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ABSTRACT 
This work proposes a lattice-based cryptosystem using 

embedded technique of the closest vector problem (CVP). It 

adopts the key-gen algorithms of [1], and improves on vector 

reduction method for encryption/decryption. With this we 

achieved great implementation speed and time for an 

acceptable security parameter. 
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1. INTRODUCTION 
Lattices were first studied in the late 18th century by 

mathematicians Joseph Louis Lagrange, Carl Friedrich Gauss 

and later Minkowski. Lattice is applied in different fields but 

its application to cryptography was based on the work of [2]. 

The construction of cryptographic system constitutes 

mathematical problems which are hard to solve.  

Mathematical problems based on lattices include the Shortest 

Vector Problem (SVP) and the Closest Vector Problem (CVP) 

which are used as an algorithmic tool to solve a wide variety 

of problems.  

 

Cryptography [3], it is the art and science of encrypting 

messages for secure communication. According to [4], its 

definition needs to be extended as designing of algorithms, 

protocols and systems which are used to protect information 

against threats. This is achieved via authenticity, 

confidentiality, data integrity and non-repudiation. The three 

division of cryptography are Symmetric-key cryptography, 

Public-key (asymmetric-key) cryptosystems and Hash 

function. 

 

Symmetric-key cryptography refers to the use of a single key 

by both the sender and receiver for encryption and decryption. 

Thus use to achieve confidentiality and privacy. The modern 

study of symmetric key ciphers relates mainly to the study of 

block ciphers and stream ciphers, and to their applications. 

This type of cryptography exited for a long time and was the 

only kind of encryption publicly known until the work of [5] 

proposing the public key. Public-key cryptography is 

characterized by the use of different encryption and 

decryption keys that is, each user makes the encryption key 

publicly available but keeps the decryption key secret [6]. 

This scheme is suited for non-repudiation and user 

authentication since key exchange is a major application. 

Cryptographic hash function does not make use of key since 

the plaintext is not recoverable from the ciphertext unlike the 

other two types of cryptography. It takes a message of any 

length as input, and output a short, fixed length hash. Hence, 

hash functions are suited for ensuring data integrity since any 

change made to the contents of a message will produce a 

different hash value. This makes it difficult for two different 

messages to yield the same hash value.  
 

Lattice-based cryptography is the construction of 

cryptographic functions which are at least hard to break via 

the use of lattices as a source of computational hardness [7]. 

The work of [2] sparked a great interest in understanding the 

complexity of lattice problems and their relation to 

cryptography. With further studies in the field of lattice-based 

cryptography, its cryptographic constructions are found to be 

typically quite efficient, simple to implement, compete with 

the best known alternatives, they are believed to be secure 

against quantum computers and of course, hold a great 

promise for post-quantum cryptography [8]. Unlike lattice-

based cryptography according to [1], with the continuous 

advancements in the field of quantum computing, the security 

of many existing public key cryptosystems has been 

demonstrated to be broken in the theoretical sense.  

 

Worst-case hardness of lattice problems indicates how hard it 

is to break the cryptographic construction even in its worst 

case. According to [8], even with some small non-negligible 

probability, breaking the cryptographic construction is 

provably at least as hard as solving several lattice problems 

(approximately, within polynomial factors) in the worst case. 

Hence, successfully attacking a random instance of a 

cryptosystem immediately implies being able to solve all 

instances of the underlying problem [9]. Virtually all other 

cryptographic constructions are based on average-case 

hardness. The importance of the worst-case security guarantee 

as stated by [8] is twofold. First, it assures us that attacks on 

the cryptographic construction are likely to be effective only 

for small choices of parameters and not asymptotically. In 

other words, it guides us in making design decisions. Second, 

in principle the worst-case security guarantee can help us in 

choosing concrete parameters for the cryptosystem, although 

in practice this leads to what seems like overly conservative 

estimates. 

 

2. LATTICE 

2.1 Lattice Problems 
Lattice problems have unique computational complexity 

properties and have many important applications. This 

includes [10]: the polynomial time algorithm to factor 

polynomials, breaking certain public-key cryptosystems, 

solving integer programming in fixed dimensions in 

polynomial time, and solving simultaneous Diophantine 

approximations. Lattice is used for cryptography for a number 

of reasons [11]: simple to implement; efficient (linear, 

parallelizable); resists sub-exponential & quantum attacks (so 

far); security from worst-case assumptions and lattice 

http://en.wikipedia.org/wiki/Joseph_Louis_Lagrange
http://en.wikipedia.org/wiki/Carl_Friedrich_Gauss
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problems offer the possibility of faster encryption and 

decryption algorithms. 

 

Definitions of some lattice problems. 

 

Definition (SVP): Find the shortest non-zero vector in L, i.e. 

find v ∈ L ≠ 0 such that ||v|| is minimized.  

 

Definition (CVP): Given a target vector tt (not necessarily in 

the lattice) in L, find the vector v ∈ L closest to tt, i.e. find v ∈ 

L such that ||v-  tt || is minimized. 

 

Definition (SIVP): Given a lattice basis BB ∈ Zn× n, find n 

linearly independent lattice vectors SS = [s1,...,sn] (where si ∈ 

 (BB) for all i) minimizing the quantity   ║S║ = maxi ║si║. 

 

Definition (uSVP): Find the shortest vector in a lattice whose 

shortest non-zero vector is shorter by some factor γ than all 

other non-parallel lattice vector. 

  

2.2   Lattice Theory 
A lattice is a set of points in n-dimensional space with a 

periodic structure, such as the one illustrated in Figure 1. [8] 

defined lattice as the set of all integer combinations of n 

linearly independent vectors bb1, . . . ,bbn in  n. The set of 

vectors bb1, . . . ,bbn is called a basis for the lattice. A basis can 

be represented by the matrix BB = [bb 1, . . . ,bbn]   n×n having 

the basis vectors as columns. 

 

                      ∈           
   

      

 

 

 

 

 

 

 

 
 

 

Figure 1: A two-dimensional lattice and two possible bases 

 

Lattice notations: the set of real numbers is denoted by R and 

the set of integers by Z; real numbers by Greek letters (such as 

α, γ, δ) and integers by small letters (such as i, j, l); vectors by 

bold-face lower case letters (such as vv, tt, xx); and capital letters 

denotes matrices or set of vectors (such as B, M). 

 

Lattice dimension: Let n 
 
 . A lattice of dimension n is a 

set of the form 

  =  (BB) := {BBx| x  n}    n  

The dimension of a vector space is equal to the number of 

elements in the basis set e.g. R2  

 Dim( ) = n 

 

Bases: A bases can be represented by the matrix B = [b1, . . . 

,bn] ∈ Rmxn where [b1, . . . ,bn] is the column vectors. 

A basis is any set of vectors that are spanning set and are 

linearly independent 

 

Determinant: Given a basis BB of the lattice  , the lattice 

determinant is 

                  

The value of the determinant is independent of the choice of 

the basis and geometrically corresponds to the inverse of the 

density of the lattice     

  

All bases have the same determinant: For two bases B and C 

of the same lattice  , there exist a unique Transformation 

matrix T, which is invertible over the integers such that BT = 

C and conversely, multiplying C with another transformation 

matrix T-1 will yield another bases of the same lattice i.e. CT-1 

= B 

 

Dual lattice: Let B = [b1, . . . ,bn] be a basis for some lattice in 

Rn. The dual of a lattice   in Rn, denoted  *, is spanned by 

the rows of the matrix  

        
      

   

 * =  (BB
 − T) 

   

Orthogonality defect: Let BB be a real non-singular n x n 

matrix. The orthogonality defect of BB is defined as  

 

               
        

       
 

 

where ||bbi|| is the Euclidean norm of the ith column in BB,,    = 

equality by definition and ∏ = N-ary product of i 

 

Orthogonality defect is the quantity used to measure how 

close a basis is to the orthogonal. 

 

q-ary lattices: Let q ∈ Z+. A lattice of   of dimension n is 

said to be q-ary if qZn    . Given positive integers n, m, q 

and a matrix     ∈    
    , we can define two q-ary lattice: 

The first is generated by the (transposed) rows of A 

  = {y ∈ Zm : y = AT s mod q for some s ϵ Zn} 

 

The second lattice of those integer vectors that are orthogonal 

(modulo q) to the rows of A 

  = {y ∈ Zm : Ay = 0 mod q}  

 

where q is a prime integer and y is a vector. Most lattice-

based cryptographic constructions use q-ary lattices as their 

hard-on-average problem.  

 

Lattice basis reduction: Given an integer lattice basis as 

input, find a basis with short, nearly orthogonal vectors.  

 

This is realized using different algorithms, whose running 

time is usually at least exponential in the dimension of the 

lattice. 

Λ𝑞    

Λ
1

𝑞
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Figure 2: Lattice reduction in two dimensions 

 

The black vectors are the given basis for the lattice 

(represented by blue dots), the red vectors are the reduced 

basis. 

 

3.  IMPLEMENTATION 

To implement the algorithms, we used the libraries Number 

Theory Library (NTL) and GNU MultiPrecision (GMP) as 

supplemental long integer package. The programming 

language used was C on Linux (Ubuntu), Core 2 Duo 

1.66GHz of 1GB RAM. 

3.1 Closest Vector Problem (CVP) 
There are several algorithms for solving CVP such as Babai’s 

nearest plane method (although not guaranteed to solve CVP), 

Babai’s rounded technique, exponential time algorithm but 

this thesis considers embedded technique. 

 

 
 

Figure 3: Closest vector problem 

 

Embedded technique: Let B be a basis matrix for a lattice   

and suppose w ∈ Rn, a solution to the CVP corresponds to 

integers l1,…ln such that 

 

         

 

   
 

 
The crucial observation is that  

          

 

   
 

is such that ||e|| is small 

  

The idea of embedding technique is to define a lattice  ' that 

contains the short vector e [12] 

 

Lemma: Consider the basis matrix of a lattice Z3 to solve the 

CVP instance with w = (100, 100, 100). 

 

To solve this, we apply the LLL algorithm to the basis matrix 

(taking M = 1) for the lattice L’. The LLL lattice reduction is 

the process of calculating a nearly orthogonal lattice basis 

from an arbitrary one. Then we find e by solving the SVP 

problem in the lattice L′. One can then solve for the CVP by 

subtracting e from w. Hence, we find e by solving the SVP 

problem in the lattice L′. One can then solve for the CVP by 

subtracting e from w. 

 

3.2 Key Generation 
This thesis adopts the key generation of PRS because of the 

security they achieved by making improvement on the private 

basis of GGH construction and Micciancio’s public basis.  

 

Private basis use GGH's private basis construction, namely 

   bII + MM (as it’s shown in Algorithm 4.1, line 9).  

 

It allows generalizations about the bound on the size ||R||∞ 

which  allows for faster key generation and it provides a more 

orthogonal basis with which to perform decryption, which in 

turn  decreases the size necessary to ensure correct decryption 

using CVP embedded technique. This in turn allow us to 

decrease the size of the coefficients while keeping the same 

security parameter, saving storage and transmission space and 

increasing efficiency. 

 

Public Basis use Micciancio's method of applying a HNF 

reduction on the private basis (as it’s shown in Algorithm 4.1, 

line 10). 

 

This provided a greater level of security, simplified key 

storage and much smaller public keys. 
 

Algorithm 1: Key-Generate 

Input:  n ∈   the security parameter. 

Output : BB ∈  n,n the public key,   ∈  n,n the private key. 

begin 

   1:  M   0 

2: for i, j   0 to n - 1 do  

3:       Mi,j ←  and(-1, 1) 

    4: end for 

5: b            

6: repeat  

7:      b   b + 1 

8: until ‖(bII  + MM)-1‖  ≤ 1/2 

    9:     bII  + MM 

    10: BB   HNF( ) 

End 

3.3 Encryption/ Decryption 

For encryption /decryption we improved on the vector 

reduction basis. For our trapdoor function, we added a small 

error vector to a lattice point since given any basis of a lattice, 

it is easy to generate a vector which is close to a lattice point 

(considering our CVP). From this one-way, it is hard to return 

from the closest lattice vector to the original lattice point since 

we added the small error vector. Thus we used two different 

bases of the same lattice so a basis allows computing the 

function and the other the inverse function by permitting good 

approximation to the CVP. 

To encrypt a message, we first map it to a lattice point by 

taking the integer combinations specified by the message of 

the public basis vectors and then add to the lattice point a 

small error vector chosen at random. To decrypt, we look for a 

lattice point which is close to the ciphertext. By using the 
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private basis which is a reduced basis, the correct decryption 

is obtained with high probability. 

 

3.4 Test and Results 
The dimension n which is the main security parameter was 

tested for various values but we base our work on dimension 

400 and 800 for comparison with the work of PRS. The 

parameters used for this thesis are influenced by security 

considerations, application platform, constraints of the 

particular computing environment, and constraints of the 

particular communications environment hence, it is difficult to 

decide on a single “best” set of choices. Though it has been 

proved that the larger the value of n, the more secure the 

system will be. 

 

Table 1: Speeds and key sizes 

Dimension Enc. Dec. Pub. Key Priv. Key 

400 0.03s 0.05s 313.3KB 123.2 MB 

800 0.1s 0.3s 917.1 KB 412.3 MB 

 
Fig. 4: Performance result 

 

4. CONCLUSION 
The fact that the security of many existing asymmetric key 

cryptosystems has been demonstrated to be broken in the 

theoretical sense with the continuous advancements in the 

field of quantum computing reveals the need for technological 

advancements that is, lattice based cryptography. Also there is 

the need for the existence of large-scale quantum computers to 

implement on. Unlike a classical computer, in which a bit can 

represent either 1 or 0, in a quantum computer a bit can 

represent 1 or 0 or a mixture of the two at the same time, 

letting the computer perform many computations 

simultaneously and that would shorten the time needed to 

break a strong 1024-bit RSA code from billions of years to a 

matter of minutes. The fundamental problem in lattice-based 

cryptography is that there exist a widely used efficiency 

improvement which entails the use of newer security 

assumptions and however, analyzing these thoroughly is still 

an open problem. 
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