
International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.4, November 2013

11

Enhanced JGraphEd Drawing Framework for Graph

Drawing Application

Jitendra Sharma

M.Tech Scholar, Dept. of Computer Science
Swami Keshvanand Institute of Technology

Jaipur, India

Shubhra Saxena
Reader, Dept. of Computer Science

Swami Keshvanand Institute of Technology
Jaipur, India

ABSTRACT

The graph drawing and analyzing software JGraphEd is easily

available and provides better environment, so that users are

capable to study and review the algorithm, resolve a hard

headed practical problem and study the functional process via

graphical display environment. Although, there are few

software’s which are capable of solving these problems as the

availability and compatibility with various environments has

been quite a hard task. The newly proposed algorithms such

as checking of ‘Cycles’ in a graph, checking of ‘Bi-Partite’ of

a graph, and ‘Isomorphism Test’ provides much better

recognition to the user who want to learn the algorithms

efficiently and easily. This can be accessed via any Internet

browser anytime, anywhere, without downloading and setting

up any software.

Keywords

Graph, Algorithm, Environments, JGraphEd, Software.

1. INTRODUCTION
Graph theory is quickly forwarding into the mainstream of

mathematics primarily because of its various applications in

various fields which include algorithms, computations,

operations research and scheduling [1][2]. There are different

ways of storing graphs in a computer system. It depends on

the data structure used and also depends on two things, i.e. the

algorithm and the graph structure which is applied for

manipulating the graph. It was designed to allow user to draw

a graph step by step by adding, removing and modifying

nodes and edges. It has a variety of independent algorithms

provided for manipulating and visualizing graphs. This paper

also suggest what more can be added to JGraphEd to make it

better. Section 2 describes the problem statement and solution

approach. Section 3 describes various existing technologies

for the development of java graph algorithms. Section 4

describes the brief overview of different algorithms in

JGraphEd. Section 5 gives fairly extensive description of the

proposed algorithms that are implemented in JGraphEd.

Section 6, describes the java implementation of the proposed

algorithms of JGraphEd.

2. PROBLEM STATEMENT
In the present era, a wide range of graph editing and analyzing

tools are available. The most important problem is to find the

best tool which can solve the problems faced by the user, and

also which is compatible with the runtime environment and

can easily be modified as per need. The main problem that

arises in the implementation of the algorithm is to use the

algorithms by their tools. Some tools are implemented with

very few algorithms. As per the different reviews obtained

from researchers, a new algorithm is required that can

simplify the problems. JGraphEd provides the best editing and

analyzing software but can still be made better and simpler for

easy hand application. A variety of algorithms are

implemented in JGraphEd and the code structure is very neat

and clean making one easy to extend. Also, the documentation

and graph data structures used in JGraphEd are easy to

understand.

3. DIFFERENT GRAPH ANALYZING

TOOLS
In present scenario, a wide range of graph editing and

analyzing tools are available. The problem is to find the best

which solves the problem of the user, which is compatible

with the runtime environment and can easily be modified as

per user needs. The below Fig 1 describes various existing

technologies for the development of java graph algorithms.

Fig 1: Different graph analyzing tools

3.1 GINY
GINY is an open source Java graphing library. The GINY

application is implemented with the help of Piccolo. It is used

for the creation of 2D structure graphic programs [3]. The

main purpose behind using GINY is that it is simple and easy

to use and it doesn’t provide any kind of algorithms directly.

The GINY is simply an interface layer that is useful for

building graphing projects, but there are some more common

algorithms that are available. The different algorithms include

Embedded Layout, Shortest Path, Hierarchical Layout and

many more.

3.2 uDrawGraph
The primary objective of uDrawGraph is that user can create

their graph structure as easily as possible in order to get a

clear layout. Everything is just a few more mouse clicks away

which includes inserting a node, double clicking to change the

attributes of the nodes like text area, shape, colour and linking

can be done by simply dragging a line from one node to

another. It creates various diagrams, structures, hierarchies,

visualizations, flow charts using automatic layout which is

much easier and faster than any other application drawing

program.

The outstanding feature of uDrawGraph is the automatic

graph layout, as present in the other graph drawing tools that

users have to rearrange the nodes every time whenever they

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.4, November 2013

12

adds something to graph. But this doesn’t happen with

uDrawGraph, because the entire layout can be done by

software [4]. One of the most amazing properties of

uDrawGraph is the incremental graph layout. This feature is

used when a large amount of nodes and edges have to be

added to a given graph [5]. It also describes the graph

structure, API, graph layout, its visualisation, multi graph,

multi view and also drag and drop feature.

3.3 GraphViz
GraphViz is the most common graph drawing tool, and an

open source graph visualization software. Graph visualization

is means of presenting the required information as diagrams

and also represents as networks. It takes programs details of

the graph in an easy text language and creates diagrams in

various utile formats. It is only helpful in drawing a graph

because a user can't apply the basic graph algorithms for

seeing its properties. In GraphViz the graphs that we will use

can be either directed or undirected. It extends with both

graphical as well as command line tools [5][6].

3.4 Grappa
Grappa is an extensive graph drawing package written in Java

language. It consists of different classes that implement the

graph representation with the help of API. The main

disadvantage with Grappa is that it was built in Java language

with JDK version 1.2 or its previous one, but now a day’s

users are mostly using Java Development Kit (JDK) version

1.5 or the later version. With the development of web based

technology the Grappa provides different classes and

packages for different remote services. It provides client and

server based application program in which one machine acting

as client can request “n” number of graph drawing services

from server side on anywhere on the network [7]. Grappa was

built in Java because its applications can be created using

applets and can be executed with any Java enabled Web

browser. Further, Grappa provides three useful features

Extensibility, Portability, and Customizability.

3.5 JGraphT
JGraphT is used to allow graph theory and algorithms and is

designed in such a way that it is easy to understand and safe.

JGraphT Java graph library is free and provides usage in wide

range of applications. Users can create graphs based on URL,

XML, and other extensions. JGraphT supports various types

of graphs including weighted graphs, unweighted graphs, or

any other kind of user defined graphs. It is also used for

finding whether the graph is directed or undirected, simple

graphs and graphs having multiplicity properties.

3.6 JGraphEd
JGraphEd is a Java graph redaction software and graph

drawing model. It is contrived for users to create graphs

stepwise by adding, removing or modifying nodes or edges.

There are many reasons for the question that why JGraphEd

was chosen. Some of the reasons are listed below:

 Most important reason for choosing JGraphEd is that it

can be executed online which makes the software

platform independent.

 It is concerned with Java and is compatible with JDK 1.5

or later version of it.

 A variety of algorithms are implemented in JGraphEd.

 The code structure is very neat and clean which makes it

extensible.

 Last but not the least, the documentation and graph data

structures used in JGraphEd is easy to understand.

JGraphEd operates for simple graphs. It has various features

which were found more prominent than other graph drawing

tools which include modifying graphs in any way. Graphs can

be rotated, resized, even one node can be selected and shifted

to some other place, nodes can be labeled, edges can be

selected and edges can be curved for all the algorithms to

implement on them.

4. EXISTING ALGORITHM IN

JGRAPHED
There are many algorithms implemented on JGraphEd which

makes it one of the most useful graph algorithm tools. The

algorithms which are implemented on JGraphEd are creating a

random graph, depth first search on a graph, checking

connectivity of a graph, checking the Biconnectivity of a

graph, making a graph Maximal Planar, checking the planarity

of the graph, performing embedding of a planar graph,

canonical ordering of a graph, normal labelling of a graph,

straight line grid embedding of a graph, making tree of a

graph, calculating Dijkstra’s shortest path between a pair of

vertices of a graph, displaying minimum spanning tree of a

graph. There are three types of applications of JGraphEd. [8]

 Test Application - It tests various properties of a graph

and gives a Boolean result.

 Operation Application - This applies some algorithm to a

Graph.

 Display Application - This displays the graph after

applying some algorithm and giving the desired result.

5. PROPOSED ALGORITHM IN

JGRAPHED
This section describes about the proposed applications that is

added to JGraphEd, The first three sections describe about the

additional application that has been made and make JGraphEd

better.

5.1 Checking for Cycles in a graph
There is a difference between property of a graph having

cycles and a graph having no cycles. It is always important to

know whether the graph contains a cycle or not, although it is

obvious for graphs having less size, the problem may occur

for huge size graphs. The algorithm for checking whether a

graph contains a cycle or not is followed by [9]:

Input: A Graph G

Output: Whether Graph G is having cycle or not.

Method:

For every connected subgraph g of the graph G

 {

 Apply Depth first search on g

 If  an edge e  E where E = set of edges of g such that

e is a backedge, the graph G contains one or more cycle

 Else

 G doesn't have any cycle.

 }

Fig 2: Cyclic graph showing the back edge in dfs search

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.4, November 2013

13

The CycleCheckOperation.java file in operation package

checks for every connected graph of a graph G, and applies

depth search first and eventually checks for any back edges

giving desired result. Fig 2 shows two graphs, the first one

doesn't contain any cycle where as the second one does. So

there exists one back edge in second graph.

5.2 Checking of Bi-partiteness of graph
A graph is said to be bipartite graph only when it does not

contain any odd-length cycles in a graph. Because if effort is

made to put one node of the cycle of odd length in one set and

then on adding the next node in the other set, the final node

will appear in the same set, which is not allowed as per the

definition of Bi-partiteness, which says there can't be any

node between the elements of same set. Fig 3 shows two

graphs, one is a cycle of odd length and the other one is cycle

of even length.

Fig 3: Graphs of odd and even length subjected to

Bipartite Test

The first figure tries to partition a circle of length eight into

two subsets without keeping any edge in one set which can be

done. But the second figure can't be completed because the

starting point and ending point lies on the same set. The

algorithm for finding whether a graph is bi-partite or not is

exactly as finding whether a graph contains a graph of odd

length or not. Algorithm for predicting whether the graph is

bipartite or not is followed by [10]:

Input: A Graph G

Output: Whether Graph G is bipartite or not.

Method:

Apply depth first search operation on Graph G

 {

 For each backedge, there is a circle, calculate the length of

the circle.

 {

 If length is odd then the graph is not bipartite,

 Else

 The Graph is bipartite.

 }

 }

5.3 Checking for Isomorphism of two

graphs
It is more difficult to identify the isomorphism of two graphs

because there are n! different ways to find out one-to-one

correspondence relation between the vertex sets of the given

two graphs with ‘n’ vertices. The checking of one-to-one

correspondence relation between the graphs is more difficult

when the value of ‘n’ is large. The proof that the two simple

graphs are not isomorphic is by giving the detail description

about the common property that is not shared by both the

simple two graphs, if they do not share any property between

them, the graph is not isomorphic. As seen in Fig 4, the above

two graphs are having the same number of vertices and edges,

but they are not isomorphic because the first graph has a

vertex ‘e’ of degree one and the second one doesn't. If the

total number of vertices, total number of edges and the degree

of the vertices all have same characteristics then the graph is

isomorphic, However, when these measures are same, it

doesn't necessarily mean that the given two graphs are

isomorphic. There are no useful sets of invariants currently

known which can be used to find whether simple graphs are

isomorphic.

Fig 4: Simple non-isomorphic graphs satisfying first two

properties of a graph

Input: Two graphs G1 and G2

Output: Whether G1 and G2 are isomers or not.

Method: The heuristics approach to check whether two graphs

are isomorphic or not are:

1. The number of nodes of the graphs must be same.

2. Then number of edges of the graphs must be same.

3. The degrees of the nodes must be same, i.e. if we sort the

degrees of Graph G1 in a vector and compare it with

sorted sequence of the degrees on Graph G2, they must

be equal for the graph to be isomorphic.

But as it is known that predicting the isomorphism of two

graphs are NP-hard, therefore there can be some counter

example for beating a heuristic and improving it. For example

consider the following Fig 5.

Fig 5: Two non-isomorphic graphs that satisfy the above

heuristic

1. Both the graphs have eight nodes.

2. Both have seven edges.

3. The sorted sequence of degrees of first graph is {1, 1, 1,

1, 2, 2, 3, 3}

4. The sorted sequence of degrees of second graph is {1, 1,

1, 1, 2, 2, 3, 3}

But the two graphs in above Fig.5 are not isomorphic, because

in first graph there exist a edge CD where `C' and `D' are

nodes of degree two, where as in second graph there is no

edge between the nodes having degree two , which are `C1'

and `E1'.

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.4, November 2013

14

6. JAVA IMPLEMENTATION OF

PROPOSED ALGORITHM
The proposed JGraphEd tool interface is same as existing one

but there are minor changes. It is different in the following

ways such as:

 User Interface of JGraphEd (Proposed Menu Icons)

 Test Menu (Proposed Test Operations)

It consists of many proposed algorithms, which includes the

following testing algorithm:

 Checking whether graph contain cycle

 Checking of Bi-Partiteness of a graph

 Checking for Isomorphism of two graphs

6.1 Implementation of Cyclic test
Step 1: Input graph for checking whether the graph contains

cycle or not: The complex input graph has shown in Fig 6 in

the new graph editor window, the input graph consist of 6

nodes and 10 edges. Now, cyclic test algorithm is applied on

the given input graph.

Fig 6: Input graph for checking cycle

Step 2: Cyclic output is displayed showing whether the graph

has cycles or not: The user clicks onto the cyclic test option, it

will show two types of output whether the current graph

contains cycle or not. In this case, the graph which has been

selected so far shows an output message window as “The

Graph has Cycle” which means there exists one cycle or more

than one cycle which depends upon the input graph.

Fig 7: Result showing the graph contains cycle

Step 3: Checking of cyclic test on another graph, output graph

contains no cycles: Now, in the second case of cyclic test

algorithm, another graph is drawn in a new graph editor

window i.e., new graph with 8 edges and 9 nodes. When

cyclic test algorithm is applied it will show an output message

window as “The Graph has no Cycles” this is because the

selected graph contains no cycles, the starting and ending of

graph has different node so it doesn’t create any cycle. For a

graph to be cyclic the edges must be equal or greater than

nodes, but in our example value of edges is less than nodes.

Fig 8: Result showing the graph contains no cycle

6.2 Implementation of Bi-partite test
Step 1: Input graph for checking whether graph is Bi-Partite

or not: The complex input graph has been shown in Fig 9 in

the new graph editor window, the input graph consist of 6

nodes and 6 edges. Now Bi-Partite Test algorithm is applied

on the given input graph.

Fig 9: Applying Bi-Partite test on input graph

Step 2: Bi-Partite output is displayed showing whether the

graph is Bi-Partite or not: The user clicks onto the Bi-Partite

test, it will show two types of output whether the current

graph is Bi-Partite or not. In this case the graph which has

been selected so far shows an output message window as “The

Graph is Bi-Partite” which means there exists cycles with

even number of edges.

Fig 10: Result showing the graph is Bi-Partite

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.4, November 2013

15

Step 3: On adding another edge in a graph, it displays that the

graph is not Bi-Partite: Now, in the second case of Bi-Partite

test algorithm, another edge is added in a current graph i.e.,

the current input graph has been modified by adding the edge

between the two bottoms most node in a graph. When Bi-

Partite test algorithm is applied it will show an output

message window as “The Graph is not Bi-Partite” because

there exist one or more cycle having odd number of edges.

This is because the selected graph contains odd number of

edges cycles. In this graph it contain two cycles having odd

number of edges, the first cycle contains 3 edges and other

cycle contains 5 edges respectively.

Fig 11: Result showing the graph is not Bi-Partite

6.3 Implementation of isomorphism test
Step 1: Input graph for checking whether the graph is isomers

graph or not: The complex two input graph has been shown in

Fig 12 in the new graph editor window, the first input graph

consist of 4 nodes and 4 edges and second input graph consist

of 4 nodes and 5 edges. Now, isomorphism test algorithm is

applied on the given input graphs.

Fig 12: Applying isomorphism test on input graph

Step 2: Isomorphism test output is displayed showing whether

the connected graphs are all isomers or not: The user clicks

onto the isomorphism test option it will show two types of

output, whether the current connected graphs is isomers or

not. In this case, the graphs which has been selected so far

show an output message window as “All the connected graphs

are not isomers” which means there exists an extra edge in the

graph which is not present in other, so both the graphs are not

equal and not isomers to each other.

Fig 13: Result showing the graph is not isomorphism

Step 3: On modified the current connected graphs, it displays

graphs are isomers: Now, in the second case of isomorphism

test algorithm, another edge is added in a current graph i.e.,

the current input graph has been modified by adding the edge

inside the graph. When Isomorphism test algorithm is applied

it will show an output message window as “All the connected

graphs are Isomers” this is because the selected graphs may

contain each and every edge common to both the graphs that’s

why both the connected graphs are isomers.

Fig 14: Result showing the graph is isomorphism

7. CONCLUSION
The user interface of JGraphEd has been enhanced by adding

proposed icons on the JGraphEd toolbar. All proposed icons

on the toolbar are properly working without any problem. In

proposed test menu, it successfully added the proposed

algorithm to the drop down list of test menu. They are ‘Cyclic

Test’, ‘Bi-Partite Test’, and ‘Isomorphism Test’ and have

shown successfully while clicking on the test menu of

JGraphEd menu bar. This paper has depicted the entire

designed views and characteristics of JGraphEd. It also

describes the structure and framework for its redaction and

drawing potentialities, the execution of algorithms or

operations, the different data structures which are furnished

with JGraphEd. JGraphEd also assist its use in different

graphs and structure and also provides detailing of various

algorithms.

8. FUTURE SCOPE
In the future work some more test and analysis algorithms can

be added, for example making a ‘non-planar graph’ planar by

deleting some selected edges, implementation of ‘Minimum

spanning tree’ using krushal's algorithm, converting a ‘Graph’

into orthogonal, calculation of ‘Breadth first search’ of a

graph could be included in present JGraphEd to provide better

understanding of graph algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.4, November 2013

16

9. REFERENCES
[1] Sokhom Pheng, Clark Verbrugge, “Dynamic Data

Structure Analysis for Java Programs”, 14th IEEE

International Conference on Program Comprehension,

pp. 191-201, 2006

[2] Jeremy Singer, Chris Kirkham, “Dynamic Analysis of

Java Program Concepts for Visualization and Profiling”,

Journal of Science of Computer Programming, vol.-70,

no.-2, pp. 111-126, 2008

[3] Benjamin B. Bederson, Jesse Grosjean, and Jon Meyer,

“Toolkit Design for Interactive Structured Graphics”,

IEEE Transactions on Software Engineering, vol.-30,

no.-8, August 2004.

[4] Sergei Gorlatch, Marco Danelutto, “Integrated Research

in GRID Computing”, ISBN 13:978-0-387-47656-3,

Springer Science Media Ltd., 2007

[5] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad,

M. Stal, “Pattern-Oriented Software Architecture - A

System of Patterns”, ISBN 978-81-265-1611-7, John

Wiley India Ltd., 2008.

[6] Ivan Herman, Guy Melançon, M. Scott Marshall, “Graph

Visualization and Navigation in Information

Visualization: A Survey”, IEEE Transactions on

Visualization and Computer Graphics, vol.-6, no.-1, pp.

24-43, 2000

[7] Naser S. Barghouti, John M. Mocenigo, Wenke Lee,

“Grappa: A Graph Package in Java”, IEEE Transactions

on Graph theory and AT & T Laboratories, vol.-13, pp.

336-343, 2007

[8] Jon Harris: JGraphEd – “A Java Graph Editor and Graph

Drawing Framework”, Carleton University , Comp 5901

Directed Studies, April 2004.

[9] Hongbo Liu, Jiaxin Wang, “A new way to enumerate

cycles in graph”, IEEE Computer Society, Proceedings

of the Advanced International Conference on

Telecommunications and International Conference on

Internet and Web Applications and Services.2006.

[10] Luo Shiguang “Application of Bi-partite Optimal

Matching in Color-Base Image Retrieval”, IEEE

Computer Society, International Conference on Machine

Vision and Human-machine Interface, 2010.

IJCATM : www.ijcaonline.org

