

nonempty subset that has an upper bound has a join (i.e., a 

least upper bound). Such lattices provide the most direct 

generalization of the completeness axiom of the real numbers. 

A conditionally complete lattice is either a complete lattice, or 

a complete lattice without its maximum element 1, its 

minimum element 0, or both. 

 

Distributivity: Since lattices come with two binary operations, 

it is natural to ask whether one of them distributes over the 

other, i.e. whether one or the other of the following dual laws 

holds for any three elements a, b, c of L: 
 

Distributivity of ∨ over ∧: a∨(b∧c) = (a∨b) ∧ (a∨c). 
 

Distributivity of ∧ over ∨: a∧(b∨c) = (a∧b) ∨ (a∧c). 
 

A lattice that satisfies the first or, equivalently (as it turns out), 

the second axiom, is called a distributive lattice. 

 

Modularity: For some applications the distributivity condition 

is too strong, and the following weaker property is often 

useful. A lattice (L, ∨, ∧) is modular if, for all elements a, b, c 

of L, the following identity holds. 
 

Modular identity 

(a ∧ c) ∨ (b ∧ c) = [(a ∧ c) ∨ b] ∧ c 
 

This condition is equivalent to the following axiom. 

 

Modular law: a ≤ c implies a ∨ (b ∧ c) = (a ∨ b) ∧ c 
 

Besides distributive lattices, examples of modular lattices are 

the lattice of sub-modules of a module, and the lattice of 

normal subgroups of a group. 

 

3.2 Cryptographic Benefits 
Lattice is used for cryptography for a number of reasons such 

as [5]: 

 

a) Simple and efficient: linear, parallelizable 

b) Resists sub-exponential & quantum attacks (so far) 

c) Security from worst-case assumptions 

d) Lattice problems offer the possibility of faster 

encryption and decryption algorithms. 

 

4. RELATIONSHIP OF QC AND 

LATTICE 
Lattice-based cryptography: The field of lattice-based 

cryptography has been developed based on the assumption 

that lattice problems are hard but up till date, there are no 

known quantum algorithms for solving lattice problems that 

perform significantly better than the best known classical 

algorithms. This is despite the fact as stated by [6] that lattice 

problems seem like a natural candidate to attempt to solve 

using quantum algorithms since they are believed not to be 

NP-hard for typical approximation factors, because of their 

periodic structure, and the Fourier transform, which is used so 

successfully in quantum algorithms, is tightly related to the 

notion of lattice duality. Since Shor’s discovery of the 

quantum factoring algorithm in the mid-1990s attempts to 

solve lattice problems by quantum algorithms have been 

made. With the continuous advancements in the field of 

quantum computing, the security of many existing asymmetric 

key cryptosystems has been demonstrated to be broken in the 

theoretical sense [7]. 
 

Lattice QCD: It is a well-established non-perturbative 

approach to solving the quantum chromodynamics (QCD) 

theory of quarks and gluons. It is a lattice gauge theory 

formulated on a grid or lattice of points in space and time. It is 

important to note when the size of the lattice is taken infinitely 

large and its sites infinitesimally close to each other, the 

continuum QCD is recovered [8]. 
 

In lattice QCD, fields representing quarks are defined at lattice 

sites (which leads to fermion doubling), while the gluon fields 

are defined on the links connecting neighbouring sites. This 

approximation approaches continuum QCD as the spacing 

between lattice sites is reduced to zero. Numerical lattice 

QCD calculations using Monte Carlo methods can be 

extremely computationally intensive, requiring the use of the 

largest available supercomputers. To reduce the computational 

burden, the so-called quenched approximation can be used, in 

which the quark fields are treated as non-dynamic "frozen" 

variables. 

 

Lattice field theory is an area of theoretical physics, 

specifically quantum field theory, which deals with field 

theories defined on a spatial or space-time lattice. In modern 

quantum field theory, the introduction of a space-time lattice 

is part of an approach different from the operator formalism. 

This is lattice field theory. Its main ingredients are: 
  

 functional integrals,  

 Euclidean field theory and  

 The space-time discretization of fields.  

 

Lattice field theory has turned out to be very successful for the 

non-perturbative calculation of physical quantities. 

 

Superlattice is a periodic structure of layers of two (or more) 

materials. Typically, the thickness of one layer is several 

nanometers. It can also refer to a lower-dimensional structure 

such as an array of quantum dots or quantum wires. 
 

5. CONCLUSION 
The combination of quantum and lattices in various fields has 

proofed to be of greater performance among others. Yet a 

major obstacle in the production of a QC is decoherence that 

is the interaction of the quantum system with the environment, 

disturbing the quantum state and leading to errors in the 

computation. Although techniques of quantum error 

correction have been used successfully to combat some effects 

of decoherence, there is still a long way to go before building 

a large-scale quantum computer will be possible. 
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