
International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.8, November 2013

16

Reducing Testing Effort using Automation

Milad Hanna
Department of Computer

Science, Faculty of Computers
and Information, Helwan

University, Egypt

Nahla El-Haggar
Department of Information

Technology, Faculty of
Computers and Information,

Helwan University, Egypt

Mostafa Sami
Professor of Computer

Science, HCI lab, Faculty of
Computers and Information,

Helwan University, Egypt

ABSTRACT

Software quality is a major concern in the development of

modern software systems. Software testing is the process of

putting the developed system under testing to ensure its high

quality. Unfortunately, software testing process is expensive

and consumes a lot of time through software development life

cycle. As software systems grow, manual software testing

becomes more and more difficult especially in the large

systems as it requires a lot of effort in terms of time spent in

testing process. So, there was always a need to decrease the

testing time through automating tests. This paved the way to

“Automated Software Testing”. Using automation, the high

testing effort can be dramatically reduced and the overall

costs related with it can be decreased as well. This leads to a

more need to invent new efficient automated scripting

techniques to ensure high quality systems. This study aims to

provide a new scripting technique that facilitates the process

of automating the execution phase through software testing in

an industrial context.

Keywords
Software Testing, Automated Software Testing, Test Data,

Test Case, Test Script, Manual Testing, Software Under Test,

Graphical User Interface.

1. INTRODUCTION
Software testing has evolved since 1970’s as an integral part

of software development process, because through it, the final

quality of the software can be improved by discovering errors

and faults through interacting, checking behavior and

evaluating the System Under Test (SUT) to check whether it

operates as expected or not on a limited number of test cases

with the aim of discovering errors that are found in the

software and fixing them. According to Ilene Burnstein,

software testing is generally described as a group of

procedures carried out to evaluate some aspect of a piece of

software [1]. Ehmer Khan shortly defines it as a set of

activities conducted with the intent of finding errors in

software [2] .

Since software testing process is a very expensive process,

complete testing is practically impossible and it is also not

acceptable to reduce testing effort by accepting quality

reductions. Testing effort is often a major cost factor during

software development. Many software orgjun nanizations are

spending up to 40% of their resources on testing [3].

Therefore, an existing open problem is how to reduce testing

effort without affecting the quality level of the final software.

Automation is one of the more popular and available

strategies to reduce testing effort. It develops test scripts that

will be used later to execute test cases instead of human [4].

The idea behind automation is to let computer simulate what

the tester is doing in reality when running test cases manually

on SUT. AST is more suitable for repetitive tasks during

different testing levels such as regression testing, where test

cases are executed several times whenever the source code of

SUT is modified or updated [5].

2. RELATED WORK
Test scripts are the basic element of automation. Test script is

a series of commands or events stored in a script language file

to execute a test case and report the results. It may contain

logical decisions that affect the execution of the script,

creating multiple possible pathways, constant values,

variables whose values change during playback. The

advantage of test scripts development process is that scripts

can repeat the same instruction many times in loops, each

time with different data. There are many types of scripting

techniques that can be used in automation. Fewster and

Graham listed five different types of scripting techniques that

will be discussed in this section [6].

2.1 Linear Scripting Technique
John Kent explains the idea behind linear technique, which is

simply to set the test tool to the record mode while performing

actions on the SUT. The generated recorded script consists of

a series of testing instructions using the programming

language supported by the tool [7]. Gerald Everett suggested

that the linear scripts are created by recording the actions that

a user performs manually on interface of the system and then

saving test actions as a test script. These test scripts can then

be replayed back to execute the test again. Figure 1 illustrates

record/playback steps.

Figure 1: Record/Playback steps

2.2 Structured and Shared Scripting

Techniques
Structured scripting technique uses structured programming

instructions, which either be control structures or calling

structures [6]. Control structures is used to control the

different paths in the test script (e.g. If condition). Calling

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.8, November 2013

17

structures is used to divide large scripts into smaller and more

manageable scripts. For example, one script can call another

script to perform specific functionality and then return back to

the first script where the subscript was called. The most

important advantage of structured technique is that the test

script can validate for specific conditions to determine if the

executed test is passed or failed according to these conditions.

However, the script has now become a more complex

program and the test data is still tightly coupled within the test

script itself. Besides, implementing structured scripts require

not only testing skills but also programming skills [6].

Shared scripting technique enables common actions to be

stored in only one place. This implies that we require a

scripting language that allows one script to be called by

another one. The idea behind shared scripts is to generate

separate script that performs one specific common task that

other scripts may need to perform later. Thus, different test

scripts can call this common task whenever they needed and

we do not have to spend time for implementing common

actions many times across all scripts [8]. It works well for

small-scale systems to be tested using relatively few test

scripts. Figure 2 illustrates using shared scripting technique

[8].

Figure 2: Driver scripts and a test library

2.3 Data-Driven Scripting Technique
New additional scripting techniques are required to form test

scripts in such a way that the maintenance costs of the test

scripts can be reduced than in the previous scripting

techniques. Data-Driven scripting technique proposes better

organization of test scripts and hence lower maintenance costs

of the test scripts. Bhaggan demonstrates that test data is

stored in a separate data file instead of being tightly coupled

to the test script itself. While performing tests, test data is read

from the external data file instead of being taken directly from

the script itself. It allows both input data and expected results

to be stored together separately from the script itself. For

example, instead of having username and password data input

values within the login script, we can store these values in an

external excel sheet and implement test script to read test data

to use it while executing the test script [9].

To automate new test case, we have to implement new control

script and add new data records into existing data file, or

create new one in the same format to be read by the control

script. Figure 3 illustrates using data-driven scripting

technique [8].

Figure 3: Data-driven approach

In data-driven scripting technique, the maintenance costs are

lower than the costs of rerecording the tests from the

beginning. Therefore, tests will not have to be rerecorded, but

only maintained [9].

2.4 Keyword-Driven Scripting Technique
Keyword-Driven scripting technique is a very similar to

manual test cases. The business functions of the SUT are

stored in a tabular format as well as in step-by-step

instructions for each test case. Keyword-driven approach

separates not only test data for the same test as in data-driven

scripts but also special keywords for performing business

function in the external file. The tester can create a large

number of test scripts simply using predefined keywords. All

what the tester needs is just to know what keywords are

currently available to be applied on SUT and what is the data

that each keyword is expecting. Additional keywords can be

added to the list of available programmed set of keywords to

enlarge the scope of automation. It is more sophisticated than

data-driven technique [8]. Fewster and Graham state that the

keyword-driven scripting technique is a logical extension of

the data-driven scripting technique [6]. A limitation of the

data-driven technique is that the detailed steps of what the

tests are doing are implemented within the control script itself.

But keyword-driven technique takes out some of the

intelligence from the script and put it into the external file

with the test data and leave the task for reading both steps and

data for the control script. Thus, instead of having data file in

data-driven, we now have a complete test file. It doesn’t

contain test data only but also a complete description of the

test case to be automated using a set of keywords to be read

and interpreted later on while test case execution. The test file

states what the test case will do, not how to do it.

In order to execute the tabular automated test cases, there have

to be a middle layer that converts the special keywords to the

source code that interacts with SUT (the source code that

implements the keywords are called “handlers”). The

translation of keywords is implemented outside of the control

script itself. Now, the control script only reads each keyword

in order from the test file and calls corresponding supporting

script. Also, a driver script which parses the test data and calls

the appropriate keyword handlers is needed [8]. Figure 4

demonstrates these layers.

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.8, November 2013

18

Figure 4: Handlers for keywords

3. PROPOSED SCRIPTING

TECHNIQUE
Most of testing effort (measured in man-hours) is spent in

execution specifically, followed by the development of test

cases, then planning and analysis. The execution phase can be

considered as the most important and critical phase of the

software testing. Therefore, automation is better suited in

clerical activities (e.g. test case execution and comparison

activities) which are repeated many times than intellectual

activities (e.g. creating test case or generating test inputs)

which needs a human brain more than a machine. Figure 5

demonstrates both clerical and intellectual activities.

 Figure 5: Software Testing Activities

The proposed solution can save the effort spent in the

execution phase by reducing the amount of manual work

involved in creating test scripts. For example, consider a

situation when a combo box is replaced with a text box in the

next release of SUT (or any other modification in SUT).

Statements that select different values from this combo box

will not work now when executed on a textbox. This simple

modification may invalidate many statements in test scripts

that reference this GUI object. The proposed solution can help

in solving this problem by automatically generating code that

gets HTML web controls and fills in them with sample data.

To implement the proposed solution, we will use:

 WatiN framework for .NET languages (version

2.1)

 Microsoft Visual Studio

 External data file (Microsoft office excel)

WatiN library is a testing framework for .NET languages to

get HTML web controls. It is a testing framework that enables

web application testing through any web browser. It also lets

you open many web browser instances and interact with the

elements of SUT [10]. It facilitates automated testing of web

applications through browser interaction. It can, for example,

fill in all input controls of a web page, and test for output. It is

an open-source library for automating web browsers using

.NET language. There is a lot of work behind it, but it is not

our area of interest.

Generally, creating a test script process usually consists of

two main parts:

 The first part is filling HTML web controls (e.g.

text box, combo box…etc.) with sample data and

firing events (Clerical activity). This part is good to

automate.

 The second part is building the script logic (e.g. if,

switch case, for loop…etc.). The tester must

implement this logic, as the machine cannot

implement it (Intellectual activity).

The proposed technique reduces part of the scripting effort

spent through generating the first systematic part of the test

script automatically instead of creating whole the script

manually from scratch. The tester now has only the task of

building up the logic of the script. The below table

demonstrates who is the responsible about each part of the test

script before and after using the proposed technique.

Method to

implement test

script

The first part

(Clerical part)

The second

part

(Intellectual

part)

Using data-driven

scripting technique

Human tester Human tester

Using proposed

scripting technique

Computer (using

the proposed

technique)

Human tester

Table 1: The responsibility of creating each part of test

script

By using any of the scripting techniques discussed in the

previous chapter (linear, data-driven…etc.), the tester has to

implement whole the test script manually from scratch, but

using the proposed technique, the tester concentrates only on

the intellectual part of the test script (e.g. dividing code into

set of methods, parameterizing variables, creating

settings…etc.).

The proposed technique is a hybrid scripting technique which

consists of automating the first part of the test scripts and then

applying data-driven scripting technique to avoid high

maintenance costs on the long run as in figure 6. The main

idea behind the proposed technique is to iterate on all HTML

web and generates test script which fills in these controls with

sample data values.

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.8, November 2013

19

Figure 6: Proposed scripting technique

Following is the steps for creating the clerical part of the test

script:

1. Set the page URL of SUT with the parent control

type and name.

2. Create empty external excel data sheet (*.xlsx) to
save data values.

3. Create empty class file (*.CS) to save the test script.

4. Navigate to the URL of the SUT.

5. Get source HTML of the web page.

6. Create HtmlDocument and StringBuilder objects.

7. Select the parent HTML node only (inserted above

in step #1) and set it into the HtmlDocument object.

8. Get all children of this parent node.

9. Store the children nodes in a new list of HTML

nodes.

10. Iterate on each single child node.

a. Get both child Node Id and Type.

b. Switch on node type (e.g. text, radio

button, checkbox...etc).

c. Generate the corresponding statement in
WatiN format.

d. Append this generated statement to the

main string builder object (defined above

in step #6).

e. Insert new empty line after the added
statement.

f. Insert data values used in this line of code

as a new row in the external data file

(created above in step # 2).

11. Store the generated test script into the new class file
(created above in step # 3).

12. Print the generated result script on the output screen
of the tool.

13. Save the excel sheet file that contains all data used
in the test script (created above in step # 2).

14. Print user-friendly message informing user whether
test script generated successfully or not.

After applying the proposed technique that generates the

clerical part of the test script, the tester must implement the

second part of the test script (intellectual part). The whole test

script (both activities) will be used in automating the

execution phase. The below stepsdemonstrates the process of

implementing the second part of the test script.

1. Choose specific test case to automate.

2. Run “Automation Helper Tool”.

3. Set the page URL of SUT with the parent control

type and name into the appropriate textboxes.

4. Click “Generate Script” button.

5. The test script is generated and stored in an external

file (clerical activity).

6. The sample data is generated and stored in an

external data file.

7. Implement the logic for the complete test script

manually (intellectual activity).

3.1 Input and Output of the Tool
The input for the proposed tool:

 Target URL of system to be tested.

 HTML parent control type (e.g. div, span,
form…etc.).

 HTML parent control identifier that contains all
child controls.

The output of the proposed tool:

 Class file that contains the generated test script

(clerical activity).

 Data file that contains all data values used in the test

script. Thus, test data is stored in a separate data file

instead of being hard-coded to the test script itself.

While performing tests, test data are being read from the

external data. Applying the proposed scripting technique

through running the developed tool can be considered as a

preprocessing step before start implementing the whole test

script. The tester can copy and paste the clerical part of the

test script generated from the tool into the appropriate place in

the test method. The below image demonstrates both input

and output of the proposed tool while running.

Figure 7: Snapshot of the proposed tool after generating

script

3.2 Example
This section shows a practical example for applying the

proposed scripting technique on a real project. The example

system is LinkdotNet tracer project. It is a web application

that is used to serve LinkdotNet employees to serve customers

with internet subscriptions.

Since “Add New Subscription” module in the project will be

used many times later, so it is a good idea to automate it.

Adding new subscription functionality for new customers

contains two main steps. The first step is to create new profile

for the new customer; the second one is adding products for

this customer.

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.8, November 2013

20

We applied both the following two methods to implement the

same test script:

 Implement whole the test script manually from

scratch (before using the proposed tool).

 Using the proposed tool to generate the first clerical

part of the test script automatically, then the tester

implements the intellectual part manually.

Effort is being measured using data-driven scripting technique

and using the proposed technique in terms of time needed to

implement the test script. For example, creating the test script

using the proposed technique consumes X time and creating

the same script manually consumes Y time. Time X and Y are

being compared later to measure the saved time.

4. RESULTS AND DISCUSSION
The tester tests the mentioned functionality 10 times manually

and measure the time consumed. Then, the tester applies

automated software testing 10 times also using both data-

driven and proposed scripting techniques and measure the

time consumed also. These results of the time spent to test the

same test case manually and automatically are shown in Table

4, Figure 8 and Figure 9. All the below numbers are in

minutes.

 Table 2: Time needed to test add new subscriber

functionality

 Figure 8: Time needed to test add new subscriber

functionality

 Figure 9: Time needed to test each test case

separately automatically

According to the above table, it is obvious that automated

software testing is better than manual testing. Also, applying

automation using the proposed scripting technique is better

than using data-driven scripting technique. The total time

consumed during manual testing is 690 minutes (100%). The

total time consumed of applying automation using data-driven

scripting technique is approximately 445 minutes (64%) and

that of using the proposed scripting technique is 285 minutes

(41%). The most important point is that creating the test script

using data-driven scripting technique consumed about 375

minutes (54%) to be implemented (for intermediate skill

tester) and 215 minutes (31%) to be implemented with the

help of the proposed tool. Thus, using the proposed scripting

technique can save approximately about 42% of the total

effort involved in scripting process.

The total number of LOC of applying automation using both

data-driven and proposed scripting techniques is being

compared in Table 5 and Figure 10.

Method to

implement test script

LOC

implemented by

the tester

LOC

implemented

automatically

Using data-driven

scripting technique
210 0

Using proposed

scripting technique
145 (69%) 65 (31%)

Table 3: LOC implemented by the tester and the proposed

tool

Time to

implement

Time to

run test

Time to

implement

Time to

run test

Test case 1 40 25 10 15 10

Test case 2 300 150 20 85 20

Test case 3 350 200 40 115 40

Total 690 375 70 215 70

Te
st
 C
as

e Duration of

manual

testing

Duration of automated testing

Using data-driven
Using proposed

technique

0

100

200

300

400

500

600

700

Duration of
manual testing

Using data-driven Using proposed
technique

D
u

ra
ti

o
n

Method of Testing

Duration of Testing

0

50

100

150

200

250

Test case 1 Test case 2 Test case 3

D
u

ra
ti

o
n

Test Case

Duration to implement and run test script

Using data-driven

Using proposed technique

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.8, November 2013

21

 Figure 10: LOC implemented by the tester and the

proposed tool

Table 3 demonstrates that using data-driven scripting

technique; the tester will need to implement all the test script

(210 LOC - 100%). But using the proposed scripting

technique, the tester will need to implement the intellectual

part of the test script (145 LOC - 69%) and the proposed tool

generates the clerical part automatically (65 LOC - 31%).

Figure 11 illustrates the alternative methods that can be used

in implementing test scripts.

 Figure 11: Different methods to implement test script

5. RELATIONSHIP BETWEEN

PROPOSED TOOL AND NATURE OF

SUT
The amount of saved effort using the proposed tool is

dependent on the nature of SUT or even on the nature of each

page alone. It is expected that the saved effort will increase in

pages that contain large number of input controls. The more

input controls found in the SUT, the more saved effort from

the proposed tool.

6. CONCLUSION
Across many organizations, it is well known that testers lack

the time needed to fully test the SUT within the time allocated

to testing phase. This often happens because of unexpected

environmental problems or problems in the implementation

phase of development process. This normally shifts the

software final delivery date. As a result to this delay, we have

only two options, either to work longer hours or to add other

resources to the test team to finalize testing in the required

limited time.

Automation can be one solution to this problem to accelerate

testing and meet project deadline. Automation of testing phase

offers a potential source of savings across all the life cycle.

Automation using scripting techniques can save the costs for

the overall software testing automation process, improve the

speed of testing, shorten the product's launch cycle and it can

achieve an amount of work that manual tests are impossible to

finish.

7. REFERENCES

[1] I. Burnetein, "Practical Software Testing: process

oriented approach," Springer Professional Computing,

2003.

[2] M. E. Khan, "Different Forms of Software Testing

Techniques for Finding Errors," International Journal of

Software Engineering (IJSE), vol. 7, no. 3, 2010.

[3] F. Elberzhager, A. Rosbach, J. Münch and R. Eschbach,

"Reducing test effort: A systematic mapping study on

existing approaches," Information and Software

Technology 54, p. 1092–1106, 2012.

[4] T. Wissink and C. Amaro, "Successful Test Automation

for Software Maintenance," in 22nd IEEE International

Conference on Software Maintenance (ICSM'06), 2006.

[5] A. Zylberman and A. Shotten, "Test Language:

Introduction to Keyword Driven Testing,"

http://SoftwareTestingHelp.com, pp. 1-7, 2010.

[6] M. Fewster, Software Test Automation: Effective Use of

Test Execution Tools, Addison-Wesley Professional,

1999.

[7] J. Kent, "Test Automation From RecordPlayback to

Frameworks," http://www.simplytesting.com/, 2007.

[8] P. Laukkanen, "Data-Driven and Keyword-Driven Test

Automation Frameworks," Helsinki University of

Technology, Software Business and Engineering

Institute, 2007.

[9] K. Bhaggan, "Test Automation in Practice," Delft

University of Technology, the Netherlands, 2009.

[10] J. Menen, E. Wilde and J. Brown, "Web Application

Testing In .Net," July 2013. [Online]. Available:

http://watin.org/.

0

50

100

150

200

250

LOC created by the
tester

LOC created
automatically by the tool

N
u

m
b

er
 o

f
LO

C

Type of LOC

LOC created by the tester and the tool

Using data-driven scripting technique
Using proposed scripting technique

IJCATM : www.ijcaonline.org

