
International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.3, November 2013

17

Generic Algorithm Implementation of Approximation
Algorithm using Simulated Annealing (SA)

Diptam Dutta
Computer Science & Engineering
Heritage Institute of Technology

drozendutta@gmail.com

ABSTRACT
This paper describes a complementary mechanism that

attempts to learn the structure of the search space over

multiple runs of SA on a given problem[29] (Best fit Problem

& First Fit Decreasing). Specifically, we introduce a

mechanism that attempts to predict how (UN) promising a SA

runs is likely to be, based on probability distributions that are

"learned" over multiple runs. The distributions, which are

built at different checkpoints, each corresponding to a

different value of the temperature (‘temperature’ is a variable

which decrements its value at each step-as SA has a great

relation with physics, the variable is termed in this manner)

parameter used in the procedure, approximate the cost

reductions that one can expect if the SA run is continued

below these temperatures.

Simulated annealing is a method of finding optimal values

numerically. It chooses a new point, and (for optimization) all

uphill points are accepted while some downhill points are

accepted depending on probabilistic criteria. For certain

problems, simulated annealing may be more efficient than

exhaustive enumeration — provided that the goal is to find an

acceptably good solution in a fixed amount of time, rather

than the best possible solution.

Keyword
One bin packing, multiple bins packing, simulated annealing,

best fit problem, first fit decreasing, meta- heuristics,

constraints (parameters).

1. INTRODUCTION
Simulated Annealing is a local search method based on local

optimization. In this method each trial solution in the solution

space has a cost, and the objective is to find a feasible solution

of least cost. The method is iterative. In each cycle we try to

move from the current trial solution S to a neighboring point

S' in the solution space in an effort to find a better trial

solution.

Let us assume that the problem is a minimization problem. If

cost(S') < cost(S), S' becomes the new trial solution; the move

from S to S’ is then called a downhill move. If cost(S') >

cost(S), S' becomes the new trial solution with probability p =

exp (-Δ/temp), where temp is a parameter known as the

temperature and Δ = cost(S') - cost(S); S is retained as the trial

solution with probability (1-p). Thus S' can become the new

trial solution even when its cost is higher than the cost of the

current trial solution S; this kind of move from S to S’ is

called an uphill move. This deliberate choice of an inferior

trial solution with a non-zero probability helps to ensure that

the procedure does not get trapped in a local minimum. By

slowly reducing the temperature, the probability p is reduced

in the course of the iteration as better trial solutions are found.

Bin packing [1] problem solves the packing of objects of

different volumes into a finite number of bins of capacity V in

a way that minimizes the number of bins used. The

approximation algorithm is applied on Multiple Bin Packing

Problem in such a way that the algorithm produces the

minimum number of bin used as a result.

2. LITERATURE REVIEW

2.1. Bin Packing Problem
The bin packing problem asks for the minimum number of

identical bins of capacity C needed to store a finite collection

of weightsw1, w2, w3... wn so that no bin has weights stored in

it whose sum exceeds the bin's capacity. Traditionally the

capacity C is chosen to be 1 and the weights are real numbers

which lie between 0 and 1, but here, for convenience of

exposition, I will consider the situation where C is a positive

integer and the weights are positive integers which are less

than the capacity.

2.2. Simulated Annealing
Simulated Annealing (SA) is a general-purpose search

procedure that generalizes iterative improvement approaches

to combinatorial optimization by sometimes accepting

transitions to lower quality solutions to avoid getting trapped

in local minima. SA procedures have been successfully

applied to a variety of combinatorial optimization problems,

including Traveling Salesman Problems ,Graph Partitioning

Problems , Graph Coloring Problems[20], Vehicle Routing

Problems[15] , Design of Integrated Circuits, Minimum

Make-span Scheduling Problems as well as other complex

scheduling problems, often producing near-optimal solutions,

though at the expense of intensive computational efforts. The

procedures, typically requiring that the procedure be rerun

(iterate) a large number of times before a near optimal

solution are found. Other names of Simulated Annealing are

Monte Carlo Annealing[5], Statistical Cooling[6],

Probabilistic Hill Climbing[7], Stochastic Relaxation[9],

Probabilistic Exchange Algorithm[8] etc.

2.3.Problem Definition
The problem is categorized into two phases i.e., Phase I &

Phase II

2.3.1. Phase I: The goal is to fit the different weighted

objects into a single bin with the least cost function.

2.3.2. Phase II: The goal is to fit the different weighted

objects into multiple bins such that minimum number of bins

used.

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.3, November 2013

18

2.4. Proposed Work

2.4.1. Proposed Algorithm For Simulated

Annealing:

Procedure SA

{

 input a trial solution S; c = cost(S); c* =

infinity; freezecount = 0; initialize temp;

 initializefrzlim, sizefactor, tempfactor,

minpercent, tcent;

 while (freezecount<frzlim)

{

 changes = trials = 0;

 while (trials <sizefactor * N)

 { /* N is determined by the size of the

problem */

 trials = trials + 1;

generate a random neighbour S' of S;

 c' = cost(S'); Δ = c'- c;

 if (S' is feasible and

cost(S') < c*)

 {

 S* = S'; c* = cost(S');

 }

 /* save best feasible

solution found so far */

 if (Δ < 0)

 {

 changes =

changes + 1; c = c'; S = S';

 } /* downhill move */

 else

{ /* possible uphill move */

 choose a

random number r in [0,1];

 if (r <=

exp(-Δ/temp))

{

 changes = changes+1; c = c'; S = S';

 }

 }

}

 if (changes/trials >tcent) temp

= 0.5 * temp; /* reduce temperature quickly

*/

 else temp = tempfactor * temp;

 /* reduce temperature slowly */

 if

(changes/trials <minpercent) freezecount =

freezecount+1;

 elsefreezecount = 0;

 }

 output the final solution S*; /* S* is a

feasible solution of minimum cost */

}

2.5. Setting up SINGLE BIN PACKING

PARAMETERS and Approximation

Analysis with SIMULATED

ANNEALING

We need to initialize parameters based on ITEMLIST (total

number of items) and MAXBINSIZE

Round_1 : ITEMLIST =5; MAXBINSIZE = 100;

 INITIALSOLUTIONLIST (no. of objects to create

an initial_Soln) = ITEMLIST * 60%

 REDUCEDBINSIZE = MAXBINSIZE * 50%;

NEIGHBOURCREATION=INITIALSOLUTIONLIST *

33%

Round_2 : ITEMLIST =15; MAXBINSIZE = 300;

 INITIALSOLUTIONLIST (no. of objects to create

an initial_Soln) = ITEMLIST * 60%

 REDUCEDBINSIZE = MAXBINSIZE * 25%;

NEIGHBOURCREATION=INITIALSOLUTIONLIST *

33%

Round_3 : ITEMLIST =75; MAXBINSIZE = 900;

 INITIALSOLUTIONLIST (no. of objects to create

an initial_Soln) = ITEMLIST * 60%

 REDUCEDBINSIZE = MAXBINSIZE * 15%;

NEIGHBOURCREATION=INITIALSOLUTIONLIST *

33%

Round_4 : ITEMLIST =225; MAXBINSIZE = 2700;

 INITIALSOLUTIONLIST (no. of objects to create

an initial_Soln) = ITEMLIST * 60%

 REDUCEDBINSIZE = MAXBINSIZE * 15%;

NEIGHBOURCREATION=INITIALSOLUTIONLIST *

33%

Round_5 : ITEMLIST =675; MAXBINSIZE = 8100;

 INITIALSOLUTIONLIST (no. of objects to create

an initial_Soln) = ITEMLIST * 60%

 REDUCEDBINSIZE = MAXBINSIZE * 10%;

NEIGHBOURCREATION=INITIALSOLUTIONLIST *

33%

Round_6 : ITEMLIST =2025; MAXBINSIZE = 24300;

 INITIALSOLUTIONLIST (no. of objects to create

an initial_Soln) = ITEMLIST * 60%

 REDUCEDBINSIZE = MAXBINSIZE * 10%;

NEIGHBOURCREATION=INITIALSOLUTIONLIST *

33%

Round_7 : ITEMLIST =6075; MAXBINSIZE = 72900;

 INITIALSOLUTIONLIST (no. of objects to create

an initial_Soln) = ITEMLIST * 60%

 REDUCEDBINSIZE = MAXBINSIZE * 10%;

NEIGHBOURCREATION=INITIALSOLUTIONLIST *

33%

Round_8 : ITEMLIST =18225; MAXBINSIZE = 218700;

 INITIALSOLUTIONLIST (no. of objects to create

an initial_Soln) = ITEMLIST * 60%

 REDUCEDBINSIZE = MAXBINSIZE * 10%;

NEIGHBOURCREATION=INITIALSOLUTIONLIST *

33%

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.3, November 2013

19

2.6. Setting up Multiple BIN PACKING PARAMETERS and Approximation Analysis with

SIMULATED ANNEALING
We need to initialize parameters based on MAXBINSIZE and MAXOBJNO

Round_1 : MAXOBJNO=6; MAXBINSIZE =10;[where x=6; y=10 with 6 : 10 = 3 : 5 ratio]

 For NEIGHBOURCREATION: Option 1 -> Replace All randomly generated objects

 Option 2 -> Replace 50% (3 objects at a time)

 Option 3 -> Replace 25 % (1 or 2 objects at a time based on floor or ceil values);

Round_2 : MAXOBJNO=12; MAXBINSIZE =20;[where 2x=12;2 y=20 with 12 : 20 = 3 : 5 ratio]

 For NEIGHBOURCREATION: Option 1 -> Replace All randomly generated objects

 Option 2 -> Replace 50% (6 objects at a time)

 Option 3 -> Replace 25 % (3 objects at a time);

Round_3: MAXOBJNO=24; MAXBINSIZE =40;[where2 x=24;2 y=40 with 24 : 40 = 3 : 5 ratio]

 For NEIGHBOURCREATION: Option 1 -> Replace All randomly generated objects

 Option 2 -> Replace 50% (12 objects at a time)

 Option 3 -> Replace 25 % (6 objects at a time);

Round_4 : MAXOBJNO=48; MAXBINSIZE =80;[where 2x=48; 2y=80 with 48 : 80 = 3 : 5 ratio]

 For NEIGHBOURCREATION: Option 1 -> Replace All randomly generated objects

 Option 2 -> Replace 50% (24 objects at a time)

 Option 3 -> Replace 25 % (12 objects at a time);

Round_5 : MAXOBJNO=96; MAXBINSIZE =160;[where 2x=96; 2y=160 with 96 : 160 = 3 : 5 ratio]

 For NEIGHBOURCREATION: Option 1 -> Replace All randomly generated objects

 Option 2 -> Replace 50% (48 objects at a time)

 Option 3 -> Replace 25 % (24 objects at a time);

Round_6 : MAXOBJNO=192; MAXBINSIZE =320;[where 2x=192; 2y=320 with 192 : 320 = 3 : 5 ratio]

 For NEIGHBOURCREATION: Option 1 -> Replace All randomly generated objects

 Option 2 -> Replace 50% (96 objects at a time)

 Option 3 -> Replace 25 % (48 objects at a time);

Round_7 : MAXOBJNO=384; MAXBINSIZE =640;[where2 x=384;2 y=640 with 384 : 640 = 3 : 5 ratio]

 For NEIGHBOURCREATION: Option 1 -> Replace All randomly generated objects

 Option 2 -> Replace 50% (192 objects at a time)

 Option 3 -> Replace 25 % (96 objects at a time);

Round_8 : MAXOBJNO=768; MAXBINSIZE =1280;[where2 x=768;2 y=1280 with 768 : 1280 = 3 : 5 ratio]

 For NEIGHBOURCREATION: Option 1 -> Replace All randomly generated objects

 Option 2 -> Replace 50% (384 objects at a time)

 Option 3 -> Replace 25 % (192 objects at a time);

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.3, November 2013

20

3. RESULT ANALYSIS

3.1.For One Bin packing

\

Targ

et

(T):

To

reac

h

Max

Bin

Size

Round

1:

Trails

=25

Round

2: Trails

= 50

Round

3: Trails

= 100

Round

4: Trails

= 200

Round

5: Trails

= 400

Roun

d 6:

Trails

= 800

Roun

d 7:

Trails

=

1600

Roun

d 8:

Trails

=

3200

Roun

d 9:

Trails

=

6400

Average

Bin Size

Reached

(T)

Differential

Error:Abso

lute Value

of (T`-T)/T

Frzlim

=5;

trail

Limit=

5

Frzlim=

10; trail

Limit=5

Frzlim=

20; trail

Limit=5

Frzlim=

40; trail

Limit=5

Frzlim=

80; trail

Limit=5

Frzli

m=

160;

 trail

Limit

=5

Frzli

m=

320;

trail

Limit

=5

Frzli

m=

640;

trail

Limit

=5

Frzli

m=

1200;

trail

Limit

=5

100 95 99 82 100 72 98 100 91 99 93 0.07

300 300 300 300 299 300 300 300 300 300 300 0

900 844 897 899 900 884 900 900 900 900 896 0.004444

2700 2684 2696 2576 2698 2694 2696 2699 2700 2700 2683 0.006296

8100 7927 8063 8024 8097 8093 8100 8100 8099 8100 8067 0.004074

2430

0

24012 24154 24219 24187 24199 24230 24259 24279 24178 24191

0.004485

7290

0

70912 71861 72454 72865 72756 72888 72565 72701 72876 72431

0.006433

2187

00

217772 216438 215792 216754 214778 21786

5

21720 21682

0

21382

0

21637

0.010640

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.3, November 2013

21

3.1. Analysis of Approximation Algorithms

of Different Rounds:

FIRST-FIT Algorithm Analysis of Approximation Algorithms

Trials MaxBin

Size

Max

Object

Number

Minimum

Number of Bin

Required(OPT)

BFD/FFD::Bound

is :: 11/9 OPT + 1

bins

Speciality

Case :: FFD

bound is

tight :: 11/9

OPT + 6/9

bins

Modified

Bin

Packing

(MFFD) ::

71/60 OPT

+1 bins

Bound 1

:: MFFD

is

bounded

by 1.18

OPT

Bound2

:: 1.22

OPT for

FFD

Tight

Upper

Bound

for FF ::

17/10

OPT bins

(Recent

2013)

Round 1 10 6 4 5.888889 5.55555555 5.7333333 4.72 4.888 6.8

Round 2 20 12 6 8.333332 7.99999999 8.0999998 7.08 7.32 10.2

Round 3 40 24 12 15.66664 15.3333333 15.199996 14.16 14.64 20.4

Round 4 80 48 24 30.33338 29.9999994 29.399992 28.32 29.28 40.8

Round 5 160 96 48 59.66666 59.3333322 57.799998 56.64 58.56 81.6

Round 6 320 192 96 118.3331 117.999997 114.59999 113.28 117.12 163.2

Round 7 640 384 192 235.6662 235.33329 228.19993 226.56 234.24 326.4

Round 8 1280 768 384 470.3332 469.999984 455.39999 453.12 468.48 652.8

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.3, November 2013

22

3.2.For Multiple Bin packing:

Table 1: Resultant Data

Table3: Work in Jan 2013 [27]

Trials Max

Bin

Size

Max

Object

Number

Minimum

number

of Bin

Required

(OPT)

Round 1 14 4 3
Round 2 28 8 4
Round 3 56 16 8
Round 4 112 32 16
Round 5 224 64 32
Round 6 448 128 64
Round 7 896 256 128
Round 8 1792 512 256

Trials Max

Bin

Size

Max

Object

Number

Minimum

number

of Bin

Required

(OPT)

Round 1 14 4 5.1
Round 2 28 8 6.8
Round 3 56 16 13.6
Round 4 112 32 27.2
Round 5 224 64 54.4
Round 6 448 128 108.8
Round 7 896 256 217.6
Round 8 1792 512 435.2

Figure 1: Comparison plot of Resultant data.

SERIES 1

Maximum Object

Number &

Minimum Number

of Bin required in

this proposed work.

SERIES 2

Maximum Object

Number &

Minimum Number

of Bin in 2013[27]

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.3, November 2013

23

Table 3: Resultant Data

T

a

b

l

e

4

: Work in Jan 2013 [27]

Trials Max

Bin

Size

Max

Object

Number

Minimum

number

of Bin

Required

(OPT)

Round 1 4 14 7
Round 2 8 28 15
Round 3 16 56 28
Round 4 32 112 56
Round 5 64 224 112
Round 6 128 448 224
Round 7 256 896 448
Round 8 512 1792 896

Trials Max

Bin

Size

Max

Object

Number

Minimum

number

of Bin

Required

(OPT)

Round 1 4 14 11.9
Round 2 8 28 25.5
Round 3 16 56 47.6
Round 4 32 112 95.2
Round 5 64 224 190.4
Round 6 128 448 380.8
Round 7 256 896 761.6
Round 8 512 1792 1523.2

SERIES 2

Maximum Object

Number & Minimum

Number of Bin in

2013[27]

SERIES 1

Maximum Object

Number & Minimum

Number of Bin

required in this

proposed work.

Figure 2: Comparison plot of Resultant data in a Reversed Ratio.

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.3, November 2013

24

4. CONCLUSIONS

This work has been accomplished on a single bin of variable

sizes with the implementation of simulated annealing on that

particular bin with least runtime complexity. Also on multiple

bins of variable sizes with the implementation of simulated

annealing with minimum number of bins used, got

accomplished on this work. A future aspect is to implement

the above problems of 1bin packing as well as multiple bins

packing in a 2-dimensional pattern.

5. REFERENCES
[1] Assmann, S. and D. Johnson, D. Kleitman, J. Leung, On

a dual version of the one-dimensional bin packing

problem, J. Algorithms 5 (1984) 502-525.

[2] Baker, B., A new proof for the first-fit decreasing bin-

packing algorithm, J. Algorithms 6 (1985) 49-70.

[3] Baker, B. and E. Coffman, Jr., A tight asymptotic bound

for next-fit-decreasing bin packing, SIAM J. Alg. Disc.

Math., 2 (1981) 147-152.

[4] Bentley, J. and D. Johnson, F. Leighton, C. McGeoch, L.

McGeoch, Some unexpected expected behavior results

for bin packing., in Proceedings of the 16th Annual

ACM Sym. on Theory of Computing, 1984, p. 279-288.

[5] Brucker, P., Scheduling Algorithms, Springer-Verlag,

New York, 1995.\

[6] Coffman, Jr., and G. Galambos, S. Martello, and D.

Vigo, Bin Packing Appoximation Algorithms:

Combinatorial Analysis, in Handbook of Combinatorial

Optimization, D. Du and P. Pardalos, (eds.), Kluwer,

Amsterdam, 1998.

[7] Coffman, Jr., and M. Garey, D. Johnson, Dynamic bin

packing, SIAM J. Comput., 12 (1983) 227-258.

[8] Coffman, Jr., and M. Garey, D. Johnson, Approximation

Algorithms for Bin-Packing,: An updated survey, in

Algorithm Design for Computer Systems Design, G.

Ausiello, M. Lucertini, and P. Serafini, (eds.), Springer-

Verlag, New York, 1984, 49-106.

[9] Conway, R. and W. Maxwell, L. Miller, Theory of

Scheduling, Addison-Wesley, Reading, 1967.

[10] Courcoubetis, C. and R. Weber, Necessary and sufficient

conditions for the stability of a bin

[11] packing system, J. Appl. Prob., 23 (1986) 989-999.

[12] Csirik, J., The parametric behavior of the first-fit

decreasing bin packing algorithm, J. Algorithms 15

(1993) 1-28.

[13] Csirik, J. and J. Frenk, G. Galambos, A. RinnooyKan,

Probabilistic analysis of algorithms for dual bin packing

problems, J. Algorithms 12 (1991) 189-203.

[14] Csirik, J. and D. Johnson, Bounded space on-line bin

packing; best is better than first, In Proceedings, Second

Annual ACM-SIAM Symposium on Discrete

Algorithms, SIAM, Philadelphia, 1991, p. 309-319.

[15] Fernandez del la Vega, W. and G. Lueker, Bin packing

can be solved in 1 + ε in linear time, Combinatorica 1

(1981) 34-355.

[16] Flexzar, k. and K. Hindi, New heuristics for one-

dimensional bin packing, Computers and Operations

Research 29 (1902) 821-839.

[17] Floyd, S. and R. Karp, FFD bin packing for item sizes

with distribution on [0, 1/2], Algorithmica, 6 (1991) 222-

240.

[18] French, S., Sequencing and Scheduling, Wiley, New

York, 1982.

[19] Garey, M. and R. Graham, D. Johnson, A. Yao, Resource

constrained scheduling as generalized bin packing, J.

Combinatorial Theory Ser. A, 21 (1976) 257-298.

[20] Garey, M., and D. Johnson, Approximation algorithms

for bin packing problems-A survey, in Analysis and

Design of Algorithms in Combinatorial Optimization, G.

Ausiello and M. Lucertini, (eds.)., Springer-Verlag, New

York, 1981, p. 147-172.

[21] Garey, M. and D. Johnson, A 71/60 theorem for bin

packing, J. of Complexity, 1 (1985) 65-106.

[22] Graham, R., Bounds for certain multiprocessing

anomalies, Bell System Tech. J., 45 (1966) 1563-1581.

[23] Graham, R., Bounds on multiprocessing anomalies,

SIAM J. Applied Math., 17 (1969) 263-269.

[24] Graham, R., Combinatorial Scheduling, in Mathematics

Today, L. Steen, (Ed.), Springer-Verlag, New York,

1978, p. 183-211.

[25] Hofri, M., Probabilistic Analysis of Algorithms,

Springer-Verlag, New York, 1987

[26] Johnson, D., Near-Optimal Bin Packing Algorithms,

Doctoral Thesis, MIT, Cambridge, 1973.

[27] Average-Case Analyses of First Fit and Random Fit Bin

Packing, Susanne Albers, Michael Mitzenmacher,

[28] Dósa G., Sgall J. (2013) First Fit bin packing: A tight

analysis. To appear in STACS 2013

[29] D. Dutta, S.K.Jha, Seikh B. Ahmad, D.K.Pal,

Implementation of Approximations Algorithms with

Simulated Annealing (SA), IJARCSSE,2013

IJCATM : www.ijcaonline.org

