
International Journal of Computer Applications (0975 – 8887)  

Volume 81 – No.7, November 2013 

22 

 A Framework to Process Iceberg Queries using Set-

intersection and Set-Difference Operations 

 
Ch.Chaitanya Bharathi 
M.Tech.(SE) Dept.of CSE 

Kakatiya Institute of 
Technology & Science 

Warangal-15,A.P.,India. 

 

V.Shankar 
Associate Professor,          

Dept. of CSE 
Kakatiya Institute of 

Technology & Science 
Warangal-15,A.P.,India. 

 

B.Hanmanthu 
Assistant Professor,        

Dept.of CSE 
Kakatiya Institute of 

Technology & Science 
Warangal-15,A.P.,India. 

 

 

ABSTRACT 

Many data mining queries are basically identified as iceberg 

queries. Applications are required to be compute aggregate 

functions over an interesting attributes to find aggregate 

values above some specified threshold. Such queries are 

called as iceberg queries. We propose set operations instead of 

bitwise-AND operations to evaluate iceberg queries 

efficiently using very little memory and significantly fewer 

passes over data, as compared to current techniques that use 

Dynamic pruning approaches and Vector alignment 

algorithms. Set operations reduces the execution time and 

make evaluation process of Iceberg query very effective by 

reducing the number of bitmaps that are needed. The 

exhaustive experimentation gives better results than existing 

strategies. 

Keywords: Database, Iceberg query, Bitmap vector, Set 

intersection, set difference and Threshold. 

1. INTRODUCTION 

Business insight and knowledge discovery in the business 

world are very important. To analyze the business insight 

analysts compute aggregate values over an attribute (or set of 

attributes), to find aggregate values above some specified 

threshold. Such queries are called Iceberg Queries. Iceberg 

query is a special class of aggregation query, which computes 

aggregate values above a given threshold. It is of special 

interest to the users, as high frequency events or high 

aggregate values often carry more important information. 

Solving such iceberg queries efficiently is an important 

problem.  

The prototypical iceberg query we consider in this paper is as 

follows, based on a relation R(target1,target2,… targetk, rest) 

and a threshold T. 

SELECT target1, target2, ..., targetk, count(rest)  FROM R 

GROUP BY target1, target2, ..., targetk 

HAVING count(rest) >= T 

If we apply the following iceberg query on relation R in Table 

1, with T = 3 (and k = 2), the result would be the tuple (a,e,3). 

We call these iceberg queries because relation R and the 

number of unique target values are typically huge (the 

iceberg), and the answer, i.e., the number of frequently 

occurring targets, is very small (the tip of the iceberg). Many 

data mining queries are fundamentally iceberg queries. For 

instance, market analysts execute market basket queries on 

large data warehouses that store customer sales transactions. 

These queries identify user buying patterns, by finding item 

pairs (and triples) that are bought together by many customers 

[1, 3, 4]. (Target sets are item-pairs, and T is the minimum 

number of transactions required to support the item pair.) 

Since these queries operate on very large datasets, solving 

such iceberg queries efficiently is an important problem. In 

fact, the time to execute the above query dominates the cost of 

producing interesting association rules. In this paper, we 

concentrate on executing such iceberg queries efficiently 

using set operations compact in-memory data structures. 

Targ1 Targ2 rest 

a e Lee 

b f Joe 

b d Fred 

a e bob 

b d sally 

c f tom 

With the threshold constraint, an iceberg query usually only 

returns a very small percentage of distinct groups as the 

output, which resembles the tip of an iceberg. Because of the 

small result set, iceberg queries can potentially be answered 

quickly even over a very large data set. However, current 

database systems and/or approaches do not fully take 

advantage of this feature of iceberg query. The relational 

database systems nowadays (e.g., DB2, Oracle, SQL Server, 

Sybase, MySQL, PostgreSQL, and column oriented databases 

Vertica, MonetDB, LucidDB) are all using general 

aggregation algorithms to answer iceberg queries by first 

aggregating all tuples and then evaluating the HAVING 

clause to select the Iceberg result. For large data set, multi-

pass aggregation algorithms are used when the full aggregate 

result cannot fit in memory (even when the final iceberg result 

is small). Most existing query optimization techniques for 

processing iceberg queries , can be categorized as the tuple-

scan based approach, which requires at least one table scan to 

read data from disk. They focus on reducing the number of 

passes when the data size is large. None has effectively 

leveraged the property of iceberg queries for efficient 

processing. Such a tuple scan based scheme often takes a long 

time to answer iceberg queries, especially when the table is 

very large. Besides these tuple-scan based approaches, 

designed a two-level bitmap index which can be leveraged for 

processing iceberg queries.  

In this paper we aim at answering iceberg query efficiently 

using bitmap indices. Specifically, we developed set 

operations to compute iceberg queries using bitmap indices. 

Bitmap indices provide a vertical organization of a column 

using bitmap vectors. Each vector represents the occurrences 

of a unique value in the column across all rows in the table. 



International Journal of Computer Applications (0975 – 8887)  

Volume 81 – No.7, November 2013 

23 

There are many different data structures used in data base to 

create indexes used to quickly evaluate queries. Each one has 

different strengths and weaknesses based on tradeoffs they 

make on memory, CPU and storage (if persisted). One of 

these types of indexes is called a bitmap index. Bitmap 

indices are known to be efficient, especially for read-mostly 

or append-only data, and are commonly used in the data 

warehousing applications and column stores. 

Using bitmap indices, we only need to access bitmap indices 

of the aggregate attributes (i.e. the attributes in the GROUP 

BY clause). Second, bitmap indices operate on bits rather than 

real tuple values. Bitwise operations are very fast to execute 

and can often be accelerated by hardware. Third, bitmap 

indices have the advantage of leveraging the anti-monotone 

property of iceberg queries to enable aggressive index pruning 

strategies. Iceberg queries have an intriguing anti-monotone 

property for many of the aggregation functions and predicates.  

By using the dynamic index-pruning based approach we 

notice  the problem of massive empty bitwise-AND results.  

When the number of unique values in an attribute is large, a 

large number of bitwise-AND operations produce empty 

results and the computation time dominates the query 

processing time.  

To overcome this challenge, we developed efficient set 

operations. The major challenge in developing such an 

algorithm is to effectively compute the iceberg queries. This 

sounds like a dilemma in the beginning, but after careful 

research, we find out that such a solution is indeed possible. 

By using set operations, it guarantees that any bitwise-AND 

and OR operations are does not needed. We will discuss the 

set and difference operations in detail. 

Our contributions in this paper are summarized as follows: 

1) We developed the sets to store the 1 bit positions of bitmap 

vectors to efficiently compute iceberg queries using 

compressed bitmap indices. Our approach can be applied to 

both row-oriented and column-oriented databases, as long as 

bitmap indices for the aggregate attributes are available. 

2) We performed comprehensive experiments to evaluate our 

approach by comparing with the state-of the-art iceberg query 

processing algorithms and a tuple-scan based algorithm. 

Experiments show that our algorithm achieves remarkable 

performance improvement for iceberg query computation. 

The remaining sections of this paper are structured as follows. 

We discuss related work in Section 2. Necessary background 

of bitmap index and its compression are introduced in Section 

3. Section 4 describes the set operation methods and 

difference operations between the sets. We only discuss how 

to handle two aggregate attributes, and we generalize these 

algorithms in Section 5. Section 6 analyzes the experimental 

results. Section 7 concludes the paper. 

 

2. PREVIOUS WORK 

Iceberg Query and Iceberg Cube:  Applications are required to 

be compute aggregate functions over an interesting attributes 

to find aggregate values above some specified threshold. Such 

queries are called as iceberg queries. In some cases the 

number of above-threshold results is often very small, relative 

to the large amount of input data. Such iceberg queries are 

common in many applications, including data warehousing, 

information-retrieval, market basket analysis in data mining, 

clustering and copy detection. 

We propose efficient algorithms such as set operations to 

evaluate iceberg queries efficiently using very little memory 

and significantly fewer passes over data, as compared to 

current techniques that are used in Dynamic pruning and 

Vector alignment algorithms. Set operations reduce the 

execution time and make evaluation process of Iceberg query 

very effective. 

Earlier techniques used for processing of Iceberg query are 

tuple-scan based, which require at least one scan of each tuple 

in the relation. None of them leverages the bitmap indices for 

query optimization, which is the focus of this paper. 

Iceberg cubes contains only those cells of the data cubes that 

meet an aggregate condition. It is called as an iceberg cube 

because it contains only some of the cells of the full cube, like 

the tip of an iceberg. The aggregate condition could be, for 

example, min support or a lower on average, minimum or 

maximum. The purpose of the iceberg cube is to identify and 

compute only those values that will most likely be required 

for decision support queries. The aggregate condition 

specifies which values are more meaningful and should 

therefore be stored. This is one solution to the problem of 

computing versus storing data cubes. 

Processing of Iceberg query is first defined and studied by 

Fang et. al. in 1998 [9]. In [9], it proposed the Hybrid and 

Multi-Buckets algorithms by extending the probabilistic 

techniques proposed in [22]. Sampling/bucketing method is 

used to predict valid groups, with possible false positives and 

false negatives. Then efficient strategies are designed to 

efficiently correct false positives and false negatives to 

retrieve the exact result. [4] designed a partitioning algorithm 

for computing a specific type of iceberg queries: computing 

the average of aggregate values. All these techniques are 

tuple-scan based, which require at least one scan of each tuple 

in the relation. None of them leverages the bitmap indices for 

query optimization, which is the focus of this paper. 

Answering iceberg queries and computing iceberg cube have 

different optimization goals. The focus of answering iceberg 

queries is to speed up the processing time of single iceberg 

query. The focus of computing iceberg cubes, such that of, is 

to maximize the shared computation to shorten the cube 

generation time. Developing efficient iceberg query 

answering algorithm is necessary. These algorithms can be 

leveraged to generate iceberg cube more efficiently. 

In comparison of the algorithms in and other tuple-scan based 

algorithms was conducted. As indicated in , the algorithm 

proposed in  performs better, especially when the data is 

highly skewed. 

Bitmap Indices: There are many different data structures used 

in data base to create indexes used to quickly evaluate queries. 

Each one has different strengths and weaknesses based on 

tradeoffs they make on memory, CPU and storage (if 

persisted). One of these types of indexes is called a bitmap 

index. Bitmap indices are known to be efficient, especially for 

read-mostly or append-only data, and are commonly used in 

the data warehousing applications and column stores.  

Memory and storage: If you have 100 million rows in your 

database, the storage for the country column index would be 

three bitmap indexes with 100 million bits (12 MB) each 

taking total 36MB. 

Using bitmap indexes means managing a lot of indexes 

because you need a new array of bits per unique term. That is 

one of the cons of a bitmap index. If you have 100 millions 



International Journal of Computer Applications (0975 – 8887)  

Volume 81 – No.7, November 2013 

24 

rows and each has a unique term(say a timestamp) you would 

create bitmap index for each timestamp where only 1 bit is set 

out of 100 million bits. 

Compressed bitmap indices: One of the cons to using bitmap 

indices is the amount of bitmap indexes that get created. You 

need to create one bitmap index the size of the row count per 

unique item. If you have really high cardinality columns, you 

will likely have most bits set to 0 and these can be compressed 

very well. Compression of bitmaps allow you to do different 

operations like AND, OR, set operations in the compressed 

form avoiding having to decompress these large bitmaps 

before using them. Two important techniques for compressing 

bitmap indexes are Word-Aligned Hybrid (WAH) and Byte-

aligned Bitmap Code (BBC). 

Compressed bitmap indexes can be really large data sets 

quickly and offer a good compromised between memory 

efficiency and processing speed since in many cases they can 

be faster than uncompressed bitmaps. 

 A bitmap for an attribute (column) of a table can be viewed 

as a m × n matrix, where m is the number of distinct values of 

the column and n is the number of tuples (rows) in the table. 

Each value in the column corresponds to a bitmap vector of 

length n, in which the kth position of the vector is 1 if this 

value appears in the kth row, and 0 otherwise. In this paper we 

use equality-encoded bitmaps. An example of bitmap index is 

shown in Figure 1. Table 1 shows an example relation with a 

set of attributes. Table2 shows the corresponding bitmap 

indices on attributes A and B of the table. For each distinct 

value of A and B, there is a corresponding bitmap vector. For 

instance, A1’s bitmap vector is 1001100011, because A1 

occurs in the 1st, 4th, 5th, 9th and 10th rows in the table. An 

uncompressed bitmap can be much larger than the original 

data, thus compression is typically utilized 

to reduce the storage size and improve performance. As 

reported above, with proper compression, bitmaps perform 

well for a column with cardinality up to 55% of the number of 

rows, that is, up to 55% of rows having distinct values in the 

column. We adopt Word-Aligned Hybrid (WAH) [24] to 

compress the bitmaps in our implementation. 

A A1 A2 A3 A1 A1 A2 A2 A2 A1 A1 

B B2 B2 B1 B2 B1 B2 B2 B1 B2 B2 

 

A1 A2 A3 B1 B2 B3 

1 0 0 0 1 0 

0 1 0 0 1 0 

0 0 1 1 0 0 

1 0 0 0 1 0 

1 0 0 1 0 0 

0 1 0 0 1 0 

0 1 0 0 1 0 

0 1 0 1 0 0 

1 0 0 0 1 0 

1 0 0 0 1 0 

Fig. 1: An Example of Bitmap Index 

 

3. PROPOSED WORK 

This section proposes the research work that are used in query 

evaluation. In this we have used set operations like 

intersection and difference operations. In this we proposes the 

proposed algorithm to evaluate iceberg query using set 

operations.   

SET OPERATIONS: A set is a common property among 

things and then gather up all the things that have common 

property. A set is a collection of distinct objects and that can 

not contain duplicate elements. You can combine multiple 

queries using the set operators UNION, INTERSECT and 

DIFFERENCE etc.  

Set Intersection operation operates on two queries that return 

selected lists that share the exact position, number of columns, 

and data types. An intersection operation returns the rows 

from both queries that share the same values in all of the 

selected list columns. 

The intersection operation for sets A and B gives the elements 

that are common to both sets A and B. For example set A has 

elements {2,4,5,7} and set B has elements {3,4,5,9}, then the 

result for the intersection of A and B is {4,5}. The difference 

of two sets A and B, written as A-B. A-B is the set of all 

elements of A that are not elements of B. The difference 

operation, along with union, intersection is an important and 

fundamental set theory operation. 

For example set A has elements {1,2,3,4,5} and set B has 

elements {3,4,5,6,7,8}. Now the difference between A and B 

sets is 

{1,2,3,4,5}-{3,4,5,6,7,8}={1,2}, same as the difference 

between B, A is B-A={3,4,5,6,7,8}-{1,2,3,4,5}={6,7,8}. 

Proposed algorithm to evaluate iceberg query using set 

operations: 

Iceberg (Attribute A,  Attribute B, Threshold T) 

 Output: Iceberg results 

1. generate Bitmaps(Attribute a, Attribute b) 

2. For each vector a of Attribute A do 

3. aset [], aset.countones, a.sp=find all one positions(a) 

4. For each vector b of attribute B do 

5. bset[], bset.countOnes, b.sp=find all positions(b) 

6. while a ≠ null and b ≠ null do 

7. countRes=0, 

8.If(aset.countones>=threshold&& 

bset.countones>=threshold) then 

9. do asset ∩ bset 

10. If(countRes>Threshold) then 

11.AddIcebergresult(a.value,b.value,countRes)into R 

12. aset,bset=perform a-(a∩b)  

13. acountones=getcount(asset) 

14. bcountones=getcount(bset) 

15. If(acountones>Threshold) then 

16. Repeat from step 9 to 15 for a and b 

17. endIf 

18. Return R. 

 The above algorithm presents the proposed research work in 

three phases. In the first phase algorithm finds all 1 bit 

positions of vectors A and B and sends them in to asset and 

bset. Then the second phase the algorithm counts the number 

of bit positions of sets A and B and compare them with the 



International Journal of Computer Applications (0975 – 8887)  

Volume 81 – No.7, November 2013 

25 

threshold, if it satisfies T, moved to next stage, otherwise 

removed directly from processing. In the next stage the 

common index positions are found by doing intersection 

between vectors of attributes A and B, if the result of 

intersection satisfies T, then that pair will be  sent to the 

resultant iceberg query, and moved on to the next stage, 

otherwise removed from the processing. In the next stage the 

difference operation will be done to update the index positions 

of intersected vectors. If the updated vectors satisfy the T, 

then the above process will be repeated until completion of all 

bit map vectors. 

Validation of index based algorithm on sample database: 

We will illustrate our process using an iceberg query having 

two aggregate attributes with COUNT function as the running 

example. We will show how the algorithm can be adjusted to 

support other aggregation functions and arbitrary number of 

aggregate attributes. Suppose the iceberg query that we need 

to answer is as the one in Figure 2.  

The data table and bitmap indices are as those in Figure 1. 

The naive way to process this iceberg query on two attributes 

A and B using bitmap indices is to find the bit positions of 

each attribute of A and B. For example, if A and B have I and 

J distinct values respectively, I*J set operations will be needed 

to produce the iceberg results. To reduce these I*J operations 

we will conduct preprocessing operation. From the below 

example we will illustrate our process. 

SELECT A,B,COUNT(*) FROM R GROUP BY A,B 

HAVING COUNT(*) > 2 

Fig. 2: An Iceberg Query with COUNT Function 

Example 3.1: In table R, column A has 3 distinct values “A1, 

A2, A3”, and column B has 3 distinct values “B1,B2, B3”. 

The bitmap indices are those on the right of Figure 1. To 

process the iceberg query in Figure 2, the naive approach will 

conduct set intersection operations. In this we conduct 

intersection operations between 9 pairs: (A1,B1), (A1,B2), 

(A1,B3), (A2,B1), (A2,B2), (A2,B3), (A3,B1), (A3,B2) and 

(A3,B3). Before conducting the intersection operation we will 

conduct the pre processing step. In this we will check whether 

the bit positions of each attribute are greater than the specified 

threshold or not. After each preprocessing operation, if the 

numbers of bit positions are greater than the threshold T then 

we will conduct intersection operation between the pairs. If 

the number of bit positions of each attribute is less than the 

threshold we will discard the attribute. After each intersection 

operation if the number of 1 bit positions is larger than the 

threshold (2 in this example), it is added into the iceberg result 

set.  After each intersection operation the attribute is updated 

by conducting the difference operation between the individual 

attribute and intersection pair. From the below example we 

will understand how the process will be done. 

Example 3.2: Consider the bitmap vectors A1 =1001100011, 

B1 = 0010100100, A2=0100011100, B2=1101011011, 

A3=0010000000, B3=0000000000 of our running example in 

Figure 1. When we find bit positions and store them in a set 

we get A1={0,3,4,8,9} and B1={2,4,7}, A2={1,5,6,7}, 

B2={0,1,3,5,6,8,9}, A3={2}, B3={no bit positions}. 

When we conduct preprocessing step we will check whether 

all bitmap vectors have number of bit positions greater than 

the threshold T(2).  

A1’s number of bit positions=5>2 

A2’s number of bit positions=4>2 

A3’s number of bit positions=1<2  

B1’s number of bit positions=3>2 

B2’s number of bit positions=7>2 

B3’s number of bit positions=0<2 

 From the above preprocessing step we will discard A3 and 

B3 and we will send remaining bitmap vectors for intersection 

operation. With this preprocessing step instead of doing 9 

intersection operations we will conduct only 4 intersection 

operations. After preprocessing step we get the pairs for 

intersection are 

(A1,B1),(A1,B2),(A2,B1),(A2,B2). 

When we conduct intersection between A1,B1 we will get the 

below result. 

A1={0,3,4,8,9}∩{2,4,7}={4}=1<2. 

The number of bit positions of intersected bitmap vectors is 

less than the threshold, so we will discard the pair, without 

sending it to the resultant vector. 

Now we will conduct the difference operation to A1,B1 

vectors to update these bitmap vectors. 

A1=A1-(A1∩B1)={0,3,4,8,9}-{4}={0,3,8,9}=4(number of bit 

positions)>2 

B1=B1-(A1∩B1)={2,4,7}-{4}={2,7}=2(number of bit 

positions)<2 

After each difference operation we adds an extra pruning step 

of monitoring the number of remaining 1s in both bitmap 

vectors involved. If the number of 1 bits of a modified vector 

becomes smaller than the iceberg threshold, this vector can be 

pruned. That is, no further intersection operation is necessary 

for this vector. With difference operation, the number of 

intersection operations can be reduced effectively, since the 

iceberg threshold is usually large. Now we will conduct 

intersection operation for the pairs (A1,B2),(A2,B2). By 

following the above process we will get the resultant pair as 

(A1,B2) and (A2,B2). 

 

4. IMPLEMENTATION 

This section describes different models that were proposed in 

the previous section. In this section we propose the generation 

of bitmaps, finding bit positions, iceberg query evaluation 

using set operations like intersection and difference 

operations. 

Step1: Generate bitmaps: 

The first module generates bitmaps from input attributes; 

these generated output bitmaps are given as the input to the 

next module. The next module finds the index positions of all 

1’s in the generated bitmap vectors. 

Step 2: Findallindexpositions 

This module finds all 1 bit positions of bitmap vector and 

stores the bit positions in to sets say aset{}, bset{}, and 

computes the count of index positions. This module checks 

whether the count satisfies the T or not. 

Step 3: INTERSECTION operation 

This module performs the intersection operation between the 

preprocessed vector pairs. If the resultant set after each 

intersection operation satisfies the T, then the intersected pair 

will be sent to the resultant iceberg.  

 

 



International Journal of Computer Applications (0975 – 8887)  

Volume 81 – No.7, November 2013 

26 

Step 4: DIFFERENCE OPERATION 

After getting the results from the intersection operation the 

original bitmap vectors are updated by doing the difference 

operation. If the count of index positions are above T after 

updating the vectors will be future referenced, else pruned. 

 The above modules are implemented using JAVA language 

for the purpose of experimentation. 

 

5. EXPERIMENTATION 

This section describes the experiment to be carried out on the 

implementation described in the previous section under a 

specified iceberg threshold values that increase from 100 to 

1000. The database tuples are 1.0 lakh. First the iceberg query 

is responsible to select the similar records with A and B 

attributes from the database table R which are having 

threshold value ranging between 100 and 1000. Then, the 

experiment is to be conducted by firing an iceberg query as 

stated in fig2. On the database table which consists of 1 lakh 

of tuples with two attributes A and B and COUNT as an 

aggregation function. The first function i.e., generatebitmaps 

accepts all these tuples as input. This function first produce 

bitmap vector from the given input attributes. Then the second 

function Findallindexpositions finds all the index positions of 

1’s and store them in to sets. The COUNT function counts the 

bit positions of bitmap vectors. After counting the bitmap 

vectors positions the count will be checked with the threshold 

T(value greater than 100 to 1000). If T is satisfied then the 

intersection will be done by these satisfied pairs. If the result 

is satisfied by the T then the pair will be sent to the resultant 

iceberg. The actual vectors are updated after intersection 

operation by doing the difference operation. The experiment 

is repeated for different iceberg thresholds by keeping the 

same number of tuples in a database table and noted variations 

in execution times. 

5.1 Results & Analysis 

This section describes the results obtained in our experiment 

conducted in the previous section and are shown in below 

table. 

The first column shows the different thresholds T. The second 

column shows the execution times recorded. 

Thre

shold 

1

0

0 

20

0 

3

0

0 

4

0

0 

5

0

0 

60

0 

7

0

0 

8

0

0 

90

0 

10

00 

Basi 

IBQ 

2

3.

2 

12.

37 

8.

2

8 

5.

7

7 

4.

9

4 

4.2

3 

3.

5

9 

3.

1 

2.4

7 

2.3

4 

IBQ 

Dyna

mic 

2

1.

0 

10.

8 

7.

4 

4.

9 

4.

2

5 

3.9

5 

3.

5

3 

2.

8 

2.2

3 

2.2

1 

IBQ

VA 

1

0.

5 

6.1

4 

5.

3 

4.

4 

3.

8

4 

3.2

8 

2.

9

3 

2.

8

6 

2.1

88 

1.8

91 

IBQ 

SET 

OP 

1.

5

6 

1.4

1 

1.

4

1 

1.

4

1 

1.

2

1 

1.1

11 

1.

1 
1 

0.9

5 
0.9 

Fig4(a): Table showing execution time by varying thresholds 

The above result table in  fig 4(a) consists of 5 rows and 11 

columns. The first row showing the thresholds ranging from 

100 to 1000. And second, third, fourth and fifth rows are 

different iceberg query evaluation algorithms such as Basic 

IBQ, IBQ Dynamic, IBQ PQ, and IBQSETOP respectively. 

All the respective column values are filled with execution 

time by changing the thresholds. The algorithm IBQ SETOP 

executing the iceberg query with minimum execution time for 

all the thresholds compared with remaining algorithms which 

are existing in previous shown in the table.   

 
Fig4(b): Graph showing comparison of execution time Vs 

Threshold 

The above graph in fig4(b) is showing clear execution time of 

different algorithms existing in previous. The graph is having 

two axis titles horizontal and vertical on which threshold and 

execution time are shown respectively. The basic IBQ 

algorithm is evaluating iceberg queries at 100 threshold is 

with 23.0 milli seconds which is the highest execution time 

offered from all other algorithms. And the setop algorithm is 

the lowest execution time offered among all other algorithms. 

Similarly The graph is showing comparison of execution 

times versus thresholds ranging from 100 to 1000.  

 

6. CONCLUSION 

This paper presents a new Framework which evaluates 

iceberg queries using bitmap indices and set operations. The 

main advantage of this method of evaluation is avoiding an 

execution of AND operations between unwanted bits of 

bitmaps. The setIntersection operation considers only index 

positions of one bits from each bitmap and perform the 

intersection operation between them to produce iceberg 

results. Thus inherently this method saves an execution time 

between all unwanted bits of bitmaps. The setDifference 

operation determines the future reference of the original 

bitmaps which are already involved in the intersection 

operation. These two simple set operations save maximum 

execution time when compared to existing algorithms that are 

shown by our extensive experimentation. The future research 

direction of this work may be reduction of number of set 

operations generated which optimizes the execution time of 

evaluation of iceberg queries. 

7. ACKNOWLEDGMENT 

Our thanks to the management members and principal of 

Kakatiya Institute of Technology and Science-Warangal who 

have facilitated resources to read and compute in order to 

develop this article and our sincere thanks to Head of the 

Department Prof.P.Niranjan who encouraged us research and 

publish this paper. 

8. REFERENCES 

[1] Bin He, Hui-I Hsiao, Ziyang Liu, Yu Huang and Yi 

Chen, “Efficient Iceberg Query Evaluation Using 

Compressed Bitmap Index”, IEEE Transactions On 

Knowledge and Data Engineering,  vol 24, issue 9, sept 

2011, pp.1570-1589 

[2] D.E. Knuth, “The Art of Computer Programming : A 

Foundation for computer mathematics” Addison-Wesley 

0 

5 

10 

15 

20 

25 

100 300 500 700 900 

E

x

e

.

 

T

i

m

e

 
Threshold 

IBQ Evaluation:Threshold Vs Exe.Time  

Basic IBQ 

IBQ Dynamic 

IBQVA 

IBQ SET OP 



International Journal of Computer Applications (0975 – 8887)  

Volume 81 – No.7, November 2013 

27 

Professional, second edition, ISBN NO: 0-201-89684-2, 

January 10, 1973. 

[3] G.Antoshenkov, “Byte-aligned Bitmap Compression”,  

Proceedings of the Conference on Data Compression, 

IEEE Computer Society, Washington, DC, USA, Mar28-

30,1995, pp.476 

[4] Hsiao H, Liu Z, Huang Y, Chen Y, “Efficient Iceberg 

Query Evaluation using Compressed Bitmap Index”, in 

Knowledge and Data Engineering, IEEE, Issue: 99, 

2011, pp:1. 

[5] Jinuk Bae,Sukho Lee, “Partitioning Algorithms for the 

Computation of Average Iceberg Queries”, Springer-

Verlag, ISBN:3-540-67980-4, 2000, pp: 276 – 286. 

[6] J.Baeand, S.Lee, “Partitioning Algorithms for the 

Computation of Average Iceberg Queries”, in  DaWaK, 

2000. 

[7] K. P. Leela, P. M. Tolani, and J. R. Haritsa.”On 

Incorporating Iceberg Queries in Query Processors”, in 

DASFAA, 2004, pages 431–442.   

[8] K.Stockinger, J.Cieslewicz, K.Wu, D.Rotem and 

A.Shoshani. “Using Bitmap Index for Joint Queries on 

Structured and Text Data”, Annals of Information 

Systems, 2009, pp: 1–23. 

[9] K.Wu,E.J.Otoo and A.Shoshani. “Optimizing Bitmap 

Indices with Efficient Compression”, ACM Transactions 

on Database System, 31(1):1–38, 2006. 

[10] K.Wu,EJ.Otoo,and A.Shoshani, “On the Performance of 

Bitmap Indices for High Cardinality Attributes”, VLDB, 

2004, pp: 24–35. 

[11] K.-Y.Whang, B.T.V.Zanden and H.M.Taylor.”A Linear-

Time Probabilistic Counting Algorithm for Database 

Applications”. ACMTrans.Database Syst., 15(2):208–

229, 1990. 

[12] M.Fang, N.Shivakumar, H.Garcia- Molina, R.Motwani 

and J.D.Ullman.”Computing Iceberg Queries 

Efficiently”. In VLDB, pages 299–310, 1998. 

[13] M.Jrgens “Tree Based Indexes vs. Bitmap Indexes: A 

Performance Study” In DMDW, 1999. 

[14] M.Stonebraker, D.J.Abadi, A.Batkin, X.Chen, 

M.Cherniack, M.Ferreira, E.Lau,A.Lin, S.Madden, 

E.J.O’Neil, P.E.O’Neil, A.Rasin, N.Tran and 

S.B.Zdonik.C-Store: “A Column-oriented DBMS”. In 

VLDB, pages 553–564, 2005. 

[15] P.E.O’Neil.”Model204 Architecture and Performance”. 

In HPTS Pages 40–59,  1987.  

[16] P.E.O’Neiland D.Quass. “Improved Query Performance 

with     Variant Indexes”. In SIGMOD Conference, pages 

38–49, 1997. 

[17] P.E.O’Neil and G.Graefe. “Multi-Table Joins Through 

Bitmapped Join Indices”. SIGMOD Record, 24(3):8–11, 

1995. 

[18] R.Agarwal,T.Imilinski,andA.Swami.”MiningA ssociation 

Rules between Sets of Items in Large  databases”. In 

SIGMOD Conference, pages 207-216, 1993.   

[19] Spiegler I; Maayan R “Storage and retrieval 

considerations of binary databases”. Information 

processing and management: an international journal 21 

(3): pages 233-54, 1985.  

 

9. AUTHOR’S PROFILE 

Ch.Chaitanya Bharathi Currently persuing Master of 
Technology in Computer Science and engineering with 
specilization in Softwatre Engineering.Computer Science and 
Engineering Department, Kakatiya Institute of Technology & 
Science (KITS), Kakatiya University-Warangal.A.P.,India.  

 

Vuppu Shankar obtained his Bachelor’s degree in Computer 
Technology from Nagpur University of India. Then he 
obtained his Master’s degree in Computer Science from JNTU 
Hyderabad, and he is also life member of ISTE,IEEE. He is 
currently an Associate Professor at the Faculty of Computer 
Science and Engineering, Kakatiya Institute of Technology & 
Science (KITS), Kakatiya University-Warangal. His 
specializations include Data mining and Data warehousing, 
Databases and networking. His current research interest in 
computation of an iceberg cubes and evaluation of iceberg 
queries efficiently. 

 

B.Hanmanthu obtained his Bachelor’s degree in Computer 
Science and Engineering from JNT University of India. Then 
he obtained his Master’s degree in Computer Science and 
Engineering with specialization Software Engineering from 
JNT University Hyderabad, and he is also life member of 
ISTE. He is currently Assistant Professor of Computer 
Science and Engineering, Kakatiya Institute of Technology & 
Science (KITS), Kakatiya University-Warangal. His 
specializations include Data mining and Data warehousing, 
Databases and networking.  

 

 

 

IJCATM : www.ijcaonline.org 


