
International Journal of Computer Applications (0975 – 8887) 

Volume 81 – No 17, November 2013 

1 

Fractals with Variable Scaling Factors using IFS 

 
B Dinesh Rao 

Associate Professor 
SOIS, Manipal 

Manipal University 

ShridharNayak 
Assistant Professor (Sel grade) 

SOIS, Manipal 
Manipal University 

Sathyendranath Malli 
Assistant Professor (Sel grade) 

SOIS, Manipal 
Manipal University 

 

ABSTRACT 

Fractals are self-similar images. There are many techniques 

for generating fractals. IFS [1] are one of them. IFS use a set 

of linear transformations for generation of fractals. IFS have 

been modified to difference based IFS[2] to use differences in 

distance between the points to figure out the new point. We 

propose a method of modifying IFS such that variable scaling 

factors can be used in transforms for generating pleasant 

looking fractals. Fractals with variable scaling factors have 

been developed as a function of distance from the fixed 

points. 
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1. INTRODUCTION 
The use of a system of affine transforms to define a fractal 

object has been described by Barnsley [3]. A system of 

transforms Wi can be written as  

Wi: Z       TiZ  +  Vi 

Where 

T  =     a b V =          e 

     c d  f 

and  

  

Z =        x 

 y 

   

That is if Z =               x 

      y 

 

then x = ax + by +e 

 y = cx + dy + f 

The set of transforms need to be contractive and there exists a 

unique attractor set containing infinitely many points Z. For 

graphical purposes we say that there is a fixed set of pixels 

which approximate this attractor [4][5].. 

Our proposed technique is intended to extend the transforms 

to have variable scaling factors. We wish to demonstrate that 

a set of transforms with variable scaling factors also generate 

a unique attractor set comprising of deterministic number of 

points. 

2. MATERIALS AND METHODS 

2.1 Iterated Function Systems 
We will first look at a method for generating IFS. Consider 

the following three transformations. 

1.  x= 0.5 x + 0 

 y = 0.5y + 0  

2.          x =0.5x  + 0 

   y = 0.5y + 150 

3.         x = 0.5x + 150 

 Y= 0.5y +0  (Equation 1) 

point x’, y’. If the above procedure is repeated on the point x’, 

y’, we get a new point x”, y”. This is repeated for fixed 

number of times 

for(i=0;i<95000;i++){ 

ran=rand()%3; 

switch(ran) 

      { 

 case 0: 

  x =  0.5 * x + 0; 

  y =  0.5 * y + 0; 

  break; 

 case 1: 

  x =  0.5 * x + 0; 

  y =  0.5 * y + 150; 

  break; 

 case 2: 

x =  0.5 * x + 150; 

  y =  0.5 * y + 0; 

  break;  

 } 

 putpixel(x,y,1) 
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} 

C code for simple IFS 

The result is the following fractal depicted in figure 1. It is 

called the Sierpensky’s triangle. 

 
 

Figure 1: Sierpensky’s triangle 

The affine transformations are of the form 

 x’ = ax + by + c 

and y’ = dx + ey + f 

We use six numbers to represent a transformation 

{a,b,c,d,e,f}[2]. Hence, the above example would have 

{0.5,0,0,0,0.5,0},{0.5,0,0,0,0.5,150},{0.5,0,150,0,0.5,0} 

representing the three transforms. 

2.2 Difference based Iterated function 

system 
We modify IFS methodology slightly to get meaningful 

images in a more intuitive way. We will call this difference 

based IFS. In IFS, each function is scaled by a constant 

between 0 and 1. It is generally difficult to predict the result 

of application of this scaling factor. In difference based 

IFS,we are going closer to a fixed point, by a measure; this 

measure is either half the distance or 3/4th of the distance, etc 

which gives us some idea as to what is happening in the 

image. In difference based IFS, we are always going closer to 

a fixed point by a measure. If we move away from the fixed 

point, the image will not converge and a random set of points 

are generated. The points also move outside the screen.  

To convert an IFS to difference based IFS, we obtain an 

invariable point for every transformation of IFS i.e., next 

point x’ = x and y’ = y. Consider the above three 

transformations in equation 2. We notice that the invariant 

points are (300,300), (0,300) and (300, 0) for the three 

transforms respectively. If we apply transform to these points, 

they do not change. Hence, they are called invariants or fixed 

points. 

Given an invariant point, we develop IFS like equations as 

follows: 

x = x + (invariant (x) –x)*a + b 

y = y+ (invariant (y) – y)*c + d     (Equation 2) 

Here, we are computing the new point as a linear function of 

distance between the current point and the invariant point. A 

constant value can be added resulting in translation. 

The new set of transforms for equation 2 will be  

 1.  x = x + (300 – x) * 0.5 + 0 

      y = y + (300 - x) * 0.5 + 0 

 2.  x = x + (0 – x) * 0.5 +  0 

      y = y + (300 – x) * 0.5 + 0 

  3. x = x + (300 – x) * 0.5 + 0 

      y = y + (0 – x) * 0.5 + 0 

 

We use the same method as in IFS to generate the set of 

points in the image. We select an arbitrary point (x, y) and 

select one of the three affine transformations in random, apply 

it to the point (x, y) we get a new point (x’, y’). The above 

procedure is repeated on the point (x’, y) and, we get a new 

point (x”, y”) and so on. These points are plotted for some 

fixed number of iterations, say 100000. We get figure 1 as a 

result of the equations shown above. The two techniques i.e., 

IFS and difference based IFS are equivalent and are inter-

convertible. 

Roman in which these guidelines have been set. The goal is to 

have a 9-point text, as you see here. Please use sans-serif or 

non-proportional fonts only for special purposes, such as 

distinguishing source code text. If Times Roman is not 

available, try the font named Computer Modern Roman. On a 

Macintosh, use the font named Times.  Right margins should 

be justified, not ragged. 

2.3 IFS variant with variable scaling 

factors 
In IFS or IFS variant, the scaling factors are fixed. Given a 

transformation, the scaling factors are constant even though 

they have to be between 0 and 1.   The scaling factor in the 

Sierpensky’s triangle has been changed to be a variable one 

which is dependent on the distance from the fixed point.  The 

pseudo code is described below. 

1. Array points[3][2] ={{400,50},{50,50},{50,400}} 

2. x= 100, y=75; 

3. Loop 100000 times the following code till line 11. 

4. Choose a random integer number between 0 and 2 

into variable ran. 

5. Variable p is assigned difference of points [ran] [0] 

and x. All three transforms are similar. 

6. j=   p*p/775.0; 

7. x = x+ j 

8.  Variable q is assigned difference of points [ran] [1] 

and y. All three transforms are similar. 

9. j=   q*q/775.0 

10. y= y+ j 

11. Plot the point (x,y)  

 

Figure 2 Variable Scaling 
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The scaling factors can vary as a proportion to the distance 

from the fixed point. Further the distance, smaller the scaling 

factor. 

In the next experiment we inverted the scaling factor and 

achieved interesting results. The shorter the distance from the 

fixed point, the larger was the scaling factor. 

1. Array points[3][2] ={{400,50},{50,50},{50,400}} 

2. x= 100, y=75; 

3. Loop 100000 times the following code till line 11. 

4. Choose a random integer number between 0 and 2 into 

variable ran. 

5. Variable p is assigned difference of points [ran] [0] and 

x. All three transforms are similar. 

6. j=  (p*(1 -  p)/ 600 

7. x = x+ j 

8.  Variable q is assigned difference of points [ran] [1] and 

y. All three transforms are similar. 

9. j=  q*(1 - q)/600 

10. y= y+ j 

11. Plot the point (x,y) 

Pseudo codefor  inverted variable scaling 

  

 

Figure 3: Inverted Variable scaling 

3. APPLICATIONS 
We can see the generation of the figure 4 with variable scaling 

factor for only one of the three transforms. Here the scaling 

factor is larger when the moving point is closer to the fixed 

point. Figure 5 is the result of variable scaling factors to two 

of the three transforms. We see variable nature of the 

curvature also. Figure 6 is twig with transforms. Figure 7 is 

the result of applying variable scaling factor to one transform 

corresponding to the left branch. A more realistic image has 

been obtained when compared to the one with only linear 

transforms. 

 

Figure 4:Inverted variable scaling with one transform 

altered 

 

Figure 5:Inverted variable scaling with two transforms 

altered 

 

Figure 6: Linear twig 

 

Figure 7: Variable scaling applied to twig 
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4. RESULTS AND DISCUSSION 
We see that good looking fractals can be generated with 

variable scaling factors. We find some blurring towards 

scaling factors close to 0 and close to 1. We can avoid that 

region in our transforms. Scaling factors can vary as a 

distance from a line, angle formed with a line and also 

distance from a triangle.  

We find interesting figures with respect to scaling factors 

which are greater if the distance from the fixed point is 

smaller from the fixed point. Inverted scaling can be used to 

generate complex fractals. Variable scaling factors give 

realistic nature to fractal images. 

5. CONCLUSIONS 
Traditionally, an IFS has a fixed scaling factor for x and y 

quantities. These have to be in the range between 0 and 1 for 

convergence. By varying the scaling factors as a measure of 

distance from the fixed point, good looking fractals can be 

generated. Scaling factors can vary as a distance from a line, 

angle formed with a line and also distance from a triangle etc. 

Blurring occurs towards scaling factors close to 0 and close to 

1. These regions can be avoided in the transforms. Interesting 

figures are generated when scaling factors are greater if the 

distance from the fixed point is smaller. 
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