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ABSTRACT 

Finding orthogonal matrices in different sizes is very complex 

and important because it can be used in different applications 

like image processing and communications (e.g. CDMA and 

OFDM). In this paper we introduce a new method to find 

orthogonal matrices by using tensor products between two or 

more orthogonal matrices of real and imaginary numbers with 

applying it in images and communication signals processing. 

The output matrices will be orthogonal matrices too and the 

processing by our new method is very easy compared to other 

classical methods those use basic proofs .The results are 

normal and acceptable in communication signals and images 

but it needs more research works.   

General Terms 

Mixed Transforms, Tensor Operation, Orthogonal Matrices, 

Images Compression, Communication system. 

Keywords 

Orthogonally, OFDM, CDMA, JCDMA, Wavelet, Safe 

Transform, Compression, Kronecker product. 

1. INTRODUCTION 
The definition of the matrix that it is orthogonal can be 

summary by the equations below [1]: 

Anxn ∗ Anxn
∗T = Inxn Or Anxn ∗ Anxn

∗T = kInxn then: Anxn
−1 =

Anxn
∗T  or Anxn

−1 = Anxn
∗T k⁄   . 

Where k is a constant, A is square matrix and I identical squa-

re matrix (the main diagonal is one) example: 

FFT4×4 ∗ FFTm4×4
∗T = (

1    1    1    1

1 −j −1     j

1 −1    1 −1

1    j −1 −j

) ∗ (

1    1    1    1

1 −j −1     j

1 −1    1 −1

1    j −1 −j

)

= (

4 0

0 4

0 0

0 0
0 0

0 0

4 0

0 4

) = 4 ∗ (

1 0

0 1

0 0

0 0
0 0

0 0

1 0

0 1

)  

= 4 ∗ I4×4 

Where k is any constant number (may be real or imaginary), 

the conjugate transport for the matrix for both real and 

imaginary matrices like FFTn×n matrix, let us take Fast 

Fourier Transform matrix 4×4 size , Walsh Hadamared and 

Safe 4×4 transforms as in the following example[1],  

 

 

 

The first FFTn×n : 

FFTm4×4 = (

1    1    1    1
1 −j −1     j
1 −1    1 −1
1    j −1 −j

) 

The second Walsh Hadamared: If Walsh Hadamared 2x2        

is equal:   

        WH2×2 = (
1    1
1 −1

)  

Then the 4x4 tensor product will be: 

WH4×4 = WH2×2WH2×2 = (
1    1
1 −1

) (
1    1
1 −1

)

= (
WH2×2    WH2×2

WH2×2 −WH2×2
)

= (

1    1    1    1
1 −1    1 −1
1    1 −1 −1
1 −1 −1     1

) 

 

And the third, Safe Transform 𝕊nxn
θ  where n is the dimension 

and θ is the phase shift, let n=2 and θ=0o then: 

𝕊2x2 = (
   j    1
−1 −j

) , And  𝕊2nx2n
θ = WH2×2 𝕊nxn

θ   or 

𝕊4𝑥4 = WH2×2𝕊2x2 = (
𝕊2x2    𝕊2x2

𝕊2x2 −𝕊2x2

) = 

𝕊4𝑥4 = (
1    1
1 −1

) (
   j    1
−1 −j

) = (

   j    1
−1 −j

   j    1
−1 −j

   j    1
−1 −j

−j −1
   1    j

)   

   

2. BASIC MATHEMATICS 
We find that for Walsh Hadamard and Safe Transform can be 

created by tensor product, the question is what is the tensor 

product? It is like a tree has branches and the branches have 

leaves (see Figure 1) or a basic victor in its end has many a 

new vectors where: 

[𝐀]n×m = [

a1,1 ⋯ a1,m

⋮ ⋱ ⋮
an,1 ⋯ an,m

]  

[𝐁]h×k = [

b1,1 ⋯ b1,k

⋮ ⋱ ⋮
bh,1 ⋯ bh,k

] 
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[𝐂](n∗h)×(m∗k) = [𝐀]n×m⨂[𝐁]h×k

= [

a1,1 ∗ [𝐁] ⋯ a1,m ∗ [𝐁]

⋮ ⋱ ⋮
an,1 ∗ [𝐁] ⋯ an,m ∗ [𝐁]

] 

=

[
 
 
 
 
 
 
 
a1,1 ∗ [

b1,1 ⋯ b1,k

⋮ ⋱ ⋮
bh,1 ⋯ bh,k

] ⋯ a1,m ∗ [

b1,1 ⋯ b1,k

⋮ ⋱ ⋮
bh,1 ⋯ bh,k

]

⋮ ⋱ ⋮

an,1 ∗ [

b1,1 ⋯ b1,k

⋮ ⋱ ⋮
bh,1 ⋯ bh,k

] ⋯ an,m ∗ [

b1,1 ⋯ b1,k

⋮ ⋱ ⋮
bh,1 ⋯ bh,k

]

]
 
 
 
 
 
 
 

= [

c1,1 ⋯ c1,(m∗k)

⋮ ⋱ ⋮
c(n∗h),1 ⋯ c(n∗h),(m∗k)

]where c1,1

= a1,1 ∗ b1,1 …….  

 

Fig 1: Kronecker tensor product 

The tensor product, may be applied in different ways in 

vectors, matrices, spaces, algebras, topological vector and 

modules, among many other structures or objects. The most 

general bilinear operation, in some contexts, this product is 

also referred to as outer product. The linear maps A and B can 

be represented by matrices. Then, the description of matrix 

tensor product is the Kronecker product of the two or more 

matrices. There are many properties for tensor product but in 

this paper we will proof a new property that can be applied for 

our research, the property is: 

Theorem 1 If A:  →  and B:  →  are square matrices, 

and both A and B are orthogonal matrices then action of their 

tensor product on a matrix is given by (A⊗B=C:  →) the 

matrix C will be square orthogonal too, which is the set for 

complex numbers including the vectors numbers. 

 

Proof:  We have that [𝐀]n×n = [

a1,1 ⋯ a1,n

⋮ ⋱ ⋮
an,1 ⋯ an,n

]  

                                [𝐁]m×m = [

b1,1 ⋯ b1,m

⋮ ⋱ ⋮
bm,1 ⋯ bm,m

] 

And both orthogonal or  

𝐀nxn ∗ 𝐀nxn
∗T = 𝐈nxn Or 𝐀nxn ∗ 𝐀nxn

∗T = k1𝐈nxn then: 𝐀nxn
−1 =

𝐀nxn
∗T  or 𝐀nxn

−1 = 𝐀nxn
∗T k1⁄     

And  

𝐁mxm ∗ 𝐁mxm
∗T = 𝐈mxm Or 𝐁mxm ∗ 𝐁mxm

∗T = k2𝐈mxm  then

: 𝐁mxm
−1 = 𝐁mxm

∗T  or 𝐁mxm
−1 = 𝐁mxm

∗T k1⁄      

Where both   k1, k2    and  

[𝐂](n∗m)×(n∗m) = [𝐀]n×n⨂[𝐁]m×m

= [

a1,1 ∗ [𝐁] ⋯ a1,n ∗ [𝐁]

⋮ ⋱ ⋮
an,1 ∗ [𝐁] ⋯ an,n ∗ [𝐁]

]

=

[
 
 
 
 
 
 
 
a1,1 ∗ [

b1,1 ⋯ b1,m

⋮ ⋱ ⋮
bm,1 ⋯ bm,m

] ⋯ a1,n ∗ [

b1,1 ⋯ b1,m

⋮ ⋱ ⋮
bm,1 ⋯ bm,m

]

⋮ ⋱ ⋮

an,1 ∗ [

b1,1 ⋯ b1,m

⋮ ⋱ ⋮
bm,1 ⋯ bm,m

] ⋯ an,n ∗ [

b1,1 ⋯ b1,m

⋮ ⋱ ⋮
bm,1 ⋯ bm,m

]

]
 
 
 
 
 
 
 

= [

c1,1 ⋯ c1,(n∗m)

⋮ ⋱ ⋮
c(n∗m),1 ⋯ c(n∗m),(n∗m)

]where c1,1 = a1,1 ∗ b1,1 ……. 

As we now A*T⊗B*T = (A⊗B)*T = C*T then we must proof th

at C* C*T=kI 

𝑘[𝐈](n∗m)×(n∗m) = [𝐂](n∗m)×(n∗m) ∗ [𝐂](n∗m)×(n∗m)
∗T

 

= ([𝐀]n×n⨂[𝐁]m×m) ∗ ([𝐀]n×n
∗T

⨂[𝐁]m×m
∗T

) 

= [

a1,1 ∗ [𝐁] ⋯ a1,n ∗ [𝐁]

⋮ ⋱ ⋮
an,1 ∗ [𝐁] ⋯ an,n ∗ [𝐁]

] ∗ [
a1,1

∗ ∗ [𝐁]∗T ⋯ an,1
∗ ∗ [𝐁]∗T

⋮ ⋱ ⋮
a1,n

∗ ∗ [𝐁]∗T ⋯ an,n
∗ ∗ [𝐁]∗T

] 

=

[
 
 
 
 
 
 
 
a1,1 ∗ [

b1,1 ⋯ b1,m

⋮ ⋱ ⋮
bm,1 ⋯ bm,m

] ⋯ a1,n ∗ [

b1,1 ⋯ b1,m

⋮ ⋱ ⋮
bm,1 ⋯ bm,m

]

⋮ ⋱ ⋮

an,1 ∗ [

b1,1 ⋯ b1,m

⋮ ⋱ ⋮
bm,1 ⋯ bm,m

] ⋯ an,n ∗ [

b1,1 ⋯ b1,m

⋮ ⋱ ⋮
bm,1 ⋯ bm,m

]

]
 
 
 
 
 
 
 

∗

[
 
 
 
 
 
 
 
a1,1

∗ ∗ [
b1,1

∗ ⋯ bm,1
∗

⋮ ⋱ ⋮
b1,m

∗ ⋯ bm,m
∗
] ⋯ an,1

∗ ∗ [
b1,1

∗ ⋯ bm,1
∗

⋮ ⋱ ⋮
b1,m

∗ ⋯ bm,m
∗
]

⋮ ⋱ ⋮

a1,n
∗ ∗ [

b1,1
∗ ⋯ bm,1

∗

⋮ ⋱ ⋮
b1,m

∗ ⋯ bm,m
∗
] ⋯ an,1

∗ ∗ [

b1,1
∗ ⋯ bm,1

∗

⋮ ⋱ ⋮
b1,m

∗ ⋯ bm,m
∗
]

]
 
 
 
 
 
 
 

 

If we take the first row to the [C] then we gate: 

k ∗ 1 = a1,1a1,1
∗ (b1,1b1,1

∗ + b1,2b1,2
∗ ………b1,mb1,m

∗ ) 

          +a1,2a1,2
∗ (b1,1b1,1

∗ + b1,2b1,2
∗ ………b1,mb1,m

∗ ) + … .. 

      …+ a1,na1,n
∗ (b1,1b1,1

∗ + b1,2b1,2
∗ ………b1,mb1,m

∗ ) 

k ∗ 1 = ∑((a1,i ∗ a1,i
∗ ) ∗ ∑(b1,j ∗ b1,j

∗ )

𝑚

𝑗=1

)

𝑛

𝑖=1

 

Because [B] is orthogonal then: 

(b1,1b1,1
∗ + b1,2b1,2

∗ ………b1,mb1,m
∗ ) = ∑ (b1,j ∗ b1,j

∗ )𝑚
𝑗=1 = 1 

𝑜𝑟 𝑘2 (Otherwise = 0) then the equations will be: 

 

∑((a1,i ∗ a1,i
∗ ) ∗ ∑(b1,j ∗ b1,j

∗ )

𝑚

𝑗=1

)

𝑛

𝑖=1

= (1 𝑜𝑟 𝑘2)∑(a1,i ∗ a1,i
∗ )

𝑛

𝑖=1

 

 

And because [A] is orthogonal too then the equation will be: 

 ∑ (a1,i ∗ a1,i
∗ )𝑛

𝑖=1 =  (1 𝑜𝑟 𝑘1) (Otherwise = 0); therefore: 
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∑((a1,i ∗ a1,i
∗ ) ∗ ∑(b1,j ∗ b1,j

∗ )

𝑚

𝑗=1

)

𝑛

𝑖=1

= (1 𝑜𝑟 𝑘2) ∗ (1 𝑜𝑟 𝑘1) = 𝑘   

For the second row for [C] will be as: 

0 = a2,1a1,1
∗ (b1,1b1,1

∗ + b1,2b1,2
∗ ………b1,mb1,m

∗ ) 

    +a2,2a1,2
∗ (b1,1b1,1

∗ + b1,2b1,2
∗ ………b1,mb1,m

∗ ) + …… 

…+ a2,na1,n
∗ (b1,1b1,1

∗ + b1,2b1,2
∗ ………b1,mb1,m

∗ ) 

0 = ∑((a2,i ∗ a1,i
∗ ) ∗ ∑(b1,j ∗ b1,j

∗ )

𝑚

𝑗=1

)

𝑛

𝑖=1

 

Because ∑ (b1,j ∗ b1,j
∗ )𝑚

𝑗=1 = (1 𝑜𝑟 𝑘2) but: 

 ∑ (at,i ∗ al,i
∗ )𝑛

𝑖=1 = {
0 if t ≠ l
1 if t = l

  

This is the most desired property in the orthogonally applied   

to   the matrices; therefore [C] is orthogonal and square and: 

 

𝑘[𝐈](n∗m)×(n∗m) = [

c1,1 ⋯ c1,(n∗m)

⋮ ⋱ ⋮
c(n∗m),1 ⋯ c(n∗m),(n∗m)

]

∗ [

c1,1
∗ ⋯ c1,(n∗m)

∗

⋮ ⋱ ⋮
c(n∗m),1

∗ ⋯ c(n∗m),(n∗m)
∗
] 

where c1,1 = a1,1 ∗ b1,1 … 

And this is the proof      

As we shown it can create an orthogonal matrix from two or 

more orthogonal matrices as shown in the example below: 

Example 1: Let [𝐀] = [
1    1
1 −1

] and Wavelet Db2 [𝐁] =

[

1     1
0  0

0   0
1    1

 1 −1
0     0

0    0
1 −1

]  then  

[𝐀]2x2⨂[𝐁]4x4 =

[
 
 
 
 
 
 
 
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 −1 0 0 1 −1 0 0
0 0 1 −1 0 0 1 −1
1 1 0 0 −1 −1 0 0
0 0 1 1 0 0 −1 −1
1 −1 0 0 1 −1 0 0
0 0 1 −1 0 0 1 −1]

 
 
 
 
 
 
 

 

Then to proof the orthogonally: 

 

[
 
 
 
 
 
 
 
1 1 0 0 1 1 0 0
0 0 1 1 0 0 1 1
1 −1 0 0 1 −1 0 0
0 0 1 −1 0 0 1 −1
1 1 0 0 −1 −1 0 0
0 0 1 1 0 0 −1 −1
1 −1 0 0 1 −1 0 0
0 0 1 −1 0 0 1 −1]

 
 
 
 
 
 
 

∗

[
 
 
 
 
 
 
 
1 0 1 0 1 0 1 0
1 0 −1 0 1 0 −1 0
0 1 0 1 0 1 0 1
0 1 0 −1 0 1 0 −1
1 0 1 0 −1 0 1 0
1 0 −1 0 −1 0 −1 0
0 1 0 1 0 −1 0 1
0 1 0 −1 0 −1 0 −1]

 
 
 
 
 
 
 

 

=

[
 
 
 
 
 
 
 
4 0
0 4

0 0
0 0

0 0
0 0

4 0
0 4

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

4 0
0 4

0 0
0 0

0 0
0 0

4 0
0 4]

 
 
 
 
 
 
 

= 4[𝐈]8𝑥8 

Example 2: Safe transform if we take 𝕊2
45o

= [
1 −j
j −1

] and   

wavelet Db2[𝐁] = [

1     1
0  0

0   0
1    1

 1 −1
0     0

0    0
1 −1

] then: 

 𝕊2
45o

⨂[𝐁] = [

1     1
0  0

0   0
1    1

 1 −1
0     0

0    0
1 −1

]⨂ [
1 −j
j −1

] 

 =

[
 
 
 
 
 
 
 
1 −j 1 −j 0 0 0 0
j −1 j −1 0 0 0 0
0 0 0 0 1 −j 1 −j
0 0 0 0 j −1 j −1
1 −j −1 j 0 0 0 0
j −1 −j 1 0 0 0 0
0 0 0 0 1 −j −1 j
0 0 0 0 j −1 −j 1]

 
 
 
 
 
 
 

= [𝐗] 

Then [X]* [X]*T=4[I]8x8 (Where X from Mixed) 

Example 3:  

[𝐁]⨂ 𝕊2
45o

⨂𝐖𝐇𝟐 = [𝐗] 

=

[
 
 
 
 
 
 
 
1 −j 1 −j 0 0 0 0
j −1 j −1 0 0 0 0
0 0 0 0 1 −j 1 −j
0 0 0 0 j −1 j −1
1 −j −1 j 0 0 0 0
j −1 −j 1 0 0 0 0
0 0 0 0 1 −j −1 j
0 0 0 0 j −1 −j 1]

 
 
 
 
 
 
 

⨂ [
−j −j
−j j

] 

Then [X]* [X]*T=4[I]16x16 (Where X from Mixed). 

 

3. MIXED TRANSFORMS 
In this section we will take several cases to find Mixed 

Transforms from two or more famous transforms like      

Wavelets Groups, Slantlet, Fourier Transform and other 

Transform (we will take the special case just in this paper). 

It can be create a Mixed Transforms from the following: 

1- Wavelet with Wavelet its self , 

2- Wavelet with other family Wavelet ,  

3- Slantlet With Wavelet family, 

4- Fourier with Wavelet and Slantlet , 

. 

. 

At the end there are many of mixed two transforms or more     

the cause for this way to achieve the advantage for this            

transforms in one matrix or different sizes of filters to                  

different      sizes   of      objects and study the performances,  

it is very   important to think that the first matrix will be called 

the base or the root and the   other the branches or leaves in    

example 1, 2 and 3 we find that the mixed matrix is take the    

shape of the base  matrix if we can mix  the wavelet properties 

and  Fourier  properties then we can get the frequency domain 

and time   domain   together without using old  ways as shown 

(see Figure 3,4) for images as example application it will be   

discussed in next section.  
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Fig 2: 𝕊𝟐
𝟒𝟓𝐨

⨂[𝐁]⨂𝐖𝐇𝟐 = [𝐗] 

 

Fig 3: Old way Mix Algorithm for Images  

 

Fig 4: New way Mix Algorithm for Images 

4. IMAGES APPLICATION 
In this section, the images compression as most application in 

DSP today, in image processing there are 256 intensity levels 

(scales) of grey. 0 is black and 255 are white. Each level is 

represented by an 8-bit binary number so black is 00000000 

and white is 11111111. An image can therefore be thought of 

as grid of pixels, where each pixel can be represented by the 

8-bit binary value for grey-scale. Images require much storage 

space, large transmission bandwidth and long transmission 

time (and in the early year the storage devices were very 

expansive). The only way currently to improve these resource 

requirements is to compress images, such that they can be 

transmitted quicker and then decompressed by the receiver 

[4]. The compression is a process of representing information 

in a compact form with less bit rate for transmission or less 

storage while maintaining acceptable fidelity or data quality 

[10]. Image compression is a reduction method of the number 

of pixels needed to store a digital image [6]. The aim of image 

compression algorithms is to remove the redundancy in data 

in a way which makes image reconstruction possible." This 

basically means that image compression algorithms try to 

exploit redundancies in the data; they calculate which data 

needs to be kept in order to reconstruct the original image and 

therefore which data can be ’thrown away’. By removing the 

redundant data, the image can be represented in a smaller 

number of bits, and hence can be compressed [4].   

5. COMPRESSION USING WAVELET 

TRANSFORM 
Wavelets are functions which allow data analysis of signals or 

images, according to scales or resolutions and it provide a 

powerful and remarkably flexible set of tools for handling 

fundamental problems in science and engineering, such as 

signal (image) compression, image de-noising, image 

enhancement, image recognition [9]. The wavelet transform is 

a type of signal transform that is commonly used in image 

compression [10], so, by using a wavelet image compression, 

the compressed image size is reduced but the quality of the 

image is quite similar to original image [9]. Wavelet analysis 

can be used to divide the information of an image into 

approximation and detail sub signals. The approximation sub 

signal shows the general trend of pixel values, and three detail 

sub signals show the vertical, horizontal and diagonal details 

or fast changes in the image [5]. In the decomposition level 

=

[
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1 1
1 −1

−j −j
−j j

1 1
1 −1

−j −j
−j j

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

j j
j −j

−1 −1
−1 1

j j
j −j

−1 −1
−1 1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 1
1 −1

−j −j
−j j

1 1
1 −1

−j −j
−j j

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

j j
j −j

−1 −1
−1 1

j j
j −j

−1 −1
−1 1

1 1
1 −1

−j −j
−j j

−1 −1
−1 1

j j
j −j

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

j j
j −j

−1 −1
−1 1

−j −j
−j j

1 1
1 −1

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

1 1
1 −1

−j −j
−j j

−1 −1
−1 1

j j
j −j

0 0
0 0

0 0
0 0

0 0
0 0

0 0
0 0

j j
j −j

−1 −1
−1 1

−j −j
−j j

1 1
1 −1]

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

First Transform 
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Transform 

Second 

Transform 
First Transform 

*T *T 

  

2ed  T 2ed T 2ed T 2ed T 

2ed T 2ed T 2ed T 2ed T 

2ed T 2ed T 2ed T 2ed T 

2ed T 2ed T 2ed T 2ed T 
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*T 
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*T 
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*T 
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*T 
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one, the image will be divided into 4 sub-bands, called LL, 

LH, HL, and HH. The LL sub-band is a low-resolution 

residue that has low frequency components, which are often 

referred to as the average image, LH provides vertical detailed 

images, HL provides detailed images in the horizontal 

direction, finally, the HH sub-band image gives details on the 

diagonal, In the discrete wavelet transform (DWT), there are 

properties for precise reconstruction. This nature gives a sense 

that in fact no information is lost after the transformed image 

is set to its original form. But there are missing information on 

image data compression with wavelet transform that occurs 

during quantization. Information loss due to compression 

should be minimized to keep the quality of the compression. 

A good quality compression is generally achieved in the 

process of memory consolidation, which generates a small 

reduction, and vice versa. The quality of an image is 

subjective and relative, depending on the observation of the 

user [5]. Compression ratio is the ratio of number of bits 

required to represent the data before compression to the 

number of bits required to represent data after compression. 

Increase of compression ratio causes more effective 

compression technique employed and vice versa [7]. 

The energy measures pixel pair’s repetitions. For each sub-

band, it is computed by using the equation below:  

Energy=∑∑P2(i, j) 

Where P(i, j) is probability density and i and j are the gray 

levels [8].The result out came as shown in Table 1 (the 

discussion will be in the next papers )  
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Table 1. Taking the quarter of mixed image as LL-sub-band R=1/4: 

Figure size  of 1st 

matrix 

(M1) 
 

size  of 2nd 

matrix 

(M2) 
 

size of 

mixed 

image 

no. of sub-

band 

of mixed 
image 

 

size of each 

sub-

band(LL-
sub-band) 

energy of LL sub-

band 

(e1) 

energy of 

one of  

horizontal 
sub-band 

(e2) 

energy 

of one of 

vertical 
sub-band 

(e3) 

energy 

of one of 

Diagonal 
sub-band 

(e4) 

5 2×2 1024×1024 2048 2×2 1024×1024 1.0392 0.1979 0.0988 0.4077 

6 4×4 512×512 2048 4×4 1024×1024 0.3785 -0.1946 -0.0424 -0.1213 

7 8×8 256×256 2048 8×8 1024×1024 0.4085 0.0013 0.0112 -0.0485 

8 16×16 128×128 2048 16×16 1024×1024 1.2635     0.0725     0.0339    -0.0462 

9 32×32 64×64 2048 32×32 1024×1024 0.9173     0.0385     0.0069     0.0181 

10 64×64 32×32 2048 64×64 1024×1024 0.8486    -0.0180     0.0050    -0.00003 

11 128×128 16×16 2048 128×128 1024×1024 0.8840     0.0051     0.0058     0.0103 

12 256×256 8×8 2048 256×256 1024×1024 0.9123     -0.0049    0.0041     0.0008 

13 512×512 4×4 2048 512×512 1024×1024 0.9366     0.0038     0.0030     0.0069 

14 1024×1024 2×2 2048 1024×1024 1024×1024   0.9457     0.0005    -0.0006     0.0194 
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Fig 9 

Fig 10 

Fig 11 

Fig 12 

Fig 13 

Fig 14 

The reader can find “Related Works” in: Karen Lees, 2002[4]

, introduced the background of wavelets and compression in 

more detail followed by a review of a practical investigation   

into how compression can be achieved with wavelets The       

purpose of the investigation was to find the effect of the         

decomposition level, wavelet and image on the number of      

zeros and energy retention that could be achieved. And Nik   

Shahidah, introduced Algorithm contains transformation        

process, quantization process, and lossy entropy coding. For   

the transformation process, Wavelets functions were used.     

One of the limitations of this system is that it cannot support   

image more than 1024x1024 dimensions [9]. 

 

6. COMMUNICATION APPLICATION 
In this section will introduce the application for OFDM and   

DS-CDMA and then compare with FFT and Walsh Hadamard 

matrices, the application consist of the communication and 

DSP. The communication will be the digital transmitter 

OFDM and CDMA, the DSP uses the basic matrix as filter or 

coding,the both system will have results and will be compared 

with the original system in performance, for more [1,2]. 

 

6.1 OFDM System 
Orthogonal Frequency Division Multiplexing (OFDM) is 

similar to the used technique of Frequency Division 

Multiplexing (FDM),but it allows sending multiple messages 

over a single channel for that it use Fourier Transform, it will 

be replaced by Safe transform tensor with Walsh Hadamared 

as shown: 

   
Fig 15: OFDM modem system. 

The result came out the same but easy to find the matrix as 

shown: 
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Fig 16: 4QAM with Doppler shift 50Hz in selective 

channel 

 

Fig 17: 16QAM with Doppler shift 50Hz in selective 

channel 
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6.2 CDMA System 
Communication systems today are growing rapidly  then the 

need for high speed or high bit rate with limited bandwidth or 

limited frequency for that .The multiple inputs multiple 

outputs (MIMO) system can help with the limitation of  band- 

width frequency (transmitted many users with same 

frequency) like Time Division Multiplexing Access (TDMA) 

and Code Division Multiplexing Access (CDMA) or Multi 

Carrier Code Division Multiplexing Access (MC-CDMA) like 

Orthogonal Frequency  Division  Multiplexing  companies 

with CDMA (OFDM-CDMA)  .This paper introduce a 

proposed systems those will use the complex number as data 

(consolation data like n-QPSK and n-QAM where n is power 

of 2) with many transforms like Fast Fourier Transform 

Matrix (FFTm) ,Safe Transform (𝕊𝒏𝒙𝒏), Slantlet, Wavelet, 

Jwavelet , Hadamard and so on. Instead of the old systems, 

the Mixed Transform is applied in the CDMA system 

especially in the Direct Sequence DS-CDMA (JCDMA) with 

security that uses the complex number like pseudo noise 

(JPN) and also works in binary form, in this way the 

derivatives of equations are included in the researcher work 

papers. The results show that we can increase the data bitrates 

with gain 1-3 dB from classic CDMA and from OFDM about 

14dB when using MC-JCDMA using n-QAM and with 

normalize the two systems [2], for more see [2]. 

    It is clear that using many orthogonal codes can achieve 

many advantages like security, anti-interference, and 

synchronization, which will be discussed later in another 

paper.  

 

  
Fig 18: Power spectrum for systems 

7. Conclusion and Future Works 
This paper introduce a brand new method for making the 

mixed transformation has better performance  in DSP, for 

example if we need frequency domain and time domain we 

can use FFT matrix then tensor with Wavelet  instead of using 

the old way that multiply the signal with FFT matrix then with 

Wavelet, that make the transform matrix as a tree with 

branches have leaves companied properties for two or more 

transform, the future work will study well the philosophy of 

this method in colored images processing by taking many 

transforms mixed together, the result in this paper may be not 

so good or clear but it is acceptable as a study of mixed 

transform by tensor in the communication applications 

especially in CDMA, it can generate many of orthogonal 

Codes, in this field the Code Hopping (CH) (or Phase 

Hopping ) can be in reality soon for increasing the security on 

CDMA system or  LTE-A.          
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Fig 19: JCDMA 
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Fig 20: Performance of the all proposed systems and codes 

(SNR and BER with number of 4-bits /user/chip in the selective fading channel with 100 Doppler). 

a-Safe matrix  b-Walsh matrix  

d-Slantlet matrix  

c-FFT matrix  

e-Wavelet and Jwavelet matrix  

Fig 20: Performance (SNR with number of bits /user/chip) 
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