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ABS TRACT 
This paper presents a method for non-computationally 

expensive automatic alignment of cameras that utilises 

stereoscopic imagery separated at varying distances just below 

that of the intraocular distance. Here, automatic stereoscopic 

alignment in real-time is a non-trivial process that relies on 

calculating the best virtual alignment of camera lenses through 

image overlaying. This is important as retail 3D camera lenses 

are typically not sufficiently calibrated for accurate estimates 

of distance. The alignment of images allows the filtering of 

background objects and focuses on points of interest. 

Imprecision in camera lens calibration leads to problems with 

the required alignment of images and consequent filtering of 

background objects. The algorithm presented in this paper 

allows virtual calibration within non-calibrated cameras to 

provide a real-time filtering of images and the consequent 

identification of points of interest. The proposed method is 

capable of generating the best alignment setup at a reasonable 

computational expense in natural environments with partial 

background occlusion. 
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KEYWORDS 
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1 INTRODUCTION 
Computer vision is a challenging field of computing where the 

ability of an algorithm to produce a valid output is often not 

the only measure of success. Often, one of the biggest 

problems in computer vision is the computation cost to run the 

algorithm in real-time.  

In the field of computer vision, numerous algorithms have 

been created that have potential to solve a specific problem. 

For example, in previous work by the authors, a stereoscopic 

comparison algorithm has been developed to provide a partial 

solution to the human detection part of the vision problem [1]. 

Although a significant step forward, the application of this 

new algorithm is constrained by stereoscopic cameras 

suffering from a lack of calibration. Here, cameras of the same 

make and model do not necessarily work when put directly 

into the algorithm due to slight differences in lens alignments. 

In this paper, a solution for the problem is presented using part 

of the previous system’s comparison method. 

The problem of different physical alignments on alternate 

cameras is not the only issue solved with this solution. 

Through aligning the image with different values, the ability 

to focus on different distance objects is possible. However, 

this requires compensation for the lack of physical lens 

alignment, which is here implemented virtually to provide a 

means for automatic alignment of images retrieved from each 

lens. This automatic alignment is essential for the successful 

application of the human detection algorithm in both far and 

near environments.  

Throughout this paper, all statistics are reported from tests 

performed on a computer running Windows XP, with access 

to a single 3.4 GHz core processor, 1GB memory (370MB 

used by OS). It is a clean operating system only running 

typical background processes such as anti-virus. This provides 

a fair and stable testing environment. The camera used is a 

stereoscopic camera recording at VGA resolution (640x480) 

at 60 fps (frames per second). 

2 BACKGROUND AND MOTIVATION 
Accurate human recognition is a significant computer vision 

problem, one to which a number of possible solutions have 

been devised [2] [3] [4] [5] [6] [7]. These systems typically 

make use of offline processing, the ones that do not have 

limited scope of use, which is discussed in the following 

section.  

Algorithms such as Pfinder (“people finder”) [2] record 

multiple frames of unoccupied background taking one or more 

seconds to generate a background model. This model is 

subtracted from an image before processing occurs. After 

background subtraction, the only details remaining are the 

“moving objects” which under most conditions should be 

people moving through the scene.. Pfinder has limitations in 

its ability to deal with scene movement. The scene is expected 

to be significantly less dynamic than the user meaning that if 

other objects  move such as trees blowing in the wind the 

algorithm will fail.  

The benefit over similar systems like player tracking and 

stoke recognition [3] is that Pfinder processes in real-time. 

Although this algorithm does not produce clear models of the 

person in question, skeleton structures are generated from the 

images that include the shadow as part of the human. In that 

system only top body movement was analysed meaning this 

did not cause a problem. Alternative systems for the same task 

exist, such as Player Tracking and Ball Detection for an 

Automatic Tennis Video Annotation [4]. This algorithm 

works in real-time and is able to detect and recognise tennis 

strokes although the detail of human movement is limited. 

People tracking systems conceived for surveillance 

applications already work in real-time without the need to pre-

initialise the background model [5]. Their system constructs a 

background model based on checking the frame-to-frame 

differences. The abilities of the previous algorithm surpass 

many competitors providing the benefit of human tracking. It 

appears as though systems currently developed work in real-

time with little accuracy or with accuracy but offline. Scope 

for improvement still exists in the ability to develop an 

algorithm that works in real-time that does not require long 

background initialisation and has the detail required for 

gesture recognition. These significant advances made by 
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researchers in the past use single lens cameras but this does 

not then provide them with the benefit of depth perception 

Another approach that has emerged in computer vision is 

utilising multiple different cameras provide various 

viewpoints of a scene. Stereoscopic systems such as [6] 

provide the ability for human tracking in natural 

environments. This system uses conventional difference 

checking techniques to determine where motion has occurred 

in a scene. Motion of both cameras combined generates a 

location of a human, including their limbs within a scene. This 

project produced a robust system capable of tracking multiple 

people with the limitation of the environment requiring pre-

setup.   

Multi-lens imagery when set up correctly can have more than 

the advantage of viewing different viewpoints. Two cameras 

set-up at a distance close to that of the intraocular distance 

facing towards the same focal-point provides for stereoscopic 

imagery with the ability to extract a perception of depth. 

Finding out the displacement between matching pixels in the 

two images allows creation of a disparity map. This includes 

the depth information for each pixel viewable by both 

cameras. It is possible to extract and reconstruct 3-D surfaces 

from the depth map [8] [9]. Work conducted into depth 

mapping has improved the clarity of the result [10]. In [11], 

disparity estimation was improved by repairing occlusion. 

This allows for a more realistic depth map as occluded pixels 

are approximated from surrounding data. Processing 

requirements remains the fundamental problem that needs to 

be addressed for successful application in dynamic space in 

real-time. Generation of depth maps for the entire image is not 

currently possible in real-time. Research directed into 

subtracting regions out of an image using different techniques 

to give a smaller image to use for depth map generation. 

In previous work on stereoscopic human tracking, there has 

been multiple cameras set-up around an environment to gather 

information from different angles. There is a large amount of 

information held in just a short distance between cameras, 

evidenced in the subtraction stereo algorithm [12]. Using 

conventional techniques for background subtraction on both 

the right and left image, only the regions of “movement” 

remain. It is possible to generate a disparity map for only the 

relevant section of the image instead of the whole image when 

comparing movement in both images. The disparity then 

allows the extraction of data such as size and location of the 

object detected, which is not available in single view cameras. 

Although this is an improvement on single vision, the original 

proposed algorithm also extracted shadows [13]. In detection 

of pedestrians using subtraction stereo [7], the algorithm was 

expanded to exclude shadow information and a test case was 

put forward for the use of this algorithm in video surveillance. 

A further expansion of this work provided a robust system for 

tracking motion of individual persons between frames [13].  

Camera calibration accounts for a large set of intrinsic 

parameters than alignment. Currently there are two methods 

of achieving this photogrammetric calibration which requires 

a reference object to allow the camera to see how it is 

interpreting the view [14] and self-calibration that 

traditionally can only be used in a static scene causing 

limitations for practical use. Even the most advanced self-

calibration techniques require training within the scene and 

suffer from high computation. In [15] the authors created a 

calibration system that worked on the premise that the rotation 

point of a camera is not the optical centre. However, the 

system created is an accurate calibration method that suffers 

the same as other methods in that it requires high computation 

due to the number of mathematical operations involved. 

Many of the parameters in stereoscopic vision calibration are 

not always required, especially in commercial applications 

replaced with a vital parameter of horizontal and vertical 

alignment. The alignment of the two cameras dictates the 

focal length of a stereoscopic system. Augmented Reality is a 

field of computing highly reliant on real-time computer vision 

where there are multiple users all with different mobile 

devices with a diverse set of camera types. In order to achieve 

high-speed robust vision based algorithms are required that 

work with a reduced set of calibration parameters. In [16] the 

errors introduced by a camera being able to move relative to 

the calibration frame were analysed. In the work produced the 

use of a stereoscopic camera reduces these errors as both 

cameras are subject to the same movements, hence making a 

large proportion of the alignment process unnecessary. The 

work here focuses on the parameter that has the most pull in 

stereoscopic systems the stereo-pair alignment. In previous 

systems, this value is treated as a fixed figure to calibrate the 

cameras for the optimum distance where the largest range of 

disparities are available. However, in our system this 

parameter is flexible based upon the premise of there being a 

specific transferrable region of interest in focus and the rest of 

the image needs to be considered noise. The alignment 

algorithm will adjust the parameter to filter out the 

background leaving the foreground disparities intact.  

3 THE SYSTEM 
The authors’ system previously presented [1] uses 

stereoscopic imagery separated at a distance just below that of 

the intraocular distance. The alignment of the images occurs 

manually through user interaction so that the objects in the 

distance appeared relative to each other in both images. A 

situation where the "line of sight" of both cameras is focused 

on background objects allowing an optimum representation to 

be formed.  

  (1) 

h is the height of the input images. 

w is the width of the input images. 

y is the current row being evaluated. 

x is the current column being evaluated. 

left is the left camera lens input image. 

right is the right camera lens input image. 

On a pixel-by-pixel basis, the differences are calculated as 

shown in equation one, leaving minor lighting variations and 

outlines of objects. The application of an orphan filter 

removes pixels that do not have a significantly strong 

connection (set by a threshold) to any of their horizontal or 

vertical neighbours. The threshold was determined by 

calculating the best fit, in a number of test images the best 

matching threshold range was 109 to 110. Due to lower 

thresholds keeping in more useful information 109 is the 

threshold used. Table 1 shows the valid threshold range for a 

number of different trail images.  The valid neighbours 

(white) of a given pixel (black) are shown in Figure 1. 
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Figure 1: Valid Neighbours 

 (2) 

A is a set of all pixels 

B = {A|A is a neighbour}  

h is the height of the image 

w is the width of the image  

y is the current row being evaluated. 

x is the current column being evaluated. 

t is the threshold 

image is the output result from the difference filter 

The evaluation function is comprised of equation one 

followed by equation two. The returned value is the count of 

valid pixels from two. Therefore, the absolute maximum is h 

multiplied by w and the minimum is zero. 

Through this process, a representation of parallax is formed. 

The knowledge that closer objects have greater parallax than 

distant objects allows filtering of the resultant image to find 

the closest object without a prohibitive computational 

expense.  

Table 1. Calculating the best threshold 

Image 
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sh
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sh

 

Arms open  105 110 

Wall coloured top (low contrast) 109 174 

Dark top (high contrast) 68 203 

Close up 97 178 

Distance (not closest / most prominent) 83 127 

Distance (not closest / not prominent) 164 211 

Average 104 167 

 

Remaining pixels are separated into small regions 

representing portions of the image. These regions are 

clustered together to create larger regions of interest. The 

algorithm developed here runs on a set of images of size VGA 

(640 x 480) at 60fps. The algorithm without the alignment 

process is held back by the limitations of the capture device. 

Here, the alignment process does not infringe upon the 

systems functionality in real-time.  

3.1 The Problem 
The problem with this method is that the alignment values 

vary between different environments that include different 

distance backgrounds. Aligning this manually makes the 

algorithm flawed, as the whole point of computer vision is to 

allow the computer to work independently of human action. 

Analysis of a number of different scenes provides an 

alignment that works often with a given camera. However, the 

algorithm should also work on different cameras and be able 

to cope with varying background distances.  

Alignment should not take place on just the horizontal axis. 

Even though the cameras are separated on the horizontal axis 

and should be aligned on the vertical axis this is not the case 

due to slight calibration problems with the camera. Required 

movement for alignment is smaller on the vertical axis than 

the horizontal. 

3.2 Generating the Search Space 
The image can be analysed and a single value assigned to the 

alignment. The best alignment returns the lowest value when 

most of the scene background is subtracted. The search space 

has global optima with a number of minor local optima. 

Although it is unlikely to fall into a local optimum, the 

possibility exists.  

Images from both cameras are captured and converted to grey-

scale, as at this stage speed is more important than the 

reduction in accuracy brought about by the use of a grey-

scale. The images are aligned in the horizontal and vertical 

axis. The difference is calculated between each pixel in the 

images. At the next stage values that are considered as 

orphans are removed. Orphans are defined in the algorithm as 

a pixel that does not have a strong link, as determined by the 

threshold, to any of the horizontally or vertically connected 

pixels. When a link is present, the output value is 

incremented.  

 

Figure 2: Typical search space 

The typical search space for the alignment process shows 

there is large global optima. This does not exclude the 

possibilities of falling into local optima around the outer 

edges.  
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Figure 3: Raw image data 

Figure 3 shows a top down view of the search space. Darker 

colours indicate a better match than lighter colours. This data 

has not been scaled and is the raw output from the algorithm 

that is indiscriminate of number of pixels. This means when 

the images are overlaid in a way that reduces the size of the 

final output, the value would naturally be less, as there is less 

available brightness in the image. So by scaling and finding a 

percentage of luminosity this problem is avoided. The larger 

white area in the middle is in-between the global (shown in 

green) and primary local optima (red shows the search space 

that leads away from the global optima). 

 

Figure 4: Scaled image data 

Leaving the data un-scaled produces a scenario that 

discriminates against close alignments. If two possible 

alignments exist, e.g. one close and one distant, without 

scaling the value to the number of pixels the distant one could 

possibly be a strong local optima causing a problem for the 

search process. However, by scaling the value relative to the 

amount of pixels in the alignment, distant alignments are no 

longer preferred. A comparison of the top of the images in the 

search space reveals this effect within the raw data. In Figure 

3 the middle is made up of strong hill pushing values into the 

largest local optima. Although scaling does not remove the 

local optima, Figure 4 shows how the scope has been reduces. 

Adding computation to an already slow process is not a 

desirable outcome. However, in this case it has proved to 

reduce the problem of a search space being potentially filled 

with minor local optima caused by image size variations. The 

tests below are in the range (-64) to (+64) in both the 

horizontal and vertical, this is a larger search space than 

would ever be required. Based upon work done to measure 

stereo camera depth accuracy it is known that cameras with a 

low separation distance (less than the intraocular) require less 

alignment and have a closer depth sensitivity [17]. Roughly, 

zero to 5% of the image size on the horizontal and ±2% on the 

vertical alignment would cover a wide range of medium 

resolution cameras with low separation distance. For VGA 

cameras this translates to a search space of (-10) to (+10) on 

the vertical axis and (0) to (30) on the horizontal axis.  

In comparison, scaling the data on the test alignment proved 

less resource hungry than anticipated, utilising 0.31 seconds 

extra processing capacity for an exhaustive search, which is an 

increase of approximately 3% of the overall computation 

expense.  

Table 2. Raw and scaled search space comparison 

Test Raw data Scaled data 

1 10.673 10.979 

2 10.761 11.044 

3 10.736 11.061 

4 10.746 11.034 

5 10.692 11.044 

Average 10.722 11.032 

Std. Dev. 0.033 0.028 

 

Figures 5 and 6 show the local optima produced when a 

person is in the scene during the alignment process. The 

global optimum is shadowed by how much search space drops 

into the local optima. Figure 5 shows the space before scaling 

the data. Noticeably the local optimum is far more evident and 

search methods have more chance of finding local rather than 

global optimum. This image is generated beyond the normal 

alignment constraints to show the possible extent of the 

problem.  

 

Figure 5: Un-scaled local optima 
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Figure 6: Scaled local optima 

Although Figure 6 shows that scaling does not solve the 

problem entirely, the significance of the local optima is 

minimal in comparison. Search methods have a greater chance 

of escaping these optima, as it is less prominent than the non-

scaled version. It is important to note that this is a worst case 

scenario for the algorithm as a search space like this was only 

detected under certain lighting conditions with the person in 

question covering most of the background objects. 

In a typical search space, generated local optima rarely occur 

in pictures where the alignment process is allowed to take 

place without a person present in the scene. Although being a 

realistic constraint it is impractical to try to avoid the 

possibility of local optima. The search methodology needs to 

be able to escape local optima. Metaheuristic techniques such 

as Simulated Annealing (SA) [18] and Tabu Search [19] are 

over complex and impose extra processing requirements. 

Instead, by analysing the results so far and the large extent of 

the global optima, a simpler solution, inspired by SA, was 

devised.  

3.3 Original Solution 
Normal hill climbing will be used when entering the algorithm 

based upon a best-fit starting alignment. When finding optima 

a new random starting position is generated, just as with SA. 

However, unlike SA, this new position will be analysed based 

on distance from the current best optima. The distance is 

measured using the Manhattan formula as diagonal moves are 

not valid steps so further precision is not required. Hill 

climbing is now run again and the best out of the two results 

will be returned. Due to the regularity of local optima in the 

search space, this search method is more than adequate to 

ensure the best possible alignment at a reasonable 

computational expense. 

Algorithm: 

1. Capture the left and right input images 

2. Start at average best alignment position 

3. Preform Hill Climbing to find optima 

4. Save the match 

5. Pick a random starting point 

6. Preform Hill Climbing to find optima 

7. Compare new match with previous result 

8. Return best match 

Hill climbing: 

1. Evaluate position 

2. Evaluate neighbours 

3. Move to best neighbour 

4. While improved go to 2 

5. Return best match 

Evaluate: 

1. Using alignment preform difference filter 

2. Remove orphan data 

3. Count the remaining number of pixels 

Here, alignment constraints were enforced as discussed 

earlier, the values were scaled and the test always started with 

the first pass hitting local optima. One hundred per cent of the 

passes under these conditions succeeded to find the global 

optima at significantly lower computational expense than an 

exhaustive search as shown in Table 3 and Table 4 where 

computational expense is measured in intervals. In all further 

tests, the global alignment was detected successfully where 

the background model was sufficiently visible. The largest 

portion of the image should be predominantly background 

rather than foreground objects.  

Table 3. Exhaustive test images output 

Test 

Exhaustive Search 

1 2 3 Average 

1 1043 1052 1090 1061.67 

2 1047 1046 1040 1044.33 

3 1054 1073 1041 1056.00 

 

Table 4. Algorithm test images output 

Test 

Algorithm 

1 2 3 Average 

1 118 77 115 103.33 

2 83 82 97 87.33 

3 117 80 86 94.33 

3.4 Improved Solution 
The previously proposed solution has one realistic constraint. 

One frame for the alignment process had to be taken in a 

vacant scene. This posed no problem upon system start-up but 

did cause problems if a subsequent calibration was required 

when the scene was occupied. 

The solution to this problem is simple. A person in the scene 

should never be close enough to occupy the whole 

environment. They should approximately only occupy a 

maximum of about a third. This means that the image can be 

sliced in thirds along the horizontal axis. To account for the 

freedom of movement in the camera set-up the image should 

also be sliced along the vertical axis into three sections. In 

total, this creates nine small regions across the image as 

shown in Figure 7. Only two regions detect the person, seven 

show unclouded background. 



International Journal of Computer Applications (0975 – 8887) 
Volume 81 – No 19, November 2013 

12 

 

Figure 7: Split image 

Algorithm: 

1. Capture left and right input images 

2. Start at average best alignment position 

3. Preform Evaluation 

4. Generate smaller images from worst region 

5. Preform Hill Climbing to find optima 

6. Save the match 

7. Pick a random starting alignment 

8. Preform Evaluation 

9. Pick a region that is not on the same horizontal or 

vertical space on the grid. 

10. Preform Hill Climbing to find optima 

11. Final check (explained later) 

12. Compare new match with 

previous result 

13. Return best match 

Evaluation: 

1. Preform difference filter 

2. Preform orphan filter 

3. Group data 

4. Return lowest scoring region 

Hill climbing: 

1. Evaluate position 

2. Evaluate neighbours 

3. Move to best neighbour 

4. While improved go to 2 

5. Return best match 

Evaluate: 

1. Using alignment preform difference filter 

2. Remove orphan data 

3. Count the remaining number of pixels 

Figure 7 shows how algorithm step nine works. The first 

region analysed is shown in black. The regions that are not 

valid for the next step of the analysis are shown in gray. The 

remaining four regions are valid for selection. The one that 

evaluates to the lowest out of these four is selected for further 

analysis. 

 

Figure 8: Valid second regions 

If the same result is generated as the first step then that value 

is returned. Otherwise, a final step is initialised (step 11 in the 

algorithm). In the worst cases were a local optima has been 

detected in either of the initial inputs, the selection process 

runs again. This time the new analysis cell is filtered out. In 

this Figure 9, it is shown with black, with horizontal and 

verticals shown in grey along with previously analysed or 

discounted regions. There is only one cell left for analysis. In 

most cases, this step will not be performed. It is only run if 

there is a small difference in the alignment values of a pixel or 

two, as the human would be assumed to be in focus in one of 

the regions. 

 

Figure 9: Valid third regions 

Although there are multiple extra steps in the improved 

algorithm, computationally it is less expensive. Only focusing 

on a small region in the image allows the evaluation function 

to preform quicker compensating for the extra steps. 

ComparingTable 5 and 4, it is evident that the algorithm not 

only works in a larger range of environments but also 

preforms alignment quicker. 

Table 5. Improved algorithm test images output 

Image 

New 

1 2 3 Average 

20120305104735 71 66 59 60.33 

20120305105249 84 59 76 71.00 

20120305104447 33 40 70 71.00 
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4 CONCLUSION AND FURTHER 

WORK 
The solution provided here shows that the authors’ previous 

human detection algorithm through stereoscopic cameras has 

potential for utilisation outside of a preconfigured 

environment. The algorithm developed is robust against noise 

in the input images due to the orphan filter being performed 

after the initial alignment process. This filters out pixels that 

would otherwise be passed through from background noise or 

minor lighting errors. Only using one input frame from each 

of the input lenses taken almost simultaneously allows for the 

lighting independent alignment algorithm. Lighting changes 

will be the same in both the left and right footage as they are 

taken almost simultaneously 

The alignment process was previously capable of preforming 

at 10fps. Improvements made on the algorithm increased the 

alignment on the same image to 16fps. That is a substantial 

increase in processing speed. However, the alignment process 

is only required when a significant change of environment is 

detected. For example, a significant change would be moving 

outdoors, indoors, to a different room or change in the focal 

distance of background. It is anticipated that large portions of 

the alignment computation will be moved to the graphical 

processing unit (GPU). For example, the difference check is a 

part of the algorithm that could move over to the GPU 

seamlessly resulting in a slight increase in the speed of the 

algorithm.  

Higher resolution stereoscopic cameras potentially create an 

environment where local optimum exists in greater quantities 

with higher distribution throughout the search space. The 

solution proposed here works well with commercial 

stereoscopic webcams of both QVGA (320 x 240) to VGA 

quality. Further optimisation techniques may be necessary for 

higher resolution cameras, as a larger alignment search space 

would be required. 

The previously proposed alignment algorithm required tests 

on both live and still images show that the alignment process 

works as expected when background is predominantly visible 

with only partial occlusion from foreground objects. A person 

can be visible in the scene as the algorithm is capable of 

releasing from local optima. However, it is preferable for the 

first frame of a scene to be unoccupied. This need to have an 

unoccupied scene is common in computer vision with popular 

techniques such as Pfinder [2] requiring relatively long 

initialisations of a second or more. Although there was 

nothing wrong with this requirement, it could potentially 

cause problems when alignment was necessary during runtime 

and the scene was occupied. The improved solution in this 

paper has provided liberation from this constrain with the 

algorithm being able to handle partial background occlusion. 

The alignment algorithm has proven to be successful allowing 

non-calibrated cameras to be utilised in real-time within a 

natural environment. 
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