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ABSTRACT 

The two different architectures for adders are introduced in 

this paper. The first one is built around a sparse carry 

computation unit that computes only some of the carries of 

modulo 2n+1 addition. This sparse approach is enabled by the 

introduction of inverted circular idem potency property of the 

parallel-prefix carry operator and its regularity and area 

efficiency are further enhanced by the introduction of a new 

prefix operator. The resulting diminished-1 adder can be 

implemented in a smaller area and consume less power 

compared to all earlier proposals, maintaining a high 

operation speed. The second adder architecture unifies the 

design of modulo 2n+1 adder. Both the adders are derived and 

compared by using the simulation results.   
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1. INTRODUCTION 
The modulo 2n+1 adder has the applications in many fields, 

say pseudorandom number generation, cryptography, 

convolution computations without round-off errors. It has the 

applications in residue number system (RNS) also. The RNS 

is an arithmetic system which decomposes a number into parts 

(residues) and performs arithmetic operations in parallel for 

each residue without the need of carry propagation between 

them, which leads to significant speed-up over the 

corresponding binary operations. RNS is well suited to 

applications that are rich of addition/subtraction and 

multiplication operations and has been adopted in the design 

of digital signal processors, FIR filters and communication 

components, offering in several cases apart from enhanced 

operation speed and low power characteristics [1]. 

There are three input representations chosen for the input 

operands namely, the normal weighted one [2], the 

diminished-1 and the signed-LSB representations [3]. But, 

only the first two representations in the following are 

considered, since the adoption of the signed-LSB 

representation does not lead to more efficient circuits in delay 

or area terms. The input operands and results are limited 

between 0 and 2n when performing arithmetic operations 

modulo 2n + 1. 

In normal weighted representation, each operand requires n+ 

1 bit for its representation but only utilizes 2n+1 

representation out of 2n+1 that these can provide. The 

diminished-1 representation offers a denser encoding of the 

input operands. In the diminished-1 representation, A is 

represented as azA*, where az is a single bit, often called the 

zero indication bit and A* is an n-bit vector, often called the 

number part. If A>0, then az=0 and A*=A-1, whereas for 

A=0, az=1 and A*=0. For example, the diminished-1 

representation of A=5 modulo 17 is 001002.  

Considering that the most common operations required in 

modulo 2n+1 arithmetic are negation, multiplication by a 

power of two and addition [4], the adoption of the diminished-

1 representation, allows to limit these operations to n bits. 

Specifically, negation is performed by complementing every 

bit of A*, if az=0 and inhibiting any change when az=1. 

Multiplication by 2i is performed by an i-bit left rotation of 

the bits of A*, if az=0 and inhibiting any change when az=1. 

Finally, the addition of azA* and bzB* boils down to an n-bit 

modular addition of A* and B* with some minor 

modifications.  

1.1 Related Work: 
Several papers have attacked the problem of designing 

efficient diminished adders. The majority of them rely on the 

use of an inverted end around carry (IEAC) n-bit adder, which 

is an adder that accepts two n-bit operands and provides a sum 

increased by one compared to their integer sum if their integer 

addition does not result in a carry output. Although an IEAC 

adder can be implemented by using an integer adder in which 

its carry output is connected back to its carry input via an 

inverter, but such a direct feedback is not a good solution. 

Since the carry output depends on the carry input, a direct 

connection between them forms a combinational loop that 

may lead to an unwanted race condition [4]. To this end, a 

number of custom solutions have been proposed for the 

design of efficient IEAC adders. 

Considering the diminished-1 representation for modulo 2n+1 

addition, [4], [5] used an IEAC adder which is based on an 

integer adder along with an extra carry look ahead (CLA) 

unit. The CLA unit computes the carry output which is then 

inverted, used as the carry input of the integer adder. 

Solutions that rely on a single carry computation unit have 

also been proposed. Zimmermann [5], [6] proposed IEAC 

adders that make use of a parallel-prefix carry computation 

unit along with an extra prefix level that handles the inverted 

end-around carry. 

Although these architectures are faster than the carry look-

ahead ones proposed in [7], for sufficiently wide operands, 

they are slower than the corresponding parallel-prefix integer 

adders because of the need for the extra prefix level. In [7], it 

has been shown that the recirculation of the inverted end 

around carry can be performed within the existing prefix 

levels, that is, in parallel with the carries’ computation. In this 

way, the need of the extra prefix level is canceled and 

parallel-prefix IEAC adders are derived that can operate as 

fast as their integer counterparts, that is, they offer a logic 

depth of log2n prefix levels. Unfortunately, this level of 

performance requires significantly more area than the 

solutions of [5], [6] since a double parallel-prefix computation 

tree is required in several levels of the carry computation unit. 
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For reducing the area complexity of the parallel-prefix 

solutions, select-prefix [8] and circular carry select [9] IEAC 

adders have been proposed. Unfortunately, both these 

proposals achieve a smaller operating speed than the parallel-

prefix ones of [7]. Recently, very fast IEAC adders that use 

the Ling carry formulation of parallel-prefix addition [10] 

have appeared in [11], which also suffer from the requirement 

of a double parallel-prefix computation tree. 

Although a modulo 2n+1 adder that follows the (n+1)-bit 

weighted representation can be designed following the 

principles of generic modulo adder design [12], specialized 

architectures for it have appeared in [13], [14]. However, it 

has been recently shown [15] that a weighted adder can be 

designed efficiently by using an IEAC one and a carry save 

adder (CSA) stage. As a result, improving the design for an 

IEAC adder would improve the weighted adder design as 

well. 

2. PARALLEL-PREFIX ADDERS: 
Suppose that A= An-1An-2….A0 and B= Bn-1Bn-2….B0 

represent the two numbers to be added and S= Sn-1Sn-2….S0 

denotes their sum. An adder can be considered as a three-

stage circuit. The preprocessing stage computes the carry-

generate bits Gi, the carry-propagate bits Pi, and half-sum bits 

H, for every i, 0≤i≤n-1, according to  

Gi = Ai. Bi   Pi = Ai + Bi   Hi = Ai ⊕ Bi, 

 

Where, +, ⊕ denote logical AND, OR, and exclusive-OR 

respectively. The second stage of the adder, hereafter called 

the carry computation unit, computes the carry signals Ci, for 

0 ≤ i ≤ n-1 using the carry generate and carry propagate bits 

Gi and Pi. The third stage computes the sum bits according to 

 

Si = Hi ⊕ Ci-1 

 

Carry computation is transformed into a parallel prefix 

problem using the    operator, which associates pairs of 

generate and propagate signals and was defined as 

, 

(G, P)     (G’, P’) = (G + P. G’, P. P’). 

 

In a series of associations of consecutive generate/propagate 

pairs (G P), the notation (Gk:j, Pk:j), with k > j, is used to 

denote the group generate/propagate term produced out of bits 

k, k-1, ….., j, that is, 

 

                                   

Since every carry Ci = Gi:0, a number of algorithms have been 

introduced for computing all the carries using only     
operators. Fig. 1 presents the most well-known approaches for 

the design of an 8-bit adder, while Fig. 2 depicts the logic-

level implementation of the basic cells used in the paper. 

. 

  7    6     5     4     3      2     1     0

Cout 

S7 S0
 

Fig 1: Kogge-Stone adder           

                                  

  7    6     5     4     3      2     1     0

Cout 

S7 S0
 

Fig 2: Ladner-Fischer adder 

 

    Ai      Bi

Hi   Gi   Pi

Hi      Gi      Pi

Ai Bi

 
Fig 2 (a): 

 

    (Gi:k, Pi:k) (Gk-1:j, Pk-1:j)
(Gi:k, Pi:k)

Gk-1:j, Pk-1:j

 
Fig 2 (b): 
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Hi  Ci-1      Hi   Ci-1

Si
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Fig 2 (c): 

The logic level implementations of the basic cells used in 

the parallel prefix adders. 

 

3. MODULO ADDERS: 
Modulo adders are important for several applications 

including residue number system, digital signal processors 

and cryptography algorithms. Diminished-1 modulo 2n+1 

addition is more complex since special care is required when 

at least one of the input operands is zero (1 00 ….0). The sum 

of a diminished-1 modulo adder is derived according to the 

following cases: 

a. When none of the input operands is zero (az, bz ≠ 0) 

their number parts A* and B* are added modulo 2n+1. 

This operation is discussed in the following, can be 

handled by an IEAC adder. 

b. When one of the two inputs is zero, the result is equal 

to the nonzero operand. 

c. When both operands are zero, the result is zero. 

In any case that the result is equal to zero (cases 1 or 3), the 

zero indication bit of the sum needs to be set and the number 

part of the sum should be equal to the all-zero vector. 

According to the above, a true modulo addition in a 

diminished-1 adder is needed only in case 1, while in the other 

cases the sum is known in advance. 

4. SPARSE-4 PARALLEL-PREFIX 

STRUCTURE FOR 16-BIT: 
Parallel Prefix Adder (PPA) is very useful in today’s world of 

technology because of its implementation in Very Large Scale 

Integration (VLSI) chips. The VLSI chips rely heavily on fast 

and reliable arithmetic computation. These contributions can 

be provided by PPA. For larger word lengths, the design of 

sparse parallel prefix adders is preferred, since the wiring and 

area of the design are significantly reduced without sacrificing 

delay. The design of sparse adders relies on the use of a sparse 

parallel-prefix carry computation unit and carry-select (CS) 

blocks. Only the carries at the boundaries of the carry-select 

blocks are computed, saving considerable amount of area in 

the carry-computation unit.  

A 32-bit adder with 4-bit sparseness is shown in fig. 3a. The 

carry select block computes two sets of sum bits 

corresponding to the two possible values of the incoming 

carry. When the actual carry is computed, it selects the correct 

sum without any delay overhead. A possible logic-level 

implementation of a 4-bit carry-select block is shown in Fig 4 

(b). The following architecture shows the sparse-4 parallel-

prefix adder structure for 16-bit and its CS-block logic level 

implementation. 

15   14   13   12   11   10     9     8     7     6      5     4     3     2     1     0

4b-CS 4b-CS 4b-CS4b-CS

S3S2S1S0S15S14S13S12

 2   1   0 6   5   4

(a) 

H15
H14 H13 H12

G14 P14 G13 P13 G12 P12

S15 S14 S13 S12

1             0 1             0 1             0

C11

 
(b) 

Fig4: (a) Sparse-4 parallel-prefix structure for 16-bit 

integer adder and (b) the logic level implementation of the 

CS block 

 

5. NEW SPARSE MODULO 2
n
+1 

ADDER: 
In this section, it is to be focussed on the design of diminished 

modulo adder with a sparse parallel-prefix carry computation 

stage that can use the same carry-select blocks as the sparse 

carry-select blocks as the sparse integer adder [19]. In the 

previous sections, partially regular and totally regular sparse 

parallel-prefix units are introduced [17].In this paper, by 

making small changes to the proposed architecture, there will 

be a reduce in the delay and thus gets an improved operational 

speed [18].Here the carry kill concept is used. 

Ki = Ai + Bi 

Pi = Ai ⊕ Bi 

Parallel Prefix addition is a technique for improving the speed 

of binary addition. Due to continuing integrating intensity and 

the growing needs of portable devices, low-power and high 

performance designs are of prime importance. 

The following architecture introduces four different 

computation nodes for achieving improved performance 

namely odd dot, even dot, odd semi-dot and even semi-dot. 
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Fig 5: Proposed sparse-4 modulo 216 + 1 adder 

The black-cell representation is given below: 

            

(Gi-1, Ki-1)(Gi, Ki)

(Gi+KiGi-1, Ki·Ki-1)

 
Fig 6: Black cell 

 

                          
         

      
        

 

The representations chosen for the network are as follows: 

 

 

 

 

 

Table 1: Cells representation 

 

The even semi-dot and odd semi-dot are used at the last stage 

of network and the output representations are given as   and 

G. 

  =  i +  i • Gi-1 

G =  i • ( i+ i-1) 

 

The output of the odd-semi-dot cells gives the value of the 

carry signal in that corresponding bit position. The output of 

the even-semi-dot cell gives the complemented value of carry 

signal in that corresponding bit position. 

 

The even dot and odd dot representations are as follows: 

(Gi-1, Ki-1 ) 
(Gi, Ki )

(G, K) = (Gi + (Ki·Gi-1 ), Ki·Ki-1 )  
Fig 7: Even dot 

 

(Gi-1, Ki-1 ) (Gi, Ki )

(G, K) = (Gi · (Ki+Gi-1 ), Ki+Ki-1 )  
Fig 8: Odd dot 

 

Therefore, 

( , K) = ((Gi + (  • Gi-1),  i •  i-1 ) 

And 

(G,  ) = ( i • (Ki + Gi-1), (Ki + Ki-1)) 

 

, and the inverter representation is: 

(Gi, Ki)

(Gi, Ki)
 

Fig 9: Inverter 

‘Nor’ operation is used instead of ‘or’ to reduce the number of 

transistors used (for nor 4 transistors are used whereas for or 6 

are used). 

 

6. COMPARISIONS: 
In this section, first compare all the diminished-1 adders that 

use the totally regular parallel-prefix IEAC adders presented 

in the previous sections against the diminished-1 adders 

proposed and those that use the IEAC proposed in [6], [7], 

[11]. It will be considered that all the diminished-1 adders can 

handle true operands and indicate true zero results. For the 

High-Speed Fermat Number Transform Based adders, 

consider the carry output computed by the CLA unit is used as 

a late increment carry signal in the successor integer adder. 

For the latter, it is then considered that it follows the Ladner-

Fischer (LF) proposal augmented by a carry increment prefix 

level. For the IEAC adders of [6], it is considered that the first 

log2 n prefix levels may either follow the Ladner-Fischer (LF) 

or the Kogge-Stone (KS) proposal. Finally, both the reduced 

area parallel prefix (RAPP) and the full parallel prefix (FPP) 

architectures of the IEAC adders that use Ling carries [11] are 

 Even dot 

 Odd dot 

 Even semi-dot 

 Odd semi-dot 
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examined. The stages with odd indexes use odd-dot and odd-

semi-dot cells where as the stages with even indexes use even-

dot and even-semi-dot cells. Cascading odd cells and even 

cells alternatively gives the benefit of elimination of two 

inverters between them, if a dot or a semi-dot computation 

node in an odd stage receives both of its input edges from any 

of the even stages and vice-versa. But it is essential to 

introduce two inverters in a path, if a dot or a semi-dot 

computation node in an even stage receives any of its edges 

from any of the even stages and vice-versa.  
 

7. SIMULATION RESULTS: 

Output 1: Kogge-Stone adder 

 

Output 2: Ladner-Fischer adder 
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Output 3: Sparse parallel-prefix adder 

 

Output 4: Sparse-4 modulo 2n+1 diminished-1 adder 

Table 1: Synthesis Results 

 Sparse-4 

parallel-prefix 

adder 

Sparse-4 

modulo 2
n
+1 

adder 

No. of 4 input 

LUTs 

57 39 

No. of slices 30 24 

No. of bonded 

IOBs 

48 48 

Fan-out 2.94 2.24 
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8. CONCLUSION: 
The parallel prefix formulation of binary addition is a very 

convenient way to formally describe an entire family of 

parallel binary adders. A novel architecture has been proposed 

that uses a sparse totally regular parallel-prefix carry 

computation unit. This architecture was derived by 

introducing even and odd dot and semi-dot operators and an 

inverter. The architecture has five stages of implementation. 

The output of the odd semi-dot cells gives the value of the 

carry signal in that corresponding bit position. The output of 

even semi-dot cell gives the complemented value of carry 

signal in that corresponding bit position. By introducing two 

cells for dot operator and two cells for semi-dot operator, a 

large number of inverters are eliminated. Due to inverter 

elimination in paths, the propagation delay in these paths has 

reduced. The proposed architecture is compared with the 

sparse-4 parallel-prefix structure and thus proved that 

proposed one has a reduced delay and high operational speed. 

Further achieving a benefit in power reduction, since these 

inverters if not eliminated, would have contributed to 

significant amount of power dissipation due to switching. It 

uses 39 LUTs and 24 slices. The results are shown in table. 

Xilinx 12.1 tool is used for simulation. 
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