
International Journal of Computer Applications (0975 – 8887)

Volume 81 – No 17, November 2013

1

Fractals with Variable Scaling Factors using IFS

B Dinesh Rao

Associate Professor
SOIS, Manipal

Manipal University

ShridharNayak
Assistant Professor (Sel grade)

SOIS, Manipal
Manipal University

Sathyendranath Malli
Assistant Professor (Sel grade)

SOIS, Manipal
Manipal University

ABSTRACT

Fractals are self-similar images. There are many techniques

for generating fractals. IFS [1] are one of them. IFS use a set

of linear transformations for generation of fractals. IFS have

been modified to difference based IFS[2] to use differences in

distance between the points to figure out the new point. We

propose a method of modifying IFS such that variable scaling

factors can be used in transforms for generating pleasant

looking fractals. Fractals with variable scaling factors have

been developed as a function of distance from the fixed

points.

Keywords

Difference, Variable, Fractal, IFS, Scaling

1. INTRODUCTION
The use of a system of affine transforms to define a fractal

object has been described by Barnsley [3]. A system of

transforms Wi can be written as

Wi: Z  TiZ + Vi

Where

T = a b V = e

 c d f

and

Z = x

 y

That is if Z = x

 y

then x = ax + by +e

 y = cx + dy + f

The set of transforms need to be contractive and there exists a

unique attractor set containing infinitely many points Z. For

graphical purposes we say that there is a fixed set of pixels

which approximate this attractor [4][5]..

Our proposed technique is intended to extend the transforms

to have variable scaling factors. We wish to demonstrate that

a set of transforms with variable scaling factors also generate

a unique attractor set comprising of deterministic number of

points.

2. MATERIALS AND METHODS

2.1 Iterated Function Systems
We will first look at a method for generating IFS. Consider

the following three transformations.

1. x= 0.5 x + 0

 y = 0.5y + 0

2. x =0.5x + 0

 y = 0.5y + 150

3. x = 0.5x + 150

 Y= 0.5y +0 (Equation 1)

point x’, y’. If the above procedure is repeated on the point x’,

y’, we get a new point x”, y”. This is repeated for fixed

number of times

for(i=0;i<95000;i++){

ran=rand()%3;

switch(ran)

 {

 case 0:

 x = 0.5 * x + 0;

 y = 0.5 * y + 0;

 break;

 case 1:

 x = 0.5 * x + 0;

 y = 0.5 * y + 150;

 break;

 case 2:

x = 0.5 * x + 150;

 y = 0.5 * y + 0;

 break;

 }

 putpixel(x,y,1)

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No 17, November 2013

2

}

C code for simple IFS

The result is the following fractal depicted in figure 1. It is

called the Sierpensky’s triangle.

Figure 1: Sierpensky’s triangle

The affine transformations are of the form

 x’ = ax + by + c

and y’ = dx + ey + f

We use six numbers to represent a transformation

{a,b,c,d,e,f}[2]. Hence, the above example would have

{0.5,0,0,0,0.5,0},{0.5,0,0,0,0.5,150},{0.5,0,150,0,0.5,0}

representing the three transforms.

2.2 Difference based Iterated function

system
We modify IFS methodology slightly to get meaningful

images in a more intuitive way. We will call this difference

based IFS. In IFS, each function is scaled by a constant

between 0 and 1. It is generally difficult to predict the result

of application of this scaling factor. In difference based

IFS,we are going closer to a fixed point, by a measure; this

measure is either half the distance or 3/4th of the distance, etc

which gives us some idea as to what is happening in the

image. In difference based IFS, we are always going closer to

a fixed point by a measure. If we move away from the fixed

point, the image will not converge and a random set of points

are generated. The points also move outside the screen.

To convert an IFS to difference based IFS, we obtain an

invariable point for every transformation of IFS i.e., next

point x’ = x and y’ = y. Consider the above three

transformations in equation 2. We notice that the invariant

points are (300,300), (0,300) and (300, 0) for the three

transforms respectively. If we apply transform to these points,

they do not change. Hence, they are called invariants or fixed

points.

Given an invariant point, we develop IFS like equations as

follows:

x = x + (invariant (x) –x)*a + b

y = y+ (invariant (y) – y)*c + d (Equation 2)

Here, we are computing the new point as a linear function of

distance between the current point and the invariant point. A

constant value can be added resulting in translation.

The new set of transforms for equation 2 will be

 1. x = x + (300 – x) * 0.5 + 0

 y = y + (300 - x) * 0.5 + 0

 2. x = x + (0 – x) * 0.5 + 0

 y = y + (300 – x) * 0.5 + 0

 3. x = x + (300 – x) * 0.5 + 0

 y = y + (0 – x) * 0.5 + 0

We use the same method as in IFS to generate the set of

points in the image. We select an arbitrary point (x, y) and

select one of the three affine transformations in random, apply

it to the point (x, y) we get a new point (x’, y’). The above

procedure is repeated on the point (x’, y) and, we get a new

point (x”, y”) and so on. These points are plotted for some

fixed number of iterations, say 100000. We get figure 1 as a

result of the equations shown above. The two techniques i.e.,

IFS and difference based IFS are equivalent and are inter-

convertible.

Roman in which these guidelines have been set. The goal is to

have a 9-point text, as you see here. Please use sans-serif or

non-proportional fonts only for special purposes, such as

distinguishing source code text. If Times Roman is not

available, try the font named Computer Modern Roman. On a

Macintosh, use the font named Times. Right margins should

be justified, not ragged.

2.3 IFS variant with variable scaling

factors
In IFS or IFS variant, the scaling factors are fixed. Given a

transformation, the scaling factors are constant even though

they have to be between 0 and 1. The scaling factor in the

Sierpensky’s triangle has been changed to be a variable one

which is dependent on the distance from the fixed point. The

pseudo code is described below.

1. Array points[3][2] ={{400,50},{50,50},{50,400}}

2. x= 100, y=75;

3. Loop 100000 times the following code till line 11.

4. Choose a random integer number between 0 and 2

into variable ran.

5. Variable p is assigned difference of points [ran] [0]

and x. All three transforms are similar.

6. j= p*p/775.0;

7. x = x+ j

8. Variable q is assigned difference of points [ran] [1]

and y. All three transforms are similar.

9. j= q*q/775.0

10. y= y+ j

11. Plot the point (x,y)

Figure 2 Variable Scaling

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No 17, November 2013

3

The scaling factors can vary as a proportion to the distance

from the fixed point. Further the distance, smaller the scaling

factor.

In the next experiment we inverted the scaling factor and

achieved interesting results. The shorter the distance from the

fixed point, the larger was the scaling factor.

1. Array points[3][2] ={{400,50},{50,50},{50,400}}

2. x= 100, y=75;

3. Loop 100000 times the following code till line 11.

4. Choose a random integer number between 0 and 2 into

variable ran.

5. Variable p is assigned difference of points [ran] [0] and

x. All three transforms are similar.

6. j= (p*(1 - p)/ 600

7. x = x+ j

8. Variable q is assigned difference of points [ran] [1] and

y. All three transforms are similar.

9. j= q*(1 - q)/600

10. y= y+ j

11. Plot the point (x,y)

Pseudo codefor inverted variable scaling

Figure 3: Inverted Variable scaling

3. APPLICATIONS
We can see the generation of the figure 4 with variable scaling

factor for only one of the three transforms. Here the scaling

factor is larger when the moving point is closer to the fixed

point. Figure 5 is the result of variable scaling factors to two

of the three transforms. We see variable nature of the

curvature also. Figure 6 is twig with transforms. Figure 7 is

the result of applying variable scaling factor to one transform

corresponding to the left branch. A more realistic image has

been obtained when compared to the one with only linear

transforms.

Figure 4:Inverted variable scaling with one transform

altered

Figure 5:Inverted variable scaling with two transforms

altered

Figure 6: Linear twig

Figure 7: Variable scaling applied to twig

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No 17, November 2013

4

4. RESULTS AND DISCUSSION
We see that good looking fractals can be generated with

variable scaling factors. We find some blurring towards

scaling factors close to 0 and close to 1. We can avoid that

region in our transforms. Scaling factors can vary as a

distance from a line, angle formed with a line and also

distance from a triangle.

We find interesting figures with respect to scaling factors

which are greater if the distance from the fixed point is

smaller from the fixed point. Inverted scaling can be used to

generate complex fractals. Variable scaling factors give

realistic nature to fractal images.

5. CONCLUSIONS
Traditionally, an IFS has a fixed scaling factor for x and y

quantities. These have to be in the range between 0 and 1 for

convergence. By varying the scaling factors as a measure of

distance from the fixed point, good looking fractals can be

generated. Scaling factors can vary as a distance from a line,

angle formed with a line and also distance from a triangle etc.

Blurring occurs towards scaling factors close to 0 and close to

1. These regions can be avoided in the transforms. Interesting

figures are generated when scaling factors are greater if the

distance from the fixed point is smaller.

6. REFERENCES
[1] Frederic Raynal, Evelyne, Lutton, Pierre Collet,

Manipulation of Non-Linear IFS Attractors Using

Genetic Programming (1999), Proceedings of the

Congress on Evolutionary Computation

[2] Dinesh B Rao, Deepak Rao B and U C Niranjan. Article:

Difference based Non-Linear Fractals using IFS.

International Journal of Computer Applications

80(13):38-42, October 2013. Published by Foundation of

Computer Science, New York, USA

[3] Barnsley, Fractals everywhere, Academic Press 1988.

[4] Stephen Demko, Laurie Hodges and Bruce Naylor ,

Construction of Fractal Objects with Iterated Function

Systems, ACM SIGGRAPH Computer Graphics, 1985.

[5] Lu Ning, Fractal Imaging, academic Press 1997.

IJCATM: www.ijcaonline.org

