
International Journal of Computer Applications (0975 – 8887)

Volume 81 – No2, November 2013

26

Improved Approximate Multiple-Pattern String Matching

using Consecutive N-Grams

Vidya Saikrishna
Monash University,Clayton Campus,

Wellington Road,Clayton,
Victoria 3800, Australia

Sid Ray
Monash University, Clayton campus,

Wellington Road,Clayton,
Victoria 3800, Australia

ABSTRACT
String matching is to find all the occurrences of a given

pattern in a large text, the strings being sequence of characters

drawn from finite alphabet set. Multiple-Pattern string

matching problem involves detection of all the patterns of the

Multiple-Pattern set in the text. Shift OR algorithm which we

call as the Standard Shift OR algorithm uses the concept of

Bit Parallelism to perform approximate string matching. The

algorithm as the name suggests performs approximate string

matching which means that it finds out some false matches

besides detecting correct matches. In other words the

algorithm behaves as a filter. In this paper a modification of

the standard Shift OR is proposed to improve the filtering

efficiency of the standard Shift OR algorithm using the

consecutive N-Grams of the patterns of the multiple-pattern

set. The proposed method reads N characters of the text at

once as compared to a single character in the standard Shift

OR algorithm. The number of false matches reduces besides

increasing the speed of matching. Extensive experiments have

been performed with the algorithm on text and pattern of

variable size and the results are compared with the standard

Shift OR algorithm.

Keywords
String Matching, Bit Parallelism, Shift OR String Matching,

N-Grams, Automaton.

1. INTRODUCTION
N-Grams of a word or a pattern where N can be substituted by

a small integer value can be overlapping or consecutive. For

example consider a word “Patter”, the overlapping 2-Grams

of word are “pa”, “at”, “tt” and “er”. If consecutive 2-Grams

are considered then they would be “pa”, “tt” and “er” [1].The

proposed algorithm works on considering the consecutive N-

Grams of the patterns. In the previous Shift OR method of

approximate string matching if we have two patterns say

“hello” and “world” then words like “herld”, “wello” etc will

also get recognized by the algorithm. The words recognized

are termed as the false candidates. The potential matches

generated needs to be verified [1]. The filtering efficiency of

standard Shift OR filter is improved by considering N-Grams

of the pattern. Along with the reduction of false candidates

there has been a significant improvement in the speed of

matching.

In the recent years bit parallelism has played an important role

in string matching, because ‘w’ length of the pattern can be

processed in parallel [5][6]. This is done by creating bit

vectors of the pattern characters, and then the matching takes

place with the help of bit operations in parallel.

Transformation into bits results in faster results as they can be

performed in parallel. Bit parallelism although performs better

as compared to other non-bit parallel algorithms, but it

imposes a limitation on the pattern size. Traditional

algorithms solved using bit parallelism has a pattern size

which is equal to the word length of the computer system

[11][12]. Therefore increasing the word size of the system

will make string matching algorithm work for patterns of

larger size. Recent architecture makes use of 64 bit word size.

String Matching using bit parallelism can be viewed as being

solved for single pattern and multiple-pattern. In single

pattern string matching problem, there is a single pattern

whose occurrence is to be reported in the text. In multiple

pattern string matching problems, we are given a set of

patterns whose occurrences are to be reported in the text. The

multiple pattern string matching problems have more practical

applications in real life which include text retrieval, symbol

manipulation, computational biology, data mining and

network security [1].

2. MULTIPLE PATTERN MATCHING

USING BIT PARALLELISM
There are some notations used to describe the bit parallel

algorithms. Exponentiation is used to indicate bit repetition,

e.g., 1304 is interpreted as 1110000. Bitwise operators are

used to indicate the bit operations such as “|” represents

bitwise OR, “<<” moves the bits to the left and inserts zeros

from right, e.g., 101011<<2=101100 and “~” complements

the bits.

The Bit parallel approach can be extended to search for

multiple patterns inside the text. The method also works for

larger pattern sets. For large pattern sets, the bit parallel

approach can be beneficial in terms of execution speed and

memory requirement. The bit parallel approach for

multipattern sets uses the Shift OR Algorithm for locating the

patterns inside the text.

The method uses a bit vector B[c] which is initialised in a way

such that the i-th bit is 0 if the character appears in any of the

patterns in position i [1]. The automaton has a transition from

state i to state i + 1 on character c if i-th bit in B[c] is 0.

Another vector D is used which is initialized to all 1’s. When

the character c is read from the text D is updated as D =

(D<<1) | B[c]. After the update, i-th bit in D is 0 if (i – 1)th bit

was 0 (the previous state i − 1 was active) and ith bit is 0 in

B[c] (there is a transition from state i − 1 to i on c)[1][11][12].

The assumption in this method is that all the patterns

p1p2…..pr have equal size m and m≤w, where w is word size

of the computer.

2.1 Algorithm Shift OR (text=t1…tn,

patterns=p1... pk) [1][11][12]
The text characters are represented as t1….tn and there are k

patterns numbered from 1…k with each pattern consisting of

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No2, November 2013

27

m characters. The notation pattern[i][j] is interpreted as the j-

th character in pattern number i.

a. Initialization

 m= pattern length, s=1, count=0, position=0,

 n=text length

b. Preprocessing

 [Text[i]] ← 1m

For j= 0…k do

For i= 0… m-1 do

B[pattern[j][i]] ← B[pattern[j][i] & ~ (s<<1)

end For

 End For

c. Filtering

 While pos< n do

 D = D <<1 & 1m

 D=D | B [text [pos]]

 if D> 1m-1 do pos← pos + 1

 Else do count ← count +1

 Report occurrence at position pos←

 pos-m +1

 D ← 1m

 pos← pos +1

 End else

 End while

Example: Text= “hhello” Pattern = {“hello”, “world”}

The Bit Vectors are set in the following manner [11][12].

B[h]=11110, B[e]=11101,B[l]=10011,B[o]=01101 ,

B[w]=11110, B[r]=11011, B[d]=01111

The Automaton recognizing the set of patterns is shown in fig.

1

Fig 1: Non Deterministic Finite Automaton recognizing

occurrence of character class pattern

The character class pattern is “[h,w],[e,o],[l/r],[l],[o/d]”

Table 1 shows bit parallel simulation of above automata.

Table 1 : Multiple pattern search example

1 Text = hhello

D 11110

B[h] 11110 OR

D 11110

D[0]=0 , so shift

To next state

3. Text = hhello

D 11100

B[e] 11101 OR

D 11101

D[1]=0, so shift to next

State

2. Text = hhello

D 11100

B[h] 11110 OR

4. Text = hhello

D 11010

B[l] 10011 OR

D 11110

D[1]=1 , so it

remains

in the same state

D 11011

D[2]=0, so shift to next

state

5. Text = hhello

D 10110

B[l] 10011 OR

D 10110

D[3]=0, so shift to

next

state

6. Text = hhello

D 01100

B[o] 01101 OR

D 01101

D[4]=0, so shift to next

State, which is the final

state

And the pattern is

recognized.

The method used for multiple pattern searches is based on

filtering approach. The filter method works in three phases. In

the first phase, the pattern is preprocessed. In the second

phase, matching takes place and in the third phase the matches

generated by the method needs to be verified for more

accurate results [12].

2.2 Analysis of Shift OR Algorithm [11][12]

 If the Text Length is assumed to be n, then the patterns are

processed in O (n) time complexity.

 All the patterns are assumed to be of uniform length and

less than or equal to the word size of the system.

 The method is a filter where the potential matches need to

be verified.

 Number of False Matches for Shift OR Method

We assume there is a pattern set P= (p1, p2……pk) of k

patterns. All the patterns are assumed to be having equal

length m. We are calculating the false matches for the worst

case, where all the patterns are assumed to be having distinct

characters in all pattern positions. In this case:

(i) Total Number of correct Matches (CM) = K, as

recognized by the Automaton.

(ii) Total number of matches recognized by the automaton

(TM)= Km

(iii) Total Number of false matches(FM1) = Total Matches

– Total number of

 Correct matches.

 FM= Km – K

(iv) In addition to these there are other false matches

detected. Considering the following text and the pattern

Text: “heabcdello” and the pattern “hello”.

The Shift OR method will detect one pattern match in the

above text. Counting the false matches for such case.

FM2= m (∑*- k) where ∑ denotes the size of the input

alphabet.

(v) Total False Matches(FM)= FM1 + FM2

FM= Km – K + m (∑*-k)

 = Km – K + m∑* - m.k

 = K{ Km-1 –m-1} + m∑*

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No2, November 2013

28

3 . SHIFT OR CONSECUTIVE 2-

GRAMS (SOC2G) PATTERN

MATCHING
Let the text and the pattern be denoted as t1.....tn and p1......pm

respectively. All the patterns are assumed to have the same

length. The size of the automaton is reduced to └m/2┘ + 1

states as compared to m+1 states in previous shift OR method.

This reduction in the size of the automaton is the main cause

of improvement in the matching speed. Leena Salmela [1]

emphasizes on achieving the multiple-pattern approximate

string matching by the construction of overlapping N-Grams

whereas the method used in this paper emphasizes on having a

solution through consecutive N-Grams of the pattern with a

detailed methodology to achieve it.

 Considering two patterns “aabbcc” and “ccaabb” where the

pattern length is 6 , the SOC2G method will result in the

creation of a two dimensional array of size 256*256 bytes in

memory. The increased speed is at the cost of increasing the

memory requirement. The consecutive 2-Grams of the first

pattern are “aa”, “bb” and “cc” and that of the second pattern

are “cc”, “aa” and “bb”. If the pattern length is m, then the

number of bits in the bit vector will be └m/2┘. The 2-Grams

of the pattern are treated as a single character and the bit

vectors are set accordingly. The ith bit is set to 0 if there is an

occurrence of 2-Gram in the ith position of the pattern and

nonoccurrence denotes 1. For the example above the bit

vectors of the 2-Grams of the pattern are set in the following

manner:

B[aa] = 100, B[bb] =001 and B[cc] =010

Fig. 2.a shows the automaton recognizing the patterns in

SOC2G algorithm.

Fig 2.a: Automaton recognizing patterns “aabbcc” and

“ccaabb” in SOC2G

As clear from the fig. 2.a the number of states would reduce to

4 as compared to 7 in the standard Shift OR method as shown

in fig. 2.b.

.
Fig 2.b: Automaton recognizing patterns “aabbcc” and

“ccaabb” in Standard Shift OR

The automaton reads two characters of the text at a time and

whenever a state is reached from where forward transition is

not possible, this forces the automaton to reach to the initial

state. This change in the automaton would reduce the

generation of false candidates. For example the automaton

would not read the group of characters “aaffgggggbbcc” in the

text.

3.1 Shift OR Consecutive 2 Gram

Algorithm (SOC2G)

The algorithm works in three phases. The first is the

initialization phase which consists of initialization of the

variables used in the algorithm. The second is the pre-

processing phase which consists of setting the bit vectors. The

third is the filtering phase which consists of matching the set

of patterns against the text.

a. Initialization

In initialization phase different variables have been initialized

which we have used in the algorithm. The variable m is

initialized with the length of patterns (assuming that all the

patterns have same length). Another variable count is used

which denotes the number of matches. The variable count is

initially set to zero before the filtering process begins. The

variable S is used to maintain the state condition and S is

initialized with 1.

b. Pre-Processing Phase

In pre-processing phase we are making bit vectors for each 2-

Gram of the given patterns. This phase itself consists of

number of steps as follow:

 In the first step all possible combination of alphabets, in

given text file, of length two (as we are implementing 2-

Grams) are initialized with all ones as presence of denotes

nonoccurrence. For this we use array of size 256x256.

 In this step for each of the patterns, consecutive two

characters are read and the bit vector is set in the manner

that occurrence at ith position inserts a 0 at ith position of the

bit vector. In case of odd length pattern we store the last

alphabet of each pattern in an array called odd [] and then

same procedure is applied on the rest even length pattern.

 Now for each 2-Gram of each pattern we are initializing a

variable ‘t’ as follows t = ~(s<<h) & int (pow (2,z) - 1),

where h is initially zero for each pattern and is increased by

one for each 2-Gram of a pattern.

Bit vector of the 2-Gram = Previous Bit vector of the 2-

Gram & t.

 In this way we have created bit vector of each 2-

 Gram.

c. Filtering Phase

In filtration phase we are making use of the bit vectors formed

in previous phase to check the presence of the patterns in the

given text. We don’t search each pattern separately rather we

search simultaneously for all patterns. This is done by making

the 2-Grams of patterns equivalent. For example, 1st 2-Gram

of all the patterns are considered equivalent, 2nd 2-Gram of all

the patterns are considered equivalent and so on.

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No2, November 2013

29

Further, we have made different stages equal to the number of

2-Grams in case of even length pattern and number of 2-

Grams plus one in case of odd length pattern, with last state as

final state in each case.

A integer array D [] is initialized with the bit vector of the 2-

Gram encountered during the scanning of the text file from

the beginning (position equal to zero). The bit of D, at

position equal to the present state i.e. D [present state

number], is checked. If that bit is zero, then we move to next

state and check the bit vector of next 2-Gram(position in text

file is increased by two), else position in text file is decreased

by the state and we go back to initial state. A match is

encountered when we reach the final state. At final state we

increase the value of count and go back to initial state. This is

repeated till the end of file.

Table 2 shows the working of the SOC2G algorithm

Table 2 Shift OR with consecutive 2-Grams

1. Text= “sdaabbccfd” Reading 2 characters “sd”

 D 1 1 0

 B[sd] 1 1 1 OR

 D 1 1 1

As D[0]=1 ,so it remains in the same state and the

text is shifted one character to read the next 2

characters.

2. Text = “sdaabbccfd” Reading next two characters

“da”

 D 1 1 0

 B[da] 1 1 1 OR

 D 1 1 1

As D[0]=1 ,so it remains in the same state and the

text is shifted one character to read the next 2

characters.

3. Text = “sdaabbccfd” Reading next two characters

“aa”

 D 1 1 0

 B[aa] 1 0 0 OR

 D 1 1 0

As D[0]=0 , the automaton moves to the next and

the text is also shifted two characters to read next

two characters.

4. Text = “sdaabbccfd” Reading next two characters

“bb”

 D 1 0 0

 B[bb] 0 0 1 OR

 D 1 0 1

As D[1]=0 , the automaton moves to the next and

the text is also shifted two characters to read next

two characters.

5. Text = “sdaabbccfd” Reading next two characters

“bb”

 D 0 1 0

 B[cc] 0 1 0 OR

 D 0 1 0

As D[2]=0 , the pattern is recognized , State Vector

D gets reinitialized to 1 1 1. The text is shifted two

characters.

4 . RESULT AND ANALYSIS
We have tested the algorithm ‘Standard Shift OR’ and our

proposed algorithm ‘Shift OR with consecutive 2-Grams

(SOC2G)’ on patterns of variable length, variable number of

patterns and different text file of different sizes. On the basis

of this, we have made following test cases. The result

produced in each test case is shown below in tabular form and

graphical form.

The experiment has been performed using the following

experimental conditions:

Processor : Intel Core i7-260 M CPU, 2.80 GHz

RAM : 8 GB

System Type : 64 Bit Operating System

OS : Windows 7 Professional

4.1 Different text files of variable size:
In this case we have taken four random text files of size

40MB, 70MB, 100MB, and 130MB. And we have taken

pattern set of 20 patterns of length 10 character.

Table 3 shows the result for the input set of standard Shift OR

and SOC2G algorithm.

Table 3 Comparison of Shift OR and Shift OR 2 Grams

Size of

text

file(MB)

No. of

matches

(SOC2G)

No. of

matches

(Standard

Shift OR)

Time

(M Sec)

(SOC2G)

Time

(M Sec)

(Standard

Shift OR)

40
1607987

2009984 4.532 5.219

70
2375887

2639875 8.438 8.798

100
3138003

4482862 11.375 11.453

130
4325446

6179209 14.391 14.486

Fig.3 and Fig.4 compare the number of Matches and

Time respectively

Fig 3: Comparing Number of matches

0

2000000

4000000

6000000

8000000

4
0

7
0

1
0

0

1
3

0
 N

u
m

b
er

 o
f

M
at

ch
es

Text Size in MB

Standard
Shift OR

SOC2G

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No2, November 2013

30

Fig

4: Comparing Time

4.2 Different Pattern Sets consisting of

different numbers of patterns of same

length

In this case we have taken four pattern set files consisting 5,

10, 15, and 20 patterns of 7 character each and we have taken

a text file 130MB.

Table 4 shows the result for the input set of standard Shift OR

and SOC2G algorithm.

Table 4 : Comparison of Standard Shift OR and SOC2G

algorithm

No. of

Patterns in

the

Pattern

Set

No. of

matches

(Standard

Shift OR)

No. of

matches

(SOC2G)

Time(M

sec)

(Standard

Shift OR)

Time (M

Sec)

(SOC2G)

5 642500 578250 17.579 16.376

10 1284997 1027998 15.454 15.329

15 1798990 1439192 15.454 15.328

20 2569988 2184490 15.329 15.226

Fig. 5 and Fig. 6 compare the number of Matches and Time

respectively

Fig 5: Comparing Number of matches

Fig 6: Comparing Time

4.3 Different pattern sets consisting

patterns of different lengths and same

number of patterns
In this case we have taken 3 pattern set files consisting 7, 10

and 20 letters in the pattern, consisting of 20 patterns each.

And we have taken a text file 125MB.

 Table 5 shows the result for the input set of standard Shift

OR and SOC2G algorithm.

Table 5: Comparison of Standard Shift OR and SOC2G

algorithm

Length

of

Pattern

No. of

matches

(Standard

Shift OR)

No. of

matches

(SOC2G)

Time(M

sec)

(Standard

Shift OR)

Time (M

Sec)

(SOC2G)

7 1336500 1336500 17.61 16.313

10 1336480 1336480 16.907 16.548

20 1336494 1336494 16.392 16.954

Fig.7 and Fig.8 compare the number of Matches and Time

respectively

Fig 7: Comparing Number of matches

0

5

10

15

20

40 70 100 130

Ti
m

e
in

 S
ec

Text Size in MB

SOC2G

Standard
Shift OR

0

500000

1000000

1500000

2000000

2500000

3000000

5 10 15 20

N
u

m
b

er
 o

f
M

at
ch

es

Number of Patterns

Standard
Shift OR

SOC2G

14

15

16

17

18

5 10 15 20

Ti
m

e
in

 M
se

c

Number of Patterns

Standard
Shift OR

SOC2G

1100000

1150000

1200000

1250000

1300000

1350000

7 10 20

N
u

m
b

er
 o

f
M

at
ch

es

Pattern length in characters

Standard
Shift OR

SOC2G

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No2, November 2013

31

Fig

8: Comparing Time

5 . CONCLUSION & FUTURE WORK
We have presented efficient solutions for Shift or for multiple

string matching algorithm using N-Grams and bit-parallelism.

We have demonstrated that by using our algorithm the

number of false matches has reduced considerably. The

reduction in false matches is about 10%- 30% and there is a

significant improvement as far as the time complexity is

concerned. The speed is increased by about 10%. In certain

texts where the probability of patterns matching with the text

is high, the speed is enormously increased as two characters

are read at a time.

 In future we can further improve the speed of matching as

well as the filtering efficiency by constructing 3-Grams of the

pattern. The speed and efficiency is improved at the cost of

having a memory capacity of 256x256x256 for constructing

3-Grams of the pattern.

6. REFERENCES
[1] Leena Salmela, J. Tarhio and J. Kytojoki, “Multiple

Pattern String Matching with Q Grams”, ACM Journal of

Experimental Algorithmics , Vol. 11, Article No. 1.1,

2006.

[2] Rajesh Prasad, Suneeta Agarwal, Ishadutta Yadav,

Bharat Singh “Efficient Bit-Parallel Multi-Patterns

String Matching Algorithms for Limited Expression”,

Compute ’10 , Proceedings of Third Annual ACM

Bangalore Conference, Article No. 10, 2010.

[3] Heikki Hyyr¨o, Kimmo Fredriksson Gonzalo Navarro,

“Increased Bit-Parallelism for Approximate and Multiple

String Matching”, ACM Journal of Experimental

Algorithmics, Vol 10, 2006.

[4] Gonzalo Navarro and Mathieu Raffinot. “A Bit

Parallel approach to Suffix Automata :Fast Extended

String Matching”, In M. Farach (editor), Proc. CPM'98,

LNCS 1448. pp. 14-33, 1998.

[5] G. Navarro,M. Raffinot, “Fast and Flexible String

Matching by combining Bit-Parallelism and Suffix

Automata,ACM J. Experimental Algorithmics (JEA)

Vol.5, Article No. 4 2000.

[6] M. Crochemore et al., “A Bit-Parallel Suffix Automaton

approach for (δ, γ)-Matching in Music Retrieval”, in

Proc. 10th Internat. Symp. On String Processing and

Information Retrieval (SPIRE’03), in: Lecture Notes in

Computer. Sci., vol. 2857, pp. 211–223.

[7] R. Baeza-Yates, G. Gonnet, “A New Approach to Text

Searching”, Comm. ACM 35 (10) pp. 74–82, 1992.

[8] Hannu Peltola and Jorma Tarhio , Alternative Algorithms

for Bit-Parallel String Matching, String Processing and

Information Retrieval, LNCS 2857 pp. 80-93, 2003.

[9] AHO, A. AND CORASICK, M. 1975. “Efficient String

Matching: an aid to Bibliographic Search”,

Communications of the ACM 18, 6, pp. 333–340, 1975.

[10] HYYR¨O, H. AND NAVARRO, G. 2002. “Faster Bit-

Parallel Approximate String Matching”, in Proc. 13th

Combinatorial Pattern Matching (CPM ’02). LNCS

2373. Berlin, Germany, Springer, New York.203–224,

2002.

[11] Vidya Saikrishna, Akhtar Rasool and Nilay Khare,

“Spam Filtering through Multiple Pattern Bit Parallel

String Matching Combining Shift AND & OR”,

International Journal of Computer Applications 61(5):40-

45,. Published by Foundation of Computer Science,

New York, USA, January 2013.

[12] Vidya Saikrishna, Akhtar Rasool and Nilay Khare, “Time

Efficient String Matching Solution for Single and

Multiple Pattern using Bit Parallelism”, International

Journal of Computer Applications 46(6):15-20,.

Published by Foundation of Computer Science, New

York, USA, May 2012.

15.5

16

16.5

17

17.5

18

7 10 20

Ti
m

e
in

 M
se

c

Pattern Length in Characters

SOC2G

Standard
Shift OR

IJCATM : www.ijcaonline.org

