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Constrained Routing Problem  

 

 
ABSTRACT 
In this paper, we have worked on a problem in the domain of 

graph theory and geometry .Objective of our problem is to 

find out the shortest path with forbidden pairs in a graphs. 

Given a graph G=(V, E) and set of pairs P={ai, bi|ai ϵ Vᴧ bi ϵ 

V}, we have to find out the shortest path between two given 

vertices s and t, s.t. ai  bi both do not occur on the path for any 

i. We reduce SAT to this problem and thus claim that this 

problem is NP-hard. 

Keywords 
Shortest path with forbidden pairs, NP-hard, 

Computational geometry, Graph theory. 

 

1. INTRODUCTION 
Technique to identify NP-hard problems and to provide a 

reasonable approximation for them has been one of the most 

active area of algorithmic research. It involves a rich 

mathematical theory and promises a profound practical impact 

[1] [4] [7] [8] [9] .Graph theory and computational geometry 

are two domains offering many such open challenging 

problems. In this paper we have taken one problem and give 

mathematical proof to claim that to find shortest path with 

forbidden pairs is NP-hard. 

Given a graph G=(V, E) with a set of pairs of vertices, called 

forbidden pairs, and two special vertices s and t. The goal is to 

find a shortest path between s and t such that at most one 

vertex is involved from each pair in this path. 

One of applications of this problem is as follows. A message 

packet routed through internet passes through several intranets 

belonging to different domains. Suppose each domain 

perceives threat from a packet which has traveled through 

enemy territory. Thus it may not allow such packets to travel 

through their intranets, Then the routers will have a challenge 

to find an optimum path which does not pass through domains 

of any two enemy countries. 

2. FINDING A PATH SUBJECT TO 

FORBIDDEN PAIRS IS NP-HARD 

2.1 Problem 
Let G=(V, E)  is an undirected graph and  F={(x1, x2), (x3, x4), 

……(x2k-1, x2k)} is a collection of pairs of vertices of G, called 

forbidden-pairs, such that xi±xj for all i≠j. In addision s and t 

are two specific vertices in G. Find a shortest path P in G 

connecting s and t subject to the forbidden-pair condition, 

i.e.for all r ϵ [1,k], P passes through at most one of x2r-1 and 

x2r. This is called forbidden pair shortest path problem 

(FPSP).  

It will be shown that this problem is NP_hard by reducing 

CNF expression X= (x1 +x2 + x’
3 + x4). (x

’
2 +x3  + x’

4). (x
’
1 + 

x3 + x4). (x
’
1 ++ x’

2 + x’
4). It will be shpwn that this expression 

is satisfiable if and only if there is a path subject to the 

forbidden-pair condition between s and t in the graph of figure 

1 where forbidden pairs are P= { (a1, b1), (a2, b2), (c1, d1), (c2, 

d2), (e1, f1), (e2, f2), (g1, h1), (g2, h3), (g3, h2), (g4, h4)}. 

 

Fig 1: Graph constructed from Boolean expression 

To relate the feasible paths to the Boolean value-assignment 

associate {a1, a2} to x1, {b1, b2} to x’
1, {c1, c2}, to x2, {d1, d2} 

to x’
2, {f1, f2} to x3, {e1, e2} to x’

3, {g1, g2, g3, g4} to x4 and { 

h1, h2,h3,h4} to x’
4. Observe that in the figure 1, the stack of 

chains, from top to bottom, is associated with literals x1, x2, 

x’
3, x4 respectively. These constitute the clause C1. 

Similarly the stack immediately to the left of  kj, is related to 

the literals of Ci for all i. 

If path goes through any gi, then we assign 1 to x4 and 0 to x’
4. 

Similarly if it passes through any hi then assign 1 to x’
4 and 0 

to x4. We will justify that the path will never pass through the 

vertices of both the sets, {g1, g2, g3, g4} and {h1, h2, h3, h4}. 

Therefore above assignment is well defined. Similarly assign 

the value to other variables. If the path does not pass through 

the vertices of the set of a vertex or its complement, then 

choose the assignment randomly for that variable. 

Suppose the path passes through g1, g2, then the forbidden pair 

condition requires that it cannot pass through h1 or h3. From 

the structure of the graph,  it evident that the path also cannot 

pass through h2 and   h4 either. Similarly if the path passes 

through g3, g4, then again it can not pass through h1, h2, h3, or 

h4. Due to symmetry we can see that if it pass through any h 

vertex then it can not pass through any g vertex. Thus if x4 is 

assigned 1, then x’
4 can not be assigned 1 (consequently it will 

be assigned 0). Similarly if x’
4 is assigned 1, then x4 will get 
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value 0. Similar observations can be made for other variables. 

This shows that a path gives a valid value assignment if the 

variables associated with the vertices on the path are assigned 

1. 

The path reaches vertex ki from s only by passing through one 

of the chains of the stack to its left. Thus one of the literals of 

Ci must be assigned value 1. Therefore we see that if there 

exists a feasible path from s to t, then the associated value 

assignment satisfies the expression X. 

Next we show that every satisfying assignment has at least 

one associated path. Consider a value assignment which 

satisfies the expression. Let V’ be a set of vertices including s, 

t, k1, k2, k3, k4 and those vertices among ai, bi,……….., hi 

which are associated with the literal having value 1. Observe 

that V’ cannot have both members of any forbidden pair. The 

value assignment satisfies the expression therefore at least one 

chain in each stack is contained in V’. Thus the induced grapg 

on V’ must be connected. Since it contains both, s and t, there 

exists at least one path connecting the two and it is feasible. 

These observations lead to the following result. It shows that 

X has a satisfying assignment iff there is a at least one feasible 

path between s and t in the graph subject to the forbidden 

pairs P. We also notice that the total number of vertices in the 

graph is at most forbidden pairs P. We also note that the total 

number of vertices in the graph is at most n(m-1) + mm + 2 

where m is the total number of clauses and n is the total 

number of literals occurrences. 

3. FORMAL PROOF 

3.1 Reduction of SAT to FPFP 

Let X be a CNF expression containing K clauses. If a variable 

occurs in the expression but its complement does not, then the 

clauses containing this variable can trivially be satisfied 

without affecting other clauses. Similarly if the complement 

of a variable occurs without its variable then again the 

corresponding clauses can be satisfied trivially. Thus we can 

drop such clauses from the expression. Henceforth we will 

assume that no variable (respectively, complement of a 

variable) occurs without its complement (respectively. Its 

variable)  in X. 

Let C1, C2,............,Ck  denote the clauses and x1, 

x2,……denote the variables of the expression. Define a graph 

G=(V, E) as follows. The vertex set is { S = k0, k1,………,kk, 

T=kk+1} ᴜ {aipj  : xp ϵ Ci, x
’
p ϵ Cj} ᴜ { bjpi : x’p  ϵ Cj, xp  ϵ Ci}. 

Suppose xp occurs in clauses Cj1,……….,Cjmp with j1 < 

j2<.......<jmp and x’
p occurs in Cj’1, ……….,Cj’mp where j’1 < j’

2 

<…….<j’
np. Then define these edges:  (i) (aJupJv, aJupJ

,
v+1)  for 

every u, v (ii) (bJvpJu, bJvpj’u+1) 

For every u, v (iii) (kJu-1, aJupJ
’
1) for every u (iv) (kj

’
v-1, bJ

’
cPJ1) 

for every v (v) (aJuPnp, kJu) for every u (vi) (bJ
’
vPmp, kJ

’
v) for 

every v. Similar edges for each p. Finally include the edge 

(kK, kK+1). Figure 2  shows the graph for 

X = ( x1 + x2 + x’
3 + x4) . (x

’
2 + x3 + x’

4) . (x
’
1 + x3 + x4). (x

’
1 + 

x’
2 + x’

4)  based on the labeling convention described above. 

The forbidden pair-par problem constructed from SAT 

problem includes this graph with the pairs F = { (aypz, 

bzpy)}yzp[2] [5] [6] [7] [8] [9]. To prove the NP-hardness of 

FPFP we will show that X is satisfiable iff this G has a 

feasible path between s and t. 

 

Fig 2: Example of labeling convention 

(only if) Consider a satisfying assignment for X. Define a 

vertex set V’ = {k0, k1,……..,kK, kK+1} U {aypz : x
’
p = 1}. For 

each ki, either there is some xpϵ CKi with value 1 or there is 

some x’
p ϵ CKi with value 1. In former case, { aipj

’
1, aipj

’
2, ……, 

aipj
’
np } are in V’, in the later case , { bipj

’
1, bipj

’
2, ……, bipj

’
mp }  

V’. In either case there is a path from ki_1 to ki in the subgraph 

induced by V’, G(V’). Therefore this subgraph is connected. 

This implies that there is a path from k0 to kK+1 in G(v’). It is 

not difficult to see that V’ does not have both vertices of any 

forbidden pair since if a variable (or complement) has value 1, 

then its complement (resp, variable) has value 0. 

(If) We are given a path from k0 to kK+1=t satisfying the 

forbidden-pair constraint. Each ki, for 1≤ I ≤ K, is a cut-vertex 

and s and t are in the different components of G{V-{ki}) 

therefore the path must pass through all ki. From the structure 

of the graph it is obvious that the path must pass through a 

chain in each stack. 

Consider the stack adjacent to ky on the left side (s-side). 

Suppose the path passes through a chain ayp*. We will show 

that the path will not pass through any vertex b*p* in the 

graph. Suppose the chan has nodes : aypj
’
1, : aypj

’
2……………: 

aypj
’
np. Thus bzpy  must be defined only for z ϵ {j’

1,………j’
np}. 

From forbidden-pair constraint the path cannot pass through 

bzpy for each  z in the set. The chain vertices have degree 2 so 

the path cannot pass through any vertex bzp* for each z ϵ 
{j’

1,………j’
np}, i.e., any vertex b*p*. Similar argument shows 

that if the path pass through any vertex bzpy then it cannot pass 

through any vertex a*p*. In other words, for each p, either all 

b*p* are avoided by the path or all a*p* are avoided by it. 

Define a Boolean value assignment xp = 1 if the path passes 

through aypz for some y,z. Similarly assign x’
p = 1 if any bzpy is 

on the path. Set all the complementary literals to zero. If the 

path does not pass through any aypz or bzpy for any y, z then the 

set the value of xp arbitrarily. 

In the light of conclusion reached in the previous paragraph it 

will never happen that a variable and it complement both are 

assigned 1 (0). Thus this value assignment is valid [3]. 

To see that this value assignment satisfies the Boolean 

expression X, observe that for each clause Ci there is a stack 

of vertices with labels ak….or bk…. coreesponding to the 

literals of that clause. The path must pass through one of these 

chains so the literal associated with that chain must be 

assigned value 1. Thus the value assignment must satisfy X. 

4. CONCLUSION  
In this paper we thoroughly concludes that every constraint 

routing problem is Np-hard problem through conversion of 

this problem into well known NP-hard problem (SAT).  

Several well known technique available to deal NP- Hard 

problem(SAT) makes this highly application based problem 

popular due to easy mapping from constrained routing 



International Journal of Computer Applications (0975 – 8887)  

Volume 81 – No.7, November 2013 

17 

problem into SAT problem. Due to wider application of this 

problem in communication and network where security issue 

is at most concerned carries a lot of advantages to study 

further to give optimal solution of this problem with help of 

approximation algorithms. 
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