
International Journal of Computer Applications (0975 – 8887)
Volume 81– No.19, November 2013

1

A Genetic Algorithm based Solution to the Teaching
Assignment Problem

Ian David Wilson
University of South Wales

Department of Computing and
Mathematical Sciences

CF37 1DL

Ross Davies
University of South Wales

Department of Computing and
Mathematical Sciences

CF37 1DL

Nigel Stanton
University of South Wales

Department of Computing and
Mathematical Sciences

CF37 1DL

ABSTRACT
Allocation of educators to diverse and rapidly evolving
educational programmes of study such as those within
Computing and under increasingly tighter budgetary
constraints is a non-trivial task. Suitability and availability of
expertise coupled with a need to limit disruption to existing
teaching assignments can often result in first fit solutions that
are less than optimal in terms of suitability. This system is
highly sensitive to even small changes, which ripple out
through assignments and make it a difficult problem for
solution. This paper presents a methodology for profiling
programmes of study and, by association, educator expertise
that provides a basis for exploring a large number of potential
teaching assignments utilising a genetic algorithm. The
teaching assignment problem is exponential in problem size
and is combinatorially large. Here, a genetic algorithm
implementation generates teaching assignments and informs
management decision making for continuity planning. The
process rapidly achieved very good solutions to a difficult
problem, informed scheduling for the coming academic year
and determined the acquisition of educators from other areas
where local expertise was insufficient for needs.

General Terms
Automated Teaching Assignment

Keywords
Genetic Algorithm, Heuristic, Teaching Assignment,
Combinatorial Optimisation

1. INTRODUCTION
The research presented here utilises a procedure that makes
use of movement of educators between units (where a given
unit constitutes 5 ECTS credits) in order to find a best fit of
skills and balanced loading in terms of units assigned to
educators with a minimum of disruption to assignments
carried forward from the previous academic year.

The task of fairly and effectively assigning academic staff
(educators) to programmes (units) of study in response to
situation changes is difficult in terms of complexity, technical
constraints and the human cost of changes to educator
workloads. In practice, simplistic heuristic approaches that
can amount to first-fit arise, often with imbalances in terms of
the equity of workloads following. Here, it may be the case
that those who have, receive more, and those who have not,
receive even less, as work gravitates to those more willing
and/or able to help. Those more used to responding to change
develop technical skill sets that are current and widely
applicable along with a capacity for adapting drawn from
strong foundations derived from a range of experiences whilst
those with more stable assignments can become entrenched
within increasingly narrow elements of the curriculum.

Demands for technical currency and marketable products
within curriculums leads to increases in specialised content
against the uncertainty of continued course attractiveness and
downsizing of departments. Modelling of teaching
assignments as a combinatorial problem offers opportunity for
assessment of the impact of situational modifiers such as:
curriculum development; redundancies; retirements; sickness;
varying interest in topics; rationalisation of content; and the
cost of specialism over generalism within the curriculum.

This paper outlines a teaching assignment methodology and
associated algorithm developed, implemented and utilised
within a moderately large Computing department. An
extensive knowledge elicitation exercise resulted in unit and
educator profiling. The generated profiles formed the basis for
resolving teacher assignment as a combinatorial optimisation
problem. Generated solutions informed teaching assignments,
highlighted areas of deficiencies of coverage of subject areas
and informed rationalisation of the curriculum.

The paper is organised as follows. Section 2 introduces the
problem in terms of its complexity. Section 3 elaborates upon
the assignment problem and explains the underlying
methodology. Section 4 outlines the genetic algorithm, with
particular reference to the body of research presented in this
paper. Section 5 presents computational experiments and
section 6 offers concluding remarks.

2. PROBLEM SIZE AND COMPLEXITY
Here, each of n discrete units can be assigned p candidate
educators with the required knowledge to deliver that unit.
This results in a theoretical upper limit of approximately pn

distinct configurations, although this is reduced significantly
in practice as not all educators can deliver all units and the
number of times an educator can occur in the list is
constrained; the assumption being that some of these
configurations will provide a better fit than the original.

Finding an optimal configuration by means of an exhaustive
search is, however, not practical for realistic values of n and p
given the qualitative process associated with evaluating
solutions. Hence, the presented assignment problem is a large
combinatorial problem, the size of which depends upon the
number of units and the occurrence of educator assignments.

3. ASSIGNMENT MODELLING
In this section, considerations relating to the teaching
assignment model are described, an overview of the model’s
underlying representation and physical implementation is
provided and the objective function is defined.

3.1 State Representation
Determining an assignment of educators for a large
department is a difficult problem that requires qualitative

International Journal of Computer Applications (0975 – 8887)
Volume 81– No.19, November 2013

2

decisions on the part of the resource allocator. However, the
size of the problem, and hence the number of configurations
that require consideration, can be reduced by heuristically
dividing the representation into discrete teaching units and
associated educators.

Here, each unit of study has its own list of acceptable
educators that fit the profile for delivering a particular unit,
some of which are fixed by circumstances to a given
individual. This representation provides a set of acceptable
allocations for each unit (expanded upon in section 4.1).

3.2 Unit and Educator Profiling
The Computing Curriculum 2005 [1] subject area taxonomy
and later, derived, refinements formed the basis for the model
developed in support of the teaching assignment problem to
provide a common framework within which units are
classified and clustered.

The separation of computing into five subject areas within the
Computing Curricula 2005 document best fits local
circumstances. The existing separation of computing into
these subject areas greatly facilitated the profiling of units of
study. The following sections outline the developed taxonomy
for profiling units and educators.

3.2.1 Overarching Taxonomy
The presented taxonomy has four broad subject areas that
encompass thirteen knowledge areas and three course
specialisations, outlined below:
 Soft Skills (SS), outlined in Table 1, is divided into three

classes: Social and Professional Skills (SP), Information
Systems (IS) and Project Management (PM);

 Information Technology (IT), outlined in Table 2, is
divided into three classes: Architecture (AR), Operating
Systems (OS) and Network Centric Computing (NC).

 Application Development (AP), outlined in Table 3, is
grouped into four subdivisions: Programming
Fundamentals (PF), Software Engineering (SE),
Information Engineering (IE) and Interface Design (HC).

 Computer Science (CS), outlined in Table 4, is grouped
into three subdivisions: Graphics and Visual Computing
(GV), Algorithms and Complexity (AL) and Intelligent
Computer Systems (IC);

 Computer Forensics (CF) is treated as a special case,
with particular expertise in the use of domain specific
tools required as opposed to their actual development;

 Computer Security (SC) and Computer Games
Development (GD) are also treated as special cases so as
to associate educators with particular domain specific
experience with cohorts and promote a better student
experience while allowing for generic coverage of related
content throughout the curriculum as a whole.

Table 1. Soft Skills indicative topics.

Knowledge Examples

Social and
Professional

Social Context, Ethics, Risk, Security,
Intellectual Property, Privacy, Computer Law,
Computer Crime, Economics of Computing

Information
Systems

Business Areas, Business Information
Requirements, Business Models,
Organisations, Systems Theory and Practice,
E-Commerce

Project
Management

Project Management, Information Systems
Management, Risk Management, Security
Management, Operational Management,
Business Planning, Accounting

Table 2. Information Technology indicative topics.

Knowledge Examples

Architecture
Architecture and Organisation, I/O, Memory,
Multiprocessing, Performance, Distributed
Architectures

Operating
Systems

Operating Systems, Concurrency, Scheduling,
Management, File Systems, Security, Digital
Forensics

Network
Centric

Computing

Networks, Communication, Security, Web
Organisation, Networked Applications,
Multimedia Technologies, Mobile Computing

Table 3. Application Development indicative topics.

Knowledge Examples

Programming
Fundamentals

Algorithmic Problem Solving, Data Structures,
Recursion, Object Oriented Programming,
Scripting, Security

Software
Engineering

Design, APIs, Tools, Processes,
Environments, Requirements Specification,
Verification, Validation, Evolution

Information
Engineering

Design, Data Modelling, Transaction
Processing, Databases, GIS, Query Languages,
Distributed Databases, Data-mining,
Hypermedia and Multimedia

Interface
Design

HCI, GUI Design, GUI Programming, 3D
Modelling, Animation, Multimedia,
Multimodal Systems

Table 4. Computer Science indicative topics.

Knowledge Examples

Graphics and
Visualisation

Graphics Systems, Rendering, Geometric
Modelling, Animation, Geometry, Games
Engine Programming

Algorithms
and

Complexity

Complexity, Basic Analysis, Strategies,
Fundamental Algorithms, Parallel Algorithms

Intelligent
Computer
Systems

Intelligent Computer Systems, Knowledge
Based Reasoning, Agents, Machine Learning,
Data-mining, Planning

3.2.2 Unit Profiling
The department associated with this body of research offers
167 units of study at the time of writing, divided amongst four
subject areas. These units are distributed across five diplomas
(EHEA short cycle), eight bachelors (1st cycle) and six master
(2nd cycle) courses encompassing EQF levels 3 through 7. For
the approach to work effectively, each of these units required
assignment of values to knowledge areas with further
specialisation by course. These approximate to the
understanding required to deliver a unit effectively.

International Journal of Computer Applications (0975 – 8887)
Volume 81– No.19, November 2013

3

Initially, knowledge areas required by a unit were assigned
their credit level as a value, although this was later refined to
map to approximate coverage of the indicative topics shown
in tables 1-4. This is not to say that educators do not require
knowledge in other areas. Rather, the methodology deals in
unit learning outcomes and assumes that all educators have
fundamental knowledge spanning other subject areas. Table 5
provides indicative example mappings that reflect local
delivery within the presented methodology.

Table 5. Indicative examples of unit profiles.

U
ni

t

C
om

p.
 S

ys
. &

N
et

w
or

ks

C
om

pu
te

r
G

ra
ph

ic
s

IS
 M

an
ag

em
en

t

E
th

ic
al

 H
ac

ki
ng

In
fo

rm
at

io
n

E
ng

in
ee

ri
ng

EQF 4 5 6 6 4

SP 0 0 3 3 0

IS 0 0 6 0 4

PM 0 0 6 3 4

AR 5 3 0 5 0

OS 5 3 0 6 0

NC 5 0 0 4 0

PF 0 5 0 5 3

SE 0 5 0 0 0

IE 0 0 0 0 4

HC 0 0 0 0 0

GV 0 5 0 0 0

AL 0 4 0 0 0

IC 0 0 0 0 0

CF 0 0 0 0 0

SC 0 0 0 6 0

GD 0 5 0 0 0

Here, Computer Systems & Network Technologies at level 4,
shown in the first row of Table 5, is strongly related to IT
within the taxonomy and requires knowledge of architectures,
operating systems and computer networks. In contrast,
Computer Graphics at level 5 requires knowledge of
information technology, programming and computer science,
with an emphasis on computer games; IS Management
focuses on soft skills; Ethical Hacking requires knowledge of
soft skills, information technology and programming; and
Information Engineering introduces soft skills and
programming, with an emphasis on information systems and
databases. The heuristic nature of the approach obviates the
need for a perfect scoring system, which is important given
that individual academics can easily differ on the detail while
broadly agreeing on generalities. In other words, the problem
lends itself well to resolution using heuristics.

3.2.3 Educator Profiling
A system for profiling educators was required once all units of
study were given measures of understanding within the
taxonomy. Initial educator profiles were derived by
algorithmically finding the highest measure of understanding
delivered by that educator (illustrated in Table 6).

Table 6. An example of an educator’s derived profile.

U
ni

t

A
pp

li
ca

ti
on

s
of

 A
I

In
fo

rm
at

io
n

S
ys

.

C
+

+
P

ro
gr

am
m

in
g

D
at

a
S

tr
uc

tu
re

s

P
ro

fi
le

EQF 4 3 4 7 -

SP 3 3 0 3 3

IS 3 3 0 0 3

PM 3 3 0 0 3

AR 3 3 3 0 3

OS 3 3 3 0 3

NC 3 3 0 0 3

PF 6 3 5 6 6

SE 0 3 4 4 4

IE 3 3 0 0 3

HC 0 0 0 0 0

GV 3 0 0 0 3

AL 5 0 4 6 6

IC 6 3 0 0 6

CF 0 3 0 0 3

SC 0 3 0 0 3

GD 6 0 5 0 6

However, this in itself is insufficient for purposes as it limits
educators to profiles that cover their existing assignments,
which may not adequately express their expertise or areas that
they may want to grow into with suitable staff development.
All staff specified all units of study that they would, could and
could not deliver.

This approach allowed for the addition of units that each
educator could deliver to those currently delivered and the
production of a tabled populated with meaningful measures
against each knowledge area along with a specified target
number of units for assignment to that educator. Here, pro rata
to their contracted teaching responsibility, lecturers receive
five units, principal lecturers/readers receive four units and
others receive three units.

Profiling educators in terms of units of study provides
boundaries within which educators can be moved. For
example, educators with strong IT profiles will tend towards
being allocated to units of study within the IT subject area.
Algorithmically determining a list of educators with the
minimum profile required for delivering each unit of study is
both useful in terms of informing the search process
documented here and in terms of highlighting where unit
delivery is at risk due to a lack of knowledge area expertise
within the staff pool. Allocating educators that closely match
required knowledge retains expertise within the deployment
pool for later assignment with the result that strong generalists
tend to be allocated last, being defined as highly regarded
‘sweepers’ by management.

An additional, special, educator entitled ‘Other, A.N.’ has
zero against each knowledge area and permitted number of
assignments. All unassigned modules are initially associated
with this individual. Punitive costs for exceeding the final

International Journal of Computer Applications (0975 – 8887)
Volume 81– No.19, November 2013

4

target assignment of zero units directs search towards early
solutions that minimizes assignments against ‘Other, A.N.’
with further manipulation following. The next section
provides further detail on generation of solutions.

4. GENETIC ALGORITHM SOLUTION
Given the scale of the problem and its solution by heuristic
processes applied by management introduced to the reader in
the previous sections, this section provides an overview of a
genetic algorithm and the solution methodology adopted.
Genetic algorithms [2, 3] are adaptive search methods used to
solve optimisation problems. They mimic the genetic process
of evolution within biological organisms by means of natural
selection and adaption. A GA is able to ‘evolve’ solutions to
real worlds by mimicking this process [4]. Its widespread use
evidences both the adaptability and efficiency of the
approach, with it having been successfully applied to obtain
optimal and near optimal solutions to such problems as
scheduling [5], timetabling [6], frequency assignment [7],
attribute selection [8] and layout optimisation [9].

Solutions are evolved by means of a genome (or structure of
the problem, where a single instance represents a solution to
the problem) and a genetic algorithm (the procedure utilised
to control how evolution takes place). The GA makes use of
operators applied to the genome and selection/replacement
strategies controlled by the genetic algorithm that generate
new, ideally better, individuals. The GA utilises an objective
function to determine how fit each of the genomes is for
survival. Given a choice of GA, the following outlines three
components required to solve a problem:

 The structure of the problem must be defined and a
representation for the genome determined;

 Given the genome, define suitable generic operators;

 Using the genome, define an objective function that
measures the relative quality of a solution.

In summary, when using a GA to solve an optimisation
problem, a combination of a series of variables within a
genome provides a single solution to the problem. The GA
creates a population of genomes from which to select parents
for reproduction and evolution through the application of
selection, crossover and mutation. Here, fitter parents tend to
be selected more often for recombination utilising a crossover
operator where elements from each parent are put together to
create offspring. The tendency for selection of fitter parents
intensifies search around more promising areas. The
application of a mutation operator on small parts of an
offspring has the effect of diversifying the search into other
areas by promoting genetic diversity within the population.
The GA operates on each generation of the population to
evolve an optimum, or near optimum, solution to the problem
measured by the objective function. The following sections
expand on each of these components.

4.1 The Genome
A good data structure for a genome is both minimal and
completely representative. For example, if a real value and a
number of integers can represent a solution to a problem, then
the definition of the genome’s data structure utilises these
characteristics. The representation should not include any
information other than what is required to express a solution
to the problem. Additional data structures called alleles
provide ranges of acceptable values for each constituent part
of the genome. Here, each element of the genome, or gene,
maps to an individual unit populated by an integer taken from

predetermined and separate pools of educators with the
appropriate background for delivery. Finally, each genome
has a ‘fitness’ score associated with it that determines its
prospects for selection.

4.2 The Genome Operators
Initialisation, mutation and crossover operators allow for a
particular population bias, recombination of parents and
mutations specific to the problem representation. An
initialisation operator ‘filled’ each gene with a randomly
selected member of its corresponding allele to provide ninety
percent of a starting population of diverse allocations from
which to evolve a final solution. The genomes making up the
remainder of the population map to the allocation rolled
forward from the previous academic year to help minimise
disruption to existing allocations, which are inherently
sensible and useful for determining future assignments.

The crossover operator defines the procedure for generating a
child from two parent genomes. The crossover operator
produces new individuals as ‘offspring’, which share some
features taken from each ‘parent’. Here, two-point crossover
is utilised, which is to say that a set of genes with random start
and end points taken from within the genome are crossed over
between parents to form two offspring.

Finally, the mutation operator defines the procedure for
mutating the genome. Mutation, when applied to a child,
randomly alters a gene with a small probability. This provides
a mechanism for (re)introducing genetic diversity into the
population and helps prevent convergence around a local
optimum. Here, the mutation operator replaces a gene with a
randomly selected member of its allele set.

4.3 Objective Function and Scaling
The success of any optimisation problem rests upon its
objective function, the purpose of which is to measure relative
solution quality. The objective function used here works by
calculating and summing the costs associated with the
assignment of educators to units of study within the state
representation.

The quality of a given configuration is an abstraction of the
fitness of individuals to deliver units of study, balanced
workload, minimising change to established assignments and
ensuring mixed delivery teams in cases where a programme of
study encompasses 10 ECTS credits. Suitable candidates for
delivery of each unit are determined prior to commencing the
search process so as to identify the neighbourhood of a given
solution quickly at run-time.

4.3.1 Solution Evaluation
The objective function used to evaluate teaching assignment
solutions requires a number of definitions that model the
problem’s underlying structure, specifically:

 EOi = 90 if unit i is part of a larger module delivered by
the same educator else 0;

 COij = 1 if the educator j assigned to a unit i differs from
the original else 0;

 SOi = the sum of skills assigned to a unit i above that
necessary for delivery;

 LOij = 1 if educator j is assigned to unit i else 0;

 Γ is a 1D matrix of educator assignment change scaling
factors;

International Journal of Computer Applications (0975 – 8887)
Volume 81– No.19, November 2013

5

 Α is a 2D matrix of educator under and over assignment
scaling factors;

 LEj is the target number of assignments for educator j;

 n is the number of units of study;

 p is the number of educators;

4.3.2 Objective Function
The objective function examines the weighted relationship of
assignments. The general expression of the objective function
is shown in (1). Here fi and wi represent, respectively, a
function that measures an aspect of the overall quality of a
solution and the weight of that particular measure, with a low
value of f0(s) indicating a good solution.

(1)

The first term f1 given in (2) penalises a solution where the
same educator delivers multiple units that are part of the same
programme of study (module). This is a management priority
given the typically large size of modules (10 ECTS credits).

(2)

The second term f2 given in (3) counts the changes made to
each educator’s assignment and sums a scaled product of each
count. Here, minimising the number of changes made to an
educator’s assignment will minimise stress, with large
changes incurring broadly geometric increases in cost.

(3)

The matrix Γ is given in (4) below.

Γ = 0 8 16 32 64 128 256 512 1024 2048 4096 (4)

The third term f3 given in (5) sums the over-skilling of
educator to unit assignments. Here, minimising excess skill
assignments to units retains expertise within the educator pool
for assignment elsewhere.

(5)

The last term f4 given in (6) counts the number of assignments
given to an educator and sums a scaled product of each count
that is proportional to the maximum number of assignments
that a given educator can be given. Here, under or over-
assignment will be penalised, with larger values incurring
broadly geometric increases in cost.

(6)

Here, the two-dimensional matrix Α is populated with costs
that are proportionate to the target number of assignments,
which range from 0 to 5. Costs are punitive for all rows
beyond column 10, with only the first row (associated with
‘Other, A.N.’) having values that are used in practice.
Penalties for over-assignment are higher, for example, for a
reader or a part-time educator than for a lecturer. The matrix
values for the first ten columns of each row of the matrix are
shown in (7), with further extrapolation being an easy matter.

Α =

0 256 512 1024 2048 2100 2200 2300 2400 2500 2600

(7)

0 128 256 512 1024 2048 2100 2200 2300 2400 2500

0 64 128 256 512 1024 2048 2100 2200 2300 2400

0 32 64 128 256 512 1024 2048 2100 2200 2300

0 16 32 64 128 256 512 1024 2048 2100 2200

0 8 16 32 64 128 256 512 1024 2048 2100

Genetic algorithms are often more attractive than gradient
search methods because they do not require complicated
differential equations or a smooth search space. The genetic
algorithm needs only a relative measure of genome fitness.
The objective function provides this, needing only a genome,
or solution, and genome specific instructions for assigning
and returning a measure of the solution's quality. The
objective score is the raw value returned by the objective
function. The fitness score is the possibly transformed
objective score used by the genetic algorithm to determine the
fitness of individuals for mating.

n

o

of

n

j
j

ii
0

(8)

Sigma Truncation [4] incorporates problem dependent
information into the mapping. Here, (8) transforms objective
scores (o) into fitness values (f) utilised for selection, where n
is the population size and is its standard deviation.

4.4 The Genetic Algorithm
The Genetic Algorithm initialises the population, determines
which individuals should survive, which should reproduce and
which should die. At each generation, individuals selected as
candidates for parenthood combine elements from each parent
to produce offspring. Offspring may then undergo mutation.
Insertion of offspring into a population together forms the set
of potential parents for the next generation. Evolution
terminates upon meeting a given condition, such as a fixed
number of generations, fitness of the best solution, population
convergence, or any problem specific criterion.

Of the variations of GA, the work presented in this paper
utilised a derivation of the Steady State GA [10]. This GA
uses overlapping populations with a pre-specified amount of
overlap (expressed here as a percentage). At each generation,
the GA creates a temporary population of new individuals
utilising roulette wheel selection [4], adds these to the
previous population and then removes weaker individuals
sufficient to return the population to its original size.
Evolution ends when the best individual’s fitness divided by
the population mean is greater than the desired ratio, at which
point population diversity is such that further generations
amount to little more than a random walk.

5. COMPUTATIONAL EXPERIMENTS
The genetic algorithm, implemented in C++ under Windows
7, ran on an AMD Bulldozer FX-8 (8x3.1 GHz) with 8
MegaBytes of RAM. Experiments utilised a dataset with 167
deliverable units spanning levels 3 through 7 and 45
educators. Algorithm parameters for the results presented in
this paper were determined empirically and set as follows: w1,
9000.0; w2, 20.0; w3, 2.0; w4, 4.0; mutation, 0.03; population
size, 250; population overlap, 0.1; and ratio, 0.95.

f0 s() = f1 ×w1() + f2 ×w2() + f3 ×w3() + f4 ×w4()

f1 = EOi
i=0

n

∑

f2 = Γ COiji
i=0

n

∑

j=0

p

∑

f3 = SOi
i=0

n

∑

f4 = Α LOij − LEi
i

n

∑

j=0

m

∑

International Journal of Computer Applications (0975 – 8887)
Volume 81– No.19, November 2013

6

Fig. 1 presents the fitness of the best individual at 10-
generation increments. Here, the cost of the first 50 generated
solutions falls rapidly as unassigned units are distributed and
existing assignments adjusted to accommodate the new units.
As the algorithm is first encouraged to make these
assignments, scores are disproportionately large until only a
few of these assignments remain. Consequently, the graph
does not show early generation fitness scores.

	
Fig 1: Generational Fitness Scores.

Here, evolution continues for 5300 generations, meaning that
the algorithm evaluates upwards of 182000 solutions. Un-
optimised execution time amounts to minutes.

The solution makes 34 new assignments across 20 educators,
with 2 new units allocated to 3 educators and more than 2
allocated to one new member of staff, and with 19 existing
allocations moved. Lack of provision in some areas resulted in
outsourcing to colleagues within Law, Business and Science.

6. CONCLUSION
The method resulted in an applicable solution to a problem
where a combination of voluntary severance, retirement,
replacement and additional units of study required the
assignment of 18 vacant units while minimising disruption to
existing staff assignments. The solution formed the plan for
the coming academic year, but within a small fraction of
management time normally attributed. The solution
highlighted skill shortages and informed strategies for filling
these gaps. The plan elicited approximately one sixth of the
change requests delivered in the previous year.

The approach translated well to the development of
heuristically determined solutions to the teaching assignment
problem, specifically that:

 The GA’s intensification and diversification strategies
allowed for an effective search of the problem space
before ultimately converging around a good solution;

 Sensitivity to the starting point by the introduction of a
number of starting points into the population that had
been derived from the previous year’s allocation helped
mitigate against overly different solutions and the
overheads of varying educator workloads;

 The definition of good allele structures is particularly
helpful in this context given the profiled relationships
between educators and units;

 The problem itself does not require continuous
optimisation, i.e. the periodically generated solutions can
be adapted through the manipulation of parameters.

The process has informed management decision making for
continuity planning, facilitated scheduling for the coming
academic year and informed the process of staff acquisition
from other areas where local expertise was insufficient for
needs. Although the provision of specific results is
problematic given the volume of data and the confidential
nature of educator profiles, this paper has described the
process by which teaching assignment solutions are
determined in sufficient detail for replication within other
computer science departments.

7. REFERENCES
[1] The Joint Taskforce for Computing Curricula 2005.

Computing Curricula 2005. ACM & IEEE., ISBN: 1-
59593-359-X.

[2] Holland, J. H. 1975. Adaption in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor.

[3] Turing, A. P. 1948. Intelligent Machinery in:
Cybernetics: Key Papers 1968. eds Evans, C. R. and
Robertson A.D.J., University Park Press.

[4] Golberg, D. E. 1989. Genetic Algorithms in search,
optimization and machine learning. Addison-Wesley.

[5] Hou, E.S.H, Ansari, N. and Ren, H. 1994. A genetic
algorithm for multiprocessor scheduling. Parallel and
Distributed Systems, IEEE Transactions on, 5(2), 113-
120.

[6] Aickelin, U. and Dowsland, K.A. 2004. An indirect
genetic algorithm for a nurse-scheduling problem.
Computers & Operations Research, 31(5), 761-778.

[7] Valenzuela, C, Hurley, S. and Smith, D. 1998. A
permutation based genetic algorithm for minimum span
frequency assignment. In: Parallel Problem Solving from
Nature-PPSN V, Springer Berlin Heidelberg, 907-916.

[8] Wilson, I.D., Jones, A.J., Jenkins, D.H. and Ware, J.A.,
2005.Predicting housing value: genetic algorithm
attribute selection and dependence modelling utilising
the Gamma Test. Adv. in Econometrics 19, 243-275.

[9] Wilson, I.D., Ware, J.M. and Ware J.A., 2003. A genetic
algorithm approach to cartographic map generalization.
Computers in Industry 52(3), 291-304.

[10] DeJong, K.A. and Sarma, J. 1993. Generation gaps
revisited, Foundations of genetic algorithms 2, D.
Whitley, ed. Morgan-Kaufmann, 19-28.

IJCATM: www.ijcaonline.org

