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ABSTRACT 
This paper describes a complementary mechanism that 

attempts to learn the structure of the search space over 

multiple runs of SA on a given problem[29] (Best fit Problem 

& First Fit Decreasing). Specifically, we introduce a 

mechanism that attempts to predict how (UN) promising a SA 

runs is likely to be, based on probability distributions that are 

"learned" over multiple runs. The distributions, which are 

built at different checkpoints, each corresponding to a 

different value of the temperature (‘temperature’ is a variable 

which decrements its value at each step-as SA has a great 

relation with physics, the variable is termed in this manner) 

parameter used in the procedure, approximate the cost 

reductions that one can expect if the SA run is continued 

below these temperatures. 

Simulated annealing is a method of finding optimal values 

numerically. It chooses a new point, and (for optimization) all 

uphill points are accepted while some downhill points are 

accepted depending on probabilistic criteria. For certain 

problems, simulated annealing may be more efficient than 

exhaustive enumeration — provided that the goal is to find an 

acceptably good solution in a fixed amount of time, rather 

than the best possible solution. 

Keyword 
One bin packing, multiple bins packing, simulated annealing, 

best fit problem, first fit decreasing, meta- heuristics, 

constraints (parameters).  

 

1. INTRODUCTION 
Simulated Annealing is a local search method based on local 

optimization. In this method each trial solution in the solution 

space has a cost, and the objective is to find a feasible solution 

of least cost. The method is iterative. In each cycle we try to 

move from the current trial solution S to a neighboring point 

S' in the solution space in an effort to find a better trial 

solution.  

Let us assume that the problem is a minimization problem. If 

cost(S') < cost(S), S' becomes the new trial solution; the move 

from S to S’ is then called a downhill move. If cost(S') > 

cost(S), S' becomes the new trial solution with probability p = 

exp (-Δ/temp), where temp is a parameter known as the 

temperature and Δ = cost(S') - cost(S); S is retained as the trial 

solution with probability (1-p). Thus S' can become the new 

trial solution even when its cost is higher than the cost of the 

current trial solution S; this kind of move from S to S’ is 

called an uphill move. This deliberate choice of an inferior 

trial solution with a non-zero probability helps to ensure that 

the procedure does not get trapped in a local minimum. By 

slowly reducing the temperature, the probability p is reduced 

in the course of the iteration as better trial solutions are found.  

Bin packing [1] problem solves the packing of objects of 

different volumes into a finite number of bins of capacity V in 

a way that minimizes the number of bins used. The 

approximation algorithm is applied on Multiple Bin Packing 

Problem in such a way that the algorithm produces the 

minimum number of bin used as a result. 

2. LITERATURE REVIEW 

2.1. Bin Packing Problem 
The bin packing problem asks for the minimum number of 

identical bins of capacity C needed to store a finite collection 

of weightsw1, w2, w3... wn so that no bin has weights stored in 

it whose sum exceeds the bin's capacity. Traditionally the 

capacity C is chosen to be 1 and the weights are real numbers 

which lie between 0 and 1, but here, for convenience of 

exposition, I will consider the situation where C is a positive 

integer and the weights are positive integers which are less 

than the capacity. 

2.2. Simulated Annealing 
Simulated Annealing (SA) is a general-purpose search 

procedure that generalizes iterative improvement approaches 

to combinatorial optimization by sometimes accepting 

transitions to lower quality solutions to avoid getting trapped 

in local minima. SA procedures have been successfully 

applied to a variety of combinatorial optimization problems, 

including Traveling Salesman Problems ,Graph Partitioning 

Problems , Graph Coloring Problems[20], Vehicle Routing 

Problems[15] , Design of Integrated Circuits, Minimum 

Make-span Scheduling Problems as well as other complex 

scheduling problems, often producing near-optimal solutions, 

though at the expense of intensive computational efforts. The 

procedures, typically requiring that the procedure be rerun 

(iterate) a large number of times before a near optimal 

solution are found. Other names of Simulated Annealing are 

Monte Carlo Annealing[5], Statistical Cooling[6], 

Probabilistic Hill Climbing[7], Stochastic Relaxation[9], 

Probabilistic Exchange Algorithm[8] etc. 

2.3.Problem Definition 
The problem is categorized into two phases i.e., Phase I & 

Phase II 
 

2.3.1. Phase I: The goal is to fit the different weighted 

objects into a single bin with the least cost function. 

 

2.3.2. Phase II: The goal is to fit the different weighted 

objects into multiple bins such that minimum number of bins 

used. 
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2.4. Proposed Work 
 

2.4.1. Proposed Algorithm For Simulated 

Annealing:  
 
Procedure SA    

      

{ 

 input a trial solution S; c = cost(S); c* = 

infinity; freezecount = 0; initialize temp; 

 initializefrzlim, sizefactor, tempfactor, 

minpercent, tcent; 

 while ( freezecount<frzlim )  

{ 

  changes = trials = 0; 

  while ( trials <sizefactor * N ) 

 {   /* N is determined by the size of the 

problem */ 

   trials = trials + 1; 

generate a random neighbour S' of S; 

   c' = cost(S'); Δ = c'- c; 

   if (S' is feasible and 

cost(S') < c* )  

   { 

  S* = S'; c* = cost(S'); 

   } 

   /* save best feasible 

solution found so far */ 

   if (Δ < 0) 

   { 

    changes = 

changes + 1;  c = c'; S = S'; 

 } /* downhill move */ 

   else 

{ /* possible uphill move */ 

    choose a 

random number r in [0,1]; 

    if ( r <= 

exp(-Δ/temp) )  

{ 

    

 changes = changes+1; c = c'; S = S'; 

    } 

 } 

} 

  if  (changes/trials >tcent ) temp 

= 0.5 * temp;  /* reduce temperature quickly 

*/ 

  else temp = tempfactor * temp;

 /* reduce temperature slowly */ 

     if 

( changes/trials <minpercent ) freezecount = 

freezecount+1; 

  elsefreezecount = 0; 

 } 

 output the final solution S*; /* S* is a 

feasible solution of minimum cost */ 

} 

 

 

 

 

 

 

2.5. Setting up SINGLE BIN PACKING 

PARAMETERS and Approximation 

Analysis with SIMULATED 

ANNEALING 
 

 

We need to initialize parameters based on ITEMLIST (total 

number of items) and MAXBINSIZE 

Round_1 : ITEMLIST =5; MAXBINSIZE = 100; 

       INITIALSOLUTIONLIST (no. of objects to create 

an initial_Soln) = ITEMLIST * 60% 

       REDUCEDBINSIZE = MAXBINSIZE * 50%; 

NEIGHBOURCREATION=INITIALSOLUTIONLIST * 

33% 

Round_2 : ITEMLIST =15; MAXBINSIZE = 300; 

       INITIALSOLUTIONLIST (no. of objects to create 

an initial_Soln) = ITEMLIST * 60% 

       REDUCEDBINSIZE = MAXBINSIZE * 25%; 

NEIGHBOURCREATION=INITIALSOLUTIONLIST * 

33% 

Round_3 : ITEMLIST =75; MAXBINSIZE = 900; 

       INITIALSOLUTIONLIST (no. of objects to create 

an initial_Soln) = ITEMLIST * 60% 

       REDUCEDBINSIZE = MAXBINSIZE * 15%; 

NEIGHBOURCREATION=INITIALSOLUTIONLIST * 

33% 

Round_4 : ITEMLIST =225; MAXBINSIZE = 2700; 

       INITIALSOLUTIONLIST (no. of objects to create 

an initial_Soln) = ITEMLIST * 60% 

       REDUCEDBINSIZE = MAXBINSIZE * 15%; 

NEIGHBOURCREATION=INITIALSOLUTIONLIST * 

33% 

Round_5 : ITEMLIST =675; MAXBINSIZE = 8100; 

       INITIALSOLUTIONLIST (no. of objects to create 

an initial_Soln) = ITEMLIST * 60% 

       REDUCEDBINSIZE = MAXBINSIZE * 10%;        

NEIGHBOURCREATION=INITIALSOLUTIONLIST * 

33% 

Round_6 : ITEMLIST =2025; MAXBINSIZE = 24300; 

       INITIALSOLUTIONLIST (no. of objects to create 

an initial_Soln) = ITEMLIST * 60% 

       REDUCEDBINSIZE = MAXBINSIZE * 10%; 

NEIGHBOURCREATION=INITIALSOLUTIONLIST * 

33% 

Round_7 : ITEMLIST =6075; MAXBINSIZE = 72900; 

       INITIALSOLUTIONLIST (no. of objects to create 

an initial_Soln) = ITEMLIST * 60% 

       REDUCEDBINSIZE = MAXBINSIZE * 10%; 

NEIGHBOURCREATION=INITIALSOLUTIONLIST * 

33% 

Round_8 : ITEMLIST =18225; MAXBINSIZE = 218700; 

       INITIALSOLUTIONLIST (no. of objects to create 

an initial_Soln) = ITEMLIST * 60% 

       REDUCEDBINSIZE = MAXBINSIZE * 10%; 

NEIGHBOURCREATION=INITIALSOLUTIONLIST * 

33% 
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2.6. Setting up Multiple BIN PACKING PARAMETERS and Approximation Analysis with 

SIMULATED ANNEALING 
We need to initialize parameters based on MAXBINSIZE and MAXOBJNO 

Round_1 : MAXOBJNO=6; MAXBINSIZE =10;[where x=6; y=10 with 6 : 10 = 3 : 5 ratio] 

 For NEIGHBOURCREATION: Option 1  -> Replace All randomly generated objects 

   Option 2 -> Replace 50% (3 objects at a time ) 

   Option 3 -> Replace 25 % (1 or 2 objects at a time based on floor or ceil  values); 

Round_2 : MAXOBJNO=12; MAXBINSIZE =20;[where 2x=12;2 y=20 with 12 : 20 = 3 : 5 ratio] 

 For NEIGHBOURCREATION: Option 1  -> Replace All randomly generated objects 

   Option 2 -> Replace 50% (6 objects at a time ) 

   Option 3 -> Replace 25 % (3 objects at a time); 

Round_3: MAXOBJNO=24; MAXBINSIZE =40;[where2 x=24;2 y=40 with 24 : 40 = 3 : 5 ratio] 

 For NEIGHBOURCREATION: Option 1  -> Replace All randomly generated objects 

   Option 2 -> Replace 50% (12 objects at a time ) 

   Option 3 -> Replace 25 % (6 objects at a time ); 

Round_4 : MAXOBJNO=48; MAXBINSIZE =80;[where 2x=48; 2y=80  with 48 : 80 = 3 : 5 ratio] 

 For NEIGHBOURCREATION: Option 1  -> Replace All randomly generated objects 

   Option 2 -> Replace 50% (24 objects at a time ) 

   Option 3 -> Replace 25 % (12 objects at a time ); 

Round_5 : MAXOBJNO=96; MAXBINSIZE =160;[where 2x=96; 2y=160 with 96 : 160 = 3 : 5 ratio] 

 For NEIGHBOURCREATION: Option 1  -> Replace All randomly generated objects 

   Option 2 -> Replace 50% (48 objects at a time ) 

   Option 3 -> Replace 25 % ( 24 objects at a time ); 

Round_6 : MAXOBJNO=192; MAXBINSIZE =320;[where 2x=192; 2y=320 with 192 : 320 = 3 : 5 ratio] 

 For NEIGHBOURCREATION: Option 1  -> Replace All randomly generated objects 

   Option 2 -> Replace 50% (96 objects at a time ) 

   Option 3 -> Replace 25 % (48 objects at a time ); 

Round_7 : MAXOBJNO=384; MAXBINSIZE =640;[where2 x=384;2 y=640 with 384 : 640 = 3 : 5 ratio] 

 For NEIGHBOURCREATION: Option 1  -> Replace All randomly generated objects 

   Option 2 -> Replace 50% (192 objects at a time ) 

   Option 3 -> Replace 25 % (96 objects at a time ); 

Round_8 : MAXOBJNO=768; MAXBINSIZE =1280;[where2 x=768;2 y=1280 with 768 : 1280 = 3 : 5 ratio] 

 For NEIGHBOURCREATION: Option 1  -> Replace All randomly generated objects 

   Option 2 -> Replace 50% (384 objects at a time ) 

   Option 3 -> Replace 25 % (192 objects at a time ); 
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3. RESULT ANALYSIS 

3.1.For One Bin packing 
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300 300 300 300 299 300 300 300 300 300 300 0 

900 844 897 899 900 884 900 900 900 900 896 0.004444 
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3.1. Analysis of Approximation Algorithms 

of Different Rounds: 

 

FIRST-FIT Algorithm Analysis of Approximation Algorithms 

Trials MaxBin 

Size 

Max 

Object 

Number 

Minimum 

Number of Bin 

Required(OPT) 

BFD/FFD::Bound 

is :: 11/9 OPT + 1 

bins 

Speciality 

Case :: FFD 

bound is 

tight :: 11/9 

OPT + 6/9 

bins 

Modified 

Bin 

Packing 

(MFFD) :: 

71/60 OPT 

+1 bins 

Bound 1 

:: MFFD 

is 

bounded 

by 1.18 

OPT 

Bound2 

:: 1.22 

OPT for 

FFD 

Tight 

Upper 

Bound 

for FF :: 

17/10 

OPT bins 

(Recent 

2013) 

Round 1 10 6 4 5.888889 5.55555555 5.7333333 4.72 4.888 6.8 

Round 2 20 12 6 8.333332 7.99999999 8.0999998 7.08 7.32 10.2 

Round 3 40 24 12 15.66664 15.3333333 15.199996 14.16 14.64 20.4 

Round 4 80 48 24 30.33338 29.9999994 29.399992 28.32 29.28 40.8 

Round 5 160 96 48 59.66666 59.3333322 57.799998 56.64 58.56 81.6 

Round 6 320 192 96 118.3331 117.999997 114.59999 113.28 117.12 163.2 

Round 7 640 384 192 235.6662 235.33329 228.19993 226.56 234.24 326.4 

Round 8 1280 768 384 470.3332 469.999984 455.39999 453.12 468.48 652.8 
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3.2.For Multiple Bin packing: 
 
Table 1: Resultant Data    

  

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table3: Work in Jan 2013 [27] 

 

 

Trials Max 

Bin 

Size 

Max 

Object 

Number 

Minimum 

number 

of Bin 

Required 

(OPT) 

Round 1 14 4 3 
Round 2 28 8 4 
Round 3 56 16 8 
Round 4 112 32 16 
Round 5 224 64 32 
Round 6 448 128 64 
Round 7 896 256 128 
Round 8 1792 512 256 

Trials Max 

Bin 

Size 

Max 

Object 

Number 

Minimum 

number 

of Bin 

Required 

(OPT) 

Round 1 14 4 5.1 
Round 2 28 8 6.8 
Round 3 56 16 13.6 
Round 4 112 32 27.2 
Round 5 224 64 54.4 
Round 6 448 128 108.8 
Round 7 896 256 217.6 
Round 8 1792 512 435.2 

Figure 1: Comparison plot of Resultant data. 

 

SERIES 1 

Maximum Object 

Number & 

Minimum Number 

of Bin required in 

this proposed work. 
 

SERIES 2 

Maximum Object 

Number & 

Minimum Number 

of Bin in 2013[27] 
 



International Journal of Computer Applications (0975 – 8887)  

Volume 81 – No.3, November 2013 
 

23 

Table 3: Resultant Data    
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: Work in Jan 2013 [27] 

 

 

 

 

 

 

 

 

Trials Max 

Bin 

Size 

Max 

Object 

Number 

Minimum 

number 

of Bin 

Required 

(OPT) 

Round 1 4 14 7 
Round 2 8 28 15 
Round 3 16 56 28 
Round 4 32 112 56 
Round 5 64 224 112 
Round 6 128 448 224 
Round 7 256 896 448 
Round 8 512 1792 896 

Trials Max 

Bin 

Size 

Max 

Object 

Number 

Minimum 

number 

of Bin 

Required 

(OPT) 

Round 1 4 14 11.9 
Round 2 8 28 25.5 
Round 3 16 56 47.6 
Round 4 32 112 95.2 
Round 5 64 224 190.4 
Round 6 128 448 380.8 
Round 7 256 896 761.6 
Round 8 512 1792 1523.2 

SERIES 2 

Maximum Object 

Number & Minimum 

Number of Bin in 

2013[27] 

SERIES 1 

Maximum Object 

Number & Minimum 

Number of Bin 

required in this 

proposed work. 
 

 

Figure 2: Comparison plot of Resultant data in a Reversed Ratio. 
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4. CONCLUSIONS  

This work has been accomplished on a single bin of variable 

sizes with the implementation of simulated annealing on that 

particular bin with least runtime complexity. Also on multiple 

bins of variable sizes with the implementation of simulated 

annealing with minimum number of bins used, got 

accomplished on this work. A future aspect is to implement 

the above problems of 1bin packing as well as multiple bins 

packing in a 2-dimensional pattern. 
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