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ABSTRACT 

Feature subset selection is a data preprocessing step for 

pattern recognition, machine learning and data mining. In real 

world applications an excess amount of features present in the 

training data may result in significantly slowing down of the 

learning process and may increase the risk of the learning 

classifier to over fit redundant features. Fuzzy rough set plays 

a prominent role in dealing with imprecision and uncertainty. 

Some problem domains have motivated the hybridization of 

fuzzy rough sets with kernel methods. In this paper, the 

Exponential kernel is integrated with the fuzzy rough sets 

approach and an Exponential kernel approximation based 

fuzzy rough set method is presented for feature subset 

selection. Algorithms for feature ranking and reduction based 

on fuzzy dependency and exponential kernel functions are 

presented. The performance of the Exponential kernel 

approximation based fuzzy rough set is compared with the 

Gaussian kernel approximation and the neighborhood rough 

sets for feature subset selection. Experimental results 

demonstrate the effectiveness of the Exponential kernel based 

fuzzy rough sets approach for feature selection in improving 

the classification accuracy in comparison to Gaussian kernel 

approximation and neighborhood rough sets approach.  
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1. INTRODUCTION 
Kernel methods in machine learning allow mapping the data 

into a high dimensional feature space in order to increase the 

classification power of linear learning algorithms [1], [2], [3]. 

Rough set theory proposed by Pawlak [4] has proven to be an 

effective tool for feature selection, knowledge discovery and 

rule extraction from categorical data. Rough set theory can 

also be used to deal with both vagueness and uncertainty in 

data sets. The rough set theory has some difficulty in handling 

both symbolic and real-valued values of attributes [5]. Rough 

set theory and fuzzy set theory are combined together [6], [7], 

[8] to deal with numeric and fuzzy attributes in an information 

system and both are complementary. Dubois and Prade [6] 

first proposed the concept of fuzzy rough sets. Fuzzy rough 

sets offer a high degree of flexibility in enabling the 

vagueness and imprecision present in real-valued data to be 

modeled effectively. 

Most of the fuzzy rough sets are established based on fuzzy 

granules induced by fuzzy  -equivalence relation. It has been 

shown that kernel matrix computed with a reflexive kernel 

taking values from the unit interval [0, 1] is a fuzzy  -

equivalence relation [9], [10]. Therefore, it is desiarable to 

consider such kernel functions to induce fuzzy  -equivalence 

relations from data. Exponential kernel functions are reflexive 

and symmetric in the unit interval [0, 1].   

In this paper an Exponential kernel based fuzzy rough set for 

feature selection based on the properties discussed in [6], [7], 

[8], [11] is presented. The kernel functions extract fuzzy 

relations from data into fuzzy rough sets.  

Rest of the paper is organized as follows: Section 2 presents a 

brief introduction to fuzzy rough sets and kernel methods. In 

section 3, an Exponential kernel based fuzzy rough set model 

for feature selection is introduced. In Section 4, feature 

selection with Exponential kernel based fuzzy rough sets is 

presented. Section 5 presents the experimental results.  The 

paper is concluded in Section 6. 

2. BACKGROUND 
This section presents a brief introduction to fuzzy rough sets 

and kernel methods.  

2.1 Fuzzy-Rough Sets 
Fuzzy set theory and Rough set theory complement each other 

and as such constitute important components of soft 

computing. Researchers have explored a variety of different 

ways in which these two theories can interact with each other. 

There are many possibilities for rough-fuzzy hybridization; 

the most typical ones are to fuzzify sets to be approximated 

and/or to fuzzify the equivalence relation in an approximation 

space [12]. The first case allows obtaining rough 

approximations of fuzzy sets which results in the rough- fuzzy 

sets; while the second case allows obtaining approximations 

of fuzzy sets by means of fuzzy similarity relations resulting 

in the fuzzy- rough sets. 

In the context of rough set theory [5], an equivalence relation 

is a fundamental and primitive notion. For fuzzy-rough sets, a 

fuzzy similarity relation is used to replace an equivalence 

relation. Let U be a nonempty universe, for a given fuzzy set 

A and a fuzzy partition Φ = {F1, F2, . . . , Fn} on the universe 

U, the membership functions of the lower and upper 

approximations of A by Φ  are defined as follows:  

 
Φ   

    =         
     

 
     

and 

                
Φ   

    =       
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where,   and   denote a  -norm operator and implicator. The 

pair of sets  Φ    Φ      is called a fuzzy-rough set. A 

general study of fuzzy-rough sets from the constructive and 

the axiomatic approaches is presented by Yeung et al. [8]. 

There is significant theoretical work on hybridization of fuzzy 

and rough set theories, as well as its usage in classification 

and similar supervised learning techniques [13].  

2.2 Kernel methods 
The challenges of machine learning have received much 

attention by the use of kernel methods.  Kernel methods 

allows mapping the data into a high dimensional feature space 

in order to increase the computation of linear learning 

algorithms [3]. Kernel defines a similarity measure between 

two data points and allows the utilization of prior knowledge 

of the problem domain. Kernel provides all of the information 

about the relative positions of the inputs in the feature space 

so that the associated learning algorithm is based only on the 

kernel function. In the statistical perspective, Symmetric 

positive definite functions are called covariances. Hence 

kernels are essentially covariance based. In general there are 

two important classes of kernels, viz. stationary and non-

stationary kernels [14]. 

(i) Stationary kernels: A stationary kernel is one which is 

translation invariant: 

              , 

it depends only on the lag vector separating the two objects   

and  , but not on the objects themselves. To emphasize the 

dependence on both the direction and the length of the lag 

vector, it sometimes called as an isotropic stationary kernel. 

Thus, a stationary kernel depends only on the norm of the lag 

vector between two objects and not on the direction, then the 

kernel is said to be isotropic (or homogeneous), and is thus 

only a function of distance and its covariance form is 

                   , 

And the correlation form representation is: 

                          , 

Some commonly used isotropic stationary kernels are given in 

the table 1. 

Table 1: Isotropic stationary kernels [14] 

Name of Kernel                  

1) Rational quadratic 

         positive definite in 

   

         
      

        
 

2) Exponential 

        positive definite in 

   

             
     

 
  

3) Gaussian  positive 

definite in                 
      

 
  

4) Wave  positive 

definite in    

      

 
 

     
    

     

 
  

5) Spherical  positive 

definite in    
  

 

 

     

 
 

 

 
 

     

 

 
  if 

         

       zero otherwise 

Further for each class of kernels, one can view their spectral 

representation and show how it can be used to design many 

new kernels.  

(ii) Non-stationary kernels: The most general class of 

kernels is the one of non-stationary kernels depend explicitly 

on the two objects   and   such that              ,   is 

the polynomial kernel degree. The reflexivity property holds 

on specific non-stationary kernels. For example in   , the 

nonstationary kernel defined by [14]: 

       
             

        
 

is reflexive and is stationary reducible. 

3. EXPONENTIAL KERNEL BASED 

FUZZY ROUGH SET MODEL 
In this section the Exponential kernel for computing fuzzy  -

equivalence relations in fuzzy rough sets is introduced. 

Let   be a non empty finite set (universe of discourse) 

samples,     is contained in   and is described by a vector 

      , where          . Thus,     . 

The Exponential kernel [14] is defined as: 

              
       

 
    

where,         is the Euclidiean distance between samples 

   and   ; and (i)                 (ii)                  ; 

and (iii)             Since the properties of reflexivity and 

symmetry are satisfied, Exponential kernel induces the fuzzy 

relation and is denoted by   
 
. Assume                

  , the Exponential kernel      
 

      
       

 
  is the 

similarity of samples     and    with respect to attribute     

and   is the kernel parameter. Exponential kernel functions 

can be expressed by a  -norm based combination of reflexive 

functions. Let                    and   

               , Exponential kernel      
     

 
  

      
       

 
  

 , its product is a  -norm. To measure 

uncertainty involved in the Exponential kernel approximation, 

the fuzzy information entropy has been used [15], [16].  

Let         be an information system,       be the 

condition and decision attribute,    is fuzzy  -equivalence 

relation on   computed with Exponential kernel in a sample 

space    .   is divided into          …,   } with the 

decision attribute. The fuzzy positive region   contain all 

objects of    that can be classified into classes of     using 

the information available in   is given by: 

                 
 ,             

One of the most important issues of rough sets in data analysis 

is discovering dependencies between attributes. Jensen et al., 

[17] generalized the function of dependency in the case of 

fuzzy sets and proposed a fuzzy dependency function. If a set 

of attribute   completely depends on attribute  , then    . 

Dependency can be defined in a concise way by using rough 

sets, for any      ,   depends on   in a degree  , denoted 

by     , if         
         

   
 

          
 

   
, where 

     . If    ,   depends on   completely. Given a 

decision table          , if    ,     and      , 

then the condition attribute   is indispensible if    
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               , otherwise   is redundant. If     is 

independent if any     is indispensable. The reduction of 

attributes can be performed by comparing equivalence 

relations generated by sets of attributes. Attributes are 

removed so that the reduced set provides the same quality of 

classification as the original. A reduct is defined as a subset of 

minimal cardinality      of the conditional attribute   such 

that              [17], [18]. Also the significance of   in 

  as                         [19]. The significance 

of attribute is co-related with three variables:     and  . The 

attributes significance is different for each decision attribute if 

they are multiple decision attributes in a decision table. This is 

applicable to backward feature selection algorithm, where the 

redundant features are evaluated from the original features 

one by one. Again, for forward feature selection, the 

significance of attribute is                         , 

     .  

4. FEATURE SELECTION WITH 

EXPONENTIAL KERNEL BASED 

FUZZY ROUGH SETS 
Feature selection algorithm finds the dependency relations 

between the attribute sets to find more efficient representation 

of the data where each sample belongs to its decision with the 

highest certainty and there is no redundant attribute in feature 

subspace. The measure of fuzzy dependency is outlined in 

Algorithm1. This algorithm is to iteratively estimate feature 

weights according to their ability to discriminate between 

neighboring patterns. In each iteration, a pattern   is randomly 

selected and then two nearest neighbors of   are found, one 

from the same class ( ) and the other from the different class 

( ). The average weight of the ith feature is then updated. 

Algorithm1. Dependency with Exponential 

kernel approximation 
Input:         and parameter   

//   is the set of samples; 

//   is the feature set; 

//   is the set of all decision attributes. 

// Output: dependency       

Step 1:            

Step 2:  for     to   

Step 3:  find the nearest samples      (of same class) and         
(of different class) of objects      

Step 4:                       
                

  
   

Step 6:        

Step 5:  End 

Algorithm1 finds the significance of features and ranks the 

features. The evaluation of the dependency function 

performed for a dataset containing   attributes and   objects 

has time complexity          , which is same as that of 

Relief [20].  Redundant features are computed from the 

original set of features one by one.  

Feature subset selection is outlined in Algorithm2. In each 

iteration the algorithm begins with an empty set    of attribute 

and adds one feature, which makes the increment of 

dependency, into the set  . For each iteration a conditional 

feature that has not already been evaluated will be temporarily 

added to the subset   . The subset is then evaluated by 

maximizing the increment of dependency. The algorithm 

continues to evaluate the subsets until the dependency of the 

current reduct candidate equals to zero by adding any new 

feature into the attribute subset   .   

Algorithm2: Feature selection  
 Input:         and threshold    

//   is the set of samples; 

//   is the set of all conditional attributes; 

//   is the set of all decision attributes. 

// Output: a reduction    

Step 1:    ,      

Step 2: For each          

Step 3: Compute              

Step 4: Compute                            

Step 5: Select the attribute   and find                  

Step 6: if             , //   is a small positive number to 

control the convergence 

Step 7:         

Step 8:       

Step 9: else return   

Step 10: End 

The feature selection algorithm is based on forward search 

strategy, the first step is the increment of dependence of the 

current candidate subset which maximizes each selected 

attribute in time complexity           and the second step 

is to analyze whether the sample is consistent with time 

complexity     . So the worst case of computational 

complexity is           , which is same as in [21], where 

  and   are the numbers of attributes and objects. 

5. EXPERIMENTATION 
This section presents the results of experimental results 

obtained for six real-valued datasets. The datasets have been 

downloaded from UCI repository of machine learning 

databases [22]. The data sets used in the present work are 

outlined in Table 1.  

Table 1: Dataset description 

Sl. 

No. 

Dataset Samples Features Class 

1 Dermatology 

(derm) 

366 33 6 

2 Hepatitis (hepa) 155 19 2 

3 Ionosphere (iono) 351 34 2 

4 Wisconsin 

diagnostic breast 

cancer (wdbc) 

569 31 2 

5 Wisconsin 

prognostic breast 

cancer (wpbc) 

198 33 2 

6 Wine recognition 

(Wine) 

178 13 3 

 

Learning algorithms viz. Classification and Regression Tree 

(CART) [23] and linear Support Vector Machine (SVM) [2] 

are used to evaluate the selected features. The results are 

obtained with 10-fold cross validation mode. The parameters 

of SVM are taken as the default values (the value of kernel 

type is 0, kernel parameter is 0.05 and cost factor is 1) [24]. 

To compute the membership grades of samples belonging to 

the lower approximation of decision with Exponential kernel 

experimentation is carried out with different values of kernel 

parameter     over different datasets and the dependency of 

decision to each feature set is obtained [14], [25], [26]. This 

dependency becomes a good estimate of the classification 

abilities of the corresponding features. Higher values of   are 
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reflective of the classification capabilities of the respective 

features. The dependency goes up firstly and gets some peak, 

and then decreases. For the evaluation of a feature, the 

optimal interval for the values of the kernel parameter   is 

taken as [0.01, 0.5].  

The performance of the Exponential kernel based fuzzy rough 

sets for feature selection is compared with Gaussian kernel 

approximation [27] and the neighborhood rough sets (NRS) 

[21], [28]. The evaluating function reflects the classification 

performance in feature selection and feature ranking.  

The features selected with different models based on the 

significance value for the derm, hepa, iono, wdbc, wpbc and 

wine data sets are tabulated in Table 2 and the number of 

features selected by different models is tabulated in Table 3. 

The order of the features depicted in the Table 2 is the orders 

in which the features are being added to the feature space. In 

feature selection, the first best features are selected in ranking 

and best feature are added one by one and the classification 

performance of the current features in each round is 

determined until the classification performance does not 

improve significantly when adding more features. 

From Table 2 it is seen that the significance value increases 

with the corresponding number of selected features. The 

significance value does not increase once it reaches its 

maximum value. Features that have been added during the 

learning process are the selected features. From Table 3 it is 

observed that Exponential kernel based attribute reduction 

algorithm gives better reduction rate for the datasets 

considered in the experimentation. Three best results of high 

reduction rate are shown in Figs. 1-3. 

After performing reduction the dependency of reduced 

features is checked. The dependency of Exponential kernel 

with different kernel parameter values (θ) for both original 

features and reduced features based on Exponential fuzzy 

rough set (for different datasets) is shown in Table 4.  

 

Fig.1. Significance value of selected features by using 

Exponential, Gaussian and Neighborhood rough sets for 

ionosphere dataset 

 

 

 
 

Fig.2. Significance value of selected features by using 

Exponential, Gaussian and Neighborhood rough sets for 

wpbc dataset 

 

 

Fig.3. Significance value of selected features by 

Exponential, Gaussian and NRS feature selection for wdbc 

dataset 
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Table 2: Subsets of features selected by feature selection models 

 

Dataset 

Exponential kernel approximation Gaussian kernel approximation Neighborhood rough sets 

Selected 

attribute 
Significance value 

Selected 

attribute 

Significance 

value 

Selected 

attribute 

Significance 

value 

derm 

22 0.2951 22 0.2486 22 0.2486 

33 0.4918 27 0.4454 27 0.4454 

34 0.6667 5 0.5464 5 0.5464 

16 0.8607 15 0.6913 15 0.6913 

1 0.9262 34 0.9016 4 0.7568 

14 0.9672 14 0.9754 31 0.8770 

3 1.0000 16 0.9208 

32 0.9754 

1 0.9891 

8 1.0000 

hepa 

15 0.0733 17 0.0241 17 0.0194 

16 0.4314 16 0.1707 16 0.1548 

2 0.7625 2 0.5088 2 0.5935 

18 0.8866 18 0.7062 18 0.8000 

17 0.9377 15 0.8024 15 0.9032 

4 0.9699 4 0.8696 4 0.9613 

6 0.9850 6 0.9152 5 0.9871 

 7 0.9397 1 1.0000 

iono 

5 0.3456 5 0.1795 1 0.1083 

6 0.8143 8 0.4794 5 0.1624 

25 0.9774 27 0.6730 13 0.3504 

32 0.9998 24 0.7931 34 0.6410 

33 0.8863 24 0.9145 

34 0.9434 9 0.9915 

22 0.9598 3 1.0000 

wdbc 

24 0.9112 24 0.9436 24 0.5202 

4 1.0000 4 0.9862 4 0.9912 

  22 0.9997 2 1.0000 

wpbc 

2 0.2923 2 0.1897 2 0.0909 

13 0.7500 13 0.5234 30 0.1465 

29 0.9454 33 0.8030 14 0.2424 

7 0.9908 24 0.9459 3 0.4040 

25 0.9874 33 0.5909 

11 0.9988 13 0.7475 

4 0.8788 

11 0.9697 

7 0.9899 

27 1.0000 

wine 

10 0.3592 10 0.2215 10 0.0169 

7 0.8806 13 0.7281 13 0.2528 

13 0.9818 7 0.9385 7 0.4944 

11 0.9990 11 0.9873 11 0.7191 

5 0.9973 8 0.8539 

12 0.9382 

5 0.9888 

1 1.0000 
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Table 3: Number of features selected (entries in bold are the best cases) 

Sl. 

No. 
Dataset Raw data Exponential kernel Gaussian kernel Neighborhood rough sets 

1 derm 33 6 7 10 

2 hepa 19 7 8 8 

3 iono 34 4 7 9 

4 wdbc 31 2 3 3 

5 wpbc 33 4 6 10 

6 wine 13 3 5 3 

 

Table 4: Dependency of Exponential kernel with different parameter (θ) 

Dataset Parameter  (θ) 

Dependency with 

Exponential kernel 
Dataset Parameter  (θ) 

Dependency with Exponential 

kernel 

Original 

dataset 

Reduced 

dataset 

Original 

dataset 

Reduced 

dataset 

derm 

0.01 1.000 1.000 

wdbc 

0.01 1.000 1.000 

0.02 1.000 1.000 0.02 1.000 1.000 

0.05 1.000 1.000 0.05 1.000 1.000 

0.08 1.000 1.000 0.08 1.000 1.000 

0.1 1.000 1.000 0.1 1.000 1.000 

0.3 1.000 1.000 0.3 1.000 1.000 

0.5 0.9980 0.9976 0.5 0.9999 0.9991 

0.8 0.9674 0.9957 0.8 0.9990 0.9735 

hepa 

0.01 1.000 0.5032 

wpbc 

0.01 1.000 1.000 

0.02 0.9996 0.5032 0.02 1.000 1.000 

0.05 0.9929 0.5032 0.05 1.000 1.000 

0.08 0.9685 0.5032 0.08 1.000 0.9908 

0.1 0.9463 0.5032 0.1 0.9988 0.9445 

0.3 0.6945 0.5032 0.3 0.9837 0.8984 

0.5 0.5212 0.5010 0.5 0.8859 0.5122 

0.8 0.3667 0.4716 0.8 0.7023 0.3378 

iono 

0.01 0.9943 1.000 

wine 

0.01 1.000 1.000 

0.02 0.9943 1.000 0.02 1.000 1.000 

0.05 0.9930 0.9998 0.05 1.000 1.000 

0.08 0.9897 0.9964 0.08 1.000 1.000 

0.1 0.9862 0.9910 0.1 1.000 1.000 

0.3 0.9087 0.8482 0.3 0.9537 1.000 

0.5 0.8128 0.6753 0.5 0.7866 0.9983 

0.8 0.6937 0.4955 0.8 0.5711 0.9766 

 

From Table 4 it is observed that for most of the cases 

Algorithm2 gets the good sub set of features for classification 

with kernel parameter values (θ) are in the interval [0.1, 0.5]. 

From experimental results tabulated in Table 2 the best results 

are obtained for the wdbc, wpbc and iono dataset. It is seen 

that feature set {24,4} are the best features and it ranks first 

and second for wdbc dataset in all the methods and feature 2 

is the best single feature for wpbc dataset and it ranks first in 

all the methods. For the iono dataset, the order of features 

induced by Exponential kernel approximation is 5, 6, 25, 32; 

while the order of features induced by neighborhood rough 

sets is 1, 5, 13, 34, 24, 9, 3. Features 5 is the best feature, it 

ranks first with Exponential kernel approximation and the 

Gaussian kernel approximation while it ranks second with the 

neighborhood rough sets. Attribute reduction algorithms are 

sensitive to these differences. It is noted here that these little 

differences may leads to completely different feature subsets 

in feature selection algorithms. 

The classification accuracy of the corresponding selected 

features is then evaluated with the learning algorithms, viz. 

CART and SVM, to test the quality of the selected subsets of 

features. The classification performances for the raw data and 

the reduced data based on 10-fold cross validation are shown 

in Table 5 where the values in bold shows the highest 

accuracy with the reduced datasets. The CART with 

Exponential kernel approximation outperforms the other 

approaches viz. Gaussian kernel approximation and NRS for 

the ionosphere and wine datasets. With regard to SVM, 

Exponential kernel approximation outperforms the Gaussian 

kernel approximation and NRS for the derm, iono, wdbc, 

wpbc and wine datasets. It is noted that Exponential kernel 

approximation is little weaker than Gaussian and 

neighborhood rough sets with the CART learning algorithm. 

However, Exponential kernel approximation produces the best 

performances over the Gaussian kernel and NRS feature 

selection methods with the SVM learning algorithm.  
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Table 5: Classification accuracy based on CART and SVM 

Dataset 
Classifier Classification Accuracy 

CART/SVM Before feature selection Exponential kernel Gaussian kernel NRS 

derm 
CART 0.9226 0.9375 0.9200 0.9970 

SVM 0.8797 0.9945 0.9890 0.9882 

hepa 
CART 0.8249 0.8309 0.8375 0.7333 

SVM 0.8717 0.8082 0.7808 0.8000 

iono 
CART 0.8755 0.8947 0.8922 0.8940 

SVM 0.9117 0.9185 0.9136 0.8834 

wdbc 
CART 0.9050 0.9086 0.9069 0.9244 

SVM 0.9462 0.9550 0.9154 0.9347 

wpbc 
CART 0.7121 0.6847 0.7153 0.7132 

SVM 0.6000 0.7692 0.6363 0.7142 

wine 
CART 0.8694 0.9222 0.9222 0.9056 

SVM 0.9213 0.9550 0.9250 0.9375 

 

 
From the results obtained it is seen that most of the features in 

all data sets are deleted and all the algorithms produce distinct 

subset of features. Also all the algorithms do not get the same 

subset of features for any data set in the experiments.  As 

different learning algorithms make use of available features in 

distinct ways, different learning algorithms may require 

different feature subsets to produce the best classification 

performance. It is easy to find from Table 5 that CART 

obtains higher classification accuracy with regard to the iono 

and wine datasets whereas SVM obtains higher classification 

accuracy with regard to the derm, iono, wdbc, wpbc and wine 

datasets when Exponential kernel based fuzzy rough set 

model is used for feature selection as compared to other 

feature selection methods viz. Gaussian kernel and NRS.  

From the analysis of the results it is seen that Exponential 

kernel approximation based attribute reduction algorithm 

gives better reduction rate for the datasets considered in the 

experimentation as compared to two other attribute reduction 

algorithms. At the same time, the reduced data improves the 

classification performance of the raw datasets.  

6. CONCLUSION 
In this paper an exponential kernel function is integrated with 

fuzzy rough set to develop the Exponential kernelized fuzzy 

rough set for feature selection. To demonstrate the 

effectiveness of the Exponential kernel based fuzzy rough set 

for feature selection experimentation is carried out over six 

benchmark data sets obtained from the public domain 

repository. The experimental results obtained with the 

considered data sets show that the Exponential kernel based 

fuzzy rough set model for feature selection is effective and 

improves the classification accuracy in comparison to 

Gaussian kernel approximation and NRS for the ionosphere 

and wine data sets with CART learning algorithm. The 

Exponential kernel based fuzzy rough set model for feature 

selection also outperforms the Gaussian kernel and NRS and 

improves the classification accuracy for the derm, iono, wdbc, 

wpbc and wine data sets with SVM learning algorithm. 

Further investigation may include the study of the relationship 

between the statistical property of kernel methods and the 

class imbalance problem of datasets for the task of feature 

selection. 
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