
International Journal of Computer Applications (0975 – 8887)

Volume 81 – No 17, November 2013

5

Design of High Speed Modulo 2
n
+1 Adder

M. Varun

M. Tech, Student
Department of ECE

Vardhaman College of
Engineering

M. Nagarjuna
Assistant Professor
Department of ECE

Vardhaman College of
Engineering

M. Vasavi
Assistant Professor
Department of ECE

Vazir Sultan College of
Engineering

ABSTRACT

The two different architectures for adders are introduced in

this paper. The first one is built around a sparse carry

computation unit that computes only some of the carries of

modulo 2n+1 addition. This sparse approach is enabled by the

introduction of inverted circular idem potency property of the

parallel-prefix carry operator and its regularity and area

efficiency are further enhanced by the introduction of a new

prefix operator. The resulting diminished-1 adder can be

implemented in a smaller area and consume less power

compared to all earlier proposals, maintaining a high

operation speed. The second adder architecture unifies the

design of modulo 2n+1 adder. Both the adders are derived and

compared by using the simulation results.

General Terms

Modulo adder, parallel-prefix computation, VLSI design.

Keywords

IEAC adder, Sparse-4 adder, RNS

1. INTRODUCTION
The modulo 2n+1 adder has the applications in many fields,

say pseudorandom number generation, cryptography,

convolution computations without round-off errors. It has the

applications in residue number system (RNS) also. The RNS

is an arithmetic system which decomposes a number into parts

(residues) and performs arithmetic operations in parallel for

each residue without the need of carry propagation between

them, which leads to significant speed-up over the

corresponding binary operations. RNS is well suited to

applications that are rich of addition/subtraction and

multiplication operations and has been adopted in the design

of digital signal processors, FIR filters and communication

components, offering in several cases apart from enhanced

operation speed and low power characteristics [1].

There are three input representations chosen for the input

operands namely, the normal weighted one [2], the

diminished-1 and the signed-LSB representations [3]. But,

only the first two representations in the following are

considered, since the adoption of the signed-LSB

representation does not lead to more efficient circuits in delay

or area terms. The input operands and results are limited

between 0 and 2n when performing arithmetic operations

modulo 2n + 1.

In normal weighted representation, each operand requires n+

1 bit for its representation but only utilizes 2n+1

representation out of 2n+1 that these can provide. The

diminished-1 representation offers a denser encoding of the

input operands. In the diminished-1 representation, A is

represented as azA*, where az is a single bit, often called the

zero indication bit and A* is an n-bit vector, often called the

number part. If A>0, then az=0 and A*=A-1, whereas for

A=0, az=1 and A*=0. For example, the diminished-1

representation of A=5 modulo 17 is 001002.

Considering that the most common operations required in

modulo 2n+1 arithmetic are negation, multiplication by a

power of two and addition [4], the adoption of the diminished-

1 representation, allows to limit these operations to n bits.

Specifically, negation is performed by complementing every

bit of A*, if az=0 and inhibiting any change when az=1.

Multiplication by 2i is performed by an i-bit left rotation of

the bits of A*, if az=0 and inhibiting any change when az=1.

Finally, the addition of azA* and bzB* boils down to an n-bit

modular addition of A* and B* with some minor

modifications.

1.1 Related Work:
Several papers have attacked the problem of designing

efficient diminished adders. The majority of them rely on the

use of an inverted end around carry (IEAC) n-bit adder, which

is an adder that accepts two n-bit operands and provides a sum

increased by one compared to their integer sum if their integer

addition does not result in a carry output. Although an IEAC

adder can be implemented by using an integer adder in which

its carry output is connected back to its carry input via an

inverter, but such a direct feedback is not a good solution.

Since the carry output depends on the carry input, a direct

connection between them forms a combinational loop that

may lead to an unwanted race condition [4]. To this end, a

number of custom solutions have been proposed for the

design of efficient IEAC adders.

Considering the diminished-1 representation for modulo 2n+1

addition, [4], [5] used an IEAC adder which is based on an

integer adder along with an extra carry look ahead (CLA)

unit. The CLA unit computes the carry output which is then

inverted, used as the carry input of the integer adder.

Solutions that rely on a single carry computation unit have

also been proposed. Zimmermann [5], [6] proposed IEAC

adders that make use of a parallel-prefix carry computation

unit along with an extra prefix level that handles the inverted

end-around carry.

Although these architectures are faster than the carry look-

ahead ones proposed in [7], for sufficiently wide operands,

they are slower than the corresponding parallel-prefix integer

adders because of the need for the extra prefix level. In [7], it

has been shown that the recirculation of the inverted end

around carry can be performed within the existing prefix

levels, that is, in parallel with the carries’ computation. In this

way, the need of the extra prefix level is canceled and

parallel-prefix IEAC adders are derived that can operate as

fast as their integer counterparts, that is, they offer a logic

depth of log2n prefix levels. Unfortunately, this level of

performance requires significantly more area than the

solutions of [5], [6] since a double parallel-prefix computation

tree is required in several levels of the carry computation unit.

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No 17, November 2013

6

For reducing the area complexity of the parallel-prefix

solutions, select-prefix [8] and circular carry select [9] IEAC

adders have been proposed. Unfortunately, both these

proposals achieve a smaller operating speed than the parallel-

prefix ones of [7]. Recently, very fast IEAC adders that use

the Ling carry formulation of parallel-prefix addition [10]

have appeared in [11], which also suffer from the requirement

of a double parallel-prefix computation tree.

Although a modulo 2n+1 adder that follows the (n+1)-bit

weighted representation can be designed following the

principles of generic modulo adder design [12], specialized

architectures for it have appeared in [13], [14]. However, it

has been recently shown [15] that a weighted adder can be

designed efficiently by using an IEAC one and a carry save

adder (CSA) stage. As a result, improving the design for an

IEAC adder would improve the weighted adder design as

well.

2. PARALLEL-PREFIX ADDERS:
Suppose that A= An-1An-2….A0 and B= Bn-1Bn-2….B0

represent the two numbers to be added and S= Sn-1Sn-2….S0

denotes their sum. An adder can be considered as a three-

stage circuit. The preprocessing stage computes the carry-

generate bits Gi, the carry-propagate bits Pi, and half-sum bits

H, for every i, 0≤i≤n-1, according to

Gi = Ai. Bi Pi = Ai + Bi Hi = Ai ⊕ Bi,

Where, +, ⊕ denote logical AND, OR, and exclusive-OR

respectively. The second stage of the adder, hereafter called

the carry computation unit, computes the carry signals Ci, for

0 ≤ i ≤ n-1 using the carry generate and carry propagate bits

Gi and Pi. The third stage computes the sum bits according to

Si = Hi ⊕ Ci-1

Carry computation is transformed into a parallel prefix

problem using the operator, which associates pairs of

generate and propagate signals and was defined as

,

(G, P) (G’, P’) = (G + P. G’, P. P’).

In a series of associations of consecutive generate/propagate

pairs (G P), the notation (Gk:j, Pk:j), with k > j, is used to

denote the group generate/propagate term produced out of bits

k, k-1, ….., j, that is,

Since every carry Ci = Gi:0, a number of algorithms have been

introduced for computing all the carries using only
operators. Fig. 1 presents the most well-known approaches for

the design of an 8-bit adder, while Fig. 2 depicts the logic-

level implementation of the basic cells used in the paper.

.

 7 6 5 4 3 2 1 0

Cout

S7 S0

Fig 1: Kogge-Stone adder

 7 6 5 4 3 2 1 0

Cout

S7 S0

Fig 2: Ladner-Fischer adder

 Ai Bi

Hi Gi Pi

Hi Gi Pi

Ai Bi

Fig 2 (a):

 (Gi:k, Pi:k) (Gk-1:j, Pk-1:j)
(Gi:k, Pi:k)

Gk-1:j, Pk-1:j

Fig 2 (b):

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No 17, November 2013

7

Hi Ci-1 Hi Ci-1

Si

Si

Fig 2 (c):

The logic level implementations of the basic cells used in

the parallel prefix adders.

3. MODULO ADDERS:
Modulo adders are important for several applications

including residue number system, digital signal processors

and cryptography algorithms. Diminished-1 modulo 2n+1

addition is more complex since special care is required when

at least one of the input operands is zero (1 00 ….0). The sum

of a diminished-1 modulo adder is derived according to the

following cases:

a. When none of the input operands is zero (az, bz ≠ 0)

their number parts A* and B* are added modulo 2n+1.

This operation is discussed in the following, can be

handled by an IEAC adder.

b. When one of the two inputs is zero, the result is equal

to the nonzero operand.

c. When both operands are zero, the result is zero.

In any case that the result is equal to zero (cases 1 or 3), the

zero indication bit of the sum needs to be set and the number

part of the sum should be equal to the all-zero vector.

According to the above, a true modulo addition in a

diminished-1 adder is needed only in case 1, while in the other

cases the sum is known in advance.

4. SPARSE-4 PARALLEL-PREFIX

STRUCTURE FOR 16-BIT:
Parallel Prefix Adder (PPA) is very useful in today’s world of

technology because of its implementation in Very Large Scale

Integration (VLSI) chips. The VLSI chips rely heavily on fast

and reliable arithmetic computation. These contributions can

be provided by PPA. For larger word lengths, the design of

sparse parallel prefix adders is preferred, since the wiring and

area of the design are significantly reduced without sacrificing

delay. The design of sparse adders relies on the use of a sparse

parallel-prefix carry computation unit and carry-select (CS)

blocks. Only the carries at the boundaries of the carry-select

blocks are computed, saving considerable amount of area in

the carry-computation unit.

A 32-bit adder with 4-bit sparseness is shown in fig. 3a. The

carry select block computes two sets of sum bits

corresponding to the two possible values of the incoming

carry. When the actual carry is computed, it selects the correct

sum without any delay overhead. A possible logic-level

implementation of a 4-bit carry-select block is shown in Fig 4

(b). The following architecture shows the sparse-4 parallel-

prefix adder structure for 16-bit and its CS-block logic level

implementation.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

4b-CS 4b-CS 4b-CS4b-CS

S3S2S1S0S15S14S13S12

 2 1 0 6 5 4

(a)

H15
H14 H13 H12

G14 P14 G13 P13 G12 P12

S15 S14 S13 S12

1 0 1 0 1 0

C11

(b)

Fig4: (a) Sparse-4 parallel-prefix structure for 16-bit

integer adder and (b) the logic level implementation of the

CS block

5. NEW SPARSE MODULO 2
n
+1

ADDER:
In this section, it is to be focussed on the design of diminished

modulo adder with a sparse parallel-prefix carry computation

stage that can use the same carry-select blocks as the sparse

carry-select blocks as the sparse integer adder [19]. In the

previous sections, partially regular and totally regular sparse

parallel-prefix units are introduced [17].In this paper, by

making small changes to the proposed architecture, there will

be a reduce in the delay and thus gets an improved operational

speed [18].Here the carry kill concept is used.

Ki = Ai + Bi

Pi = Ai ⊕ Bi

Parallel Prefix addition is a technique for improving the speed

of binary addition. Due to continuing integrating intensity and

the growing needs of portable devices, low-power and high

performance designs are of prime importance.

The following architecture introduces four different

computation nodes for achieving improved performance

namely odd dot, even dot, odd semi-dot and even semi-dot.

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No 17, November 2013

8

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Stage

1

Stage

2

Stage

3

Stage

4

Stage

5

Fig 5: Proposed sparse-4 modulo 216 + 1 adder

The black-cell representation is given below:

(Gi-1, Ki-1)(Gi, Ki)

(Gi+KiGi-1, Ki·Ki-1)

Fig 6: Black cell

The representations chosen for the network are as follows:

Table 1: Cells representation

The even semi-dot and odd semi-dot are used at the last stage

of network and the output representations are given as and

G.

 = i + i • Gi-1

G = i • (i+ i-1)

The output of the odd-semi-dot cells gives the value of the

carry signal in that corresponding bit position. The output of

the even-semi-dot cell gives the complemented value of carry

signal in that corresponding bit position.

The even dot and odd dot representations are as follows:

(Gi-1, Ki-1)
(Gi, Ki)

(G, K) = (Gi + (Ki·Gi-1), Ki·Ki-1)
Fig 7: Even dot

(Gi-1, Ki-1) (Gi, Ki)

(G, K) = (Gi · (Ki+Gi-1), Ki+Ki-1)
Fig 8: Odd dot

Therefore,

(, K) = ((Gi + (• Gi-1), i • i-1)

And

(G,) = (i • (Ki + Gi-1), (Ki + Ki-1))

, and the inverter representation is:

(Gi, Ki)

(Gi, Ki)

Fig 9: Inverter

‘Nor’ operation is used instead of ‘or’ to reduce the number of

transistors used (for nor 4 transistors are used whereas for or 6

are used).

6. COMPARISIONS:
In this section, first compare all the diminished-1 adders that

use the totally regular parallel-prefix IEAC adders presented

in the previous sections against the diminished-1 adders

proposed and those that use the IEAC proposed in [6], [7],

[11]. It will be considered that all the diminished-1 adders can

handle true operands and indicate true zero results. For the

High-Speed Fermat Number Transform Based adders,

consider the carry output computed by the CLA unit is used as

a late increment carry signal in the successor integer adder.

For the latter, it is then considered that it follows the Ladner-

Fischer (LF) proposal augmented by a carry increment prefix

level. For the IEAC adders of [6], it is considered that the first

log2 n prefix levels may either follow the Ladner-Fischer (LF)

or the Kogge-Stone (KS) proposal. Finally, both the reduced

area parallel prefix (RAPP) and the full parallel prefix (FPP)

architectures of the IEAC adders that use Ling carries [11] are

 Even dot

 Odd dot

 Even semi-dot

 Odd semi-dot

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No 17, November 2013

9

examined. The stages with odd indexes use odd-dot and odd-

semi-dot cells where as the stages with even indexes use even-

dot and even-semi-dot cells. Cascading odd cells and even

cells alternatively gives the benefit of elimination of two

inverters between them, if a dot or a semi-dot computation

node in an odd stage receives both of its input edges from any

of the even stages and vice-versa. But it is essential to

introduce two inverters in a path, if a dot or a semi-dot

computation node in an even stage receives any of its edges

from any of the even stages and vice-versa.

7. SIMULATION RESULTS:

Output 1: Kogge-Stone adder

Output 2: Ladner-Fischer adder

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No 17, November 2013

10

Output 3: Sparse parallel-prefix adder

Output 4: Sparse-4 modulo 2n+1 diminished-1 adder

Table 1: Synthesis Results

 Sparse-4

parallel-prefix

adder

Sparse-4

modulo 2
n
+1

adder

No. of 4 input

LUTs

57 39

No. of slices 30 24

No. of bonded

IOBs

48 48

Fan-out 2.94 2.24

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No 17, November 2013

11

8. CONCLUSION:
The parallel prefix formulation of binary addition is a very

convenient way to formally describe an entire family of

parallel binary adders. A novel architecture has been proposed

that uses a sparse totally regular parallel-prefix carry

computation unit. This architecture was derived by

introducing even and odd dot and semi-dot operators and an

inverter. The architecture has five stages of implementation.

The output of the odd semi-dot cells gives the value of the

carry signal in that corresponding bit position. The output of

even semi-dot cell gives the complemented value of carry

signal in that corresponding bit position. By introducing two

cells for dot operator and two cells for semi-dot operator, a

large number of inverters are eliminated. Due to inverter

elimination in paths, the propagation delay in these paths has

reduced. The proposed architecture is compared with the

sparse-4 parallel-prefix structure and thus proved that

proposed one has a reduced delay and high operational speed.

Further achieving a benefit in power reduction, since these

inverters if not eliminated, would have contributed to

significant amount of power dissipation due to switching. It

uses 39 LUTs and 24 slices. The results are shown in table.

Xilinx 12.1 tool is used for simulation.

9. REFERENCES
[1] R. Chokshi, K.S. Berezowski, A. Shrivastava, and S.J.

Piestrak, “Exploiting Residue Number System for

Power-Efficient Digital Signal Processing in Embedded

Processors,” Proc. Int’l Conf. Compilers, Architecture,

and Synthesis for Embedded Systems (CASES ’09), pp.

19-28, 2009.

[2] L.M. Leibowitz, “A Simplified Binary Arithmetic for the

Fermat Number Transform,” IEEE Trans. Acoustics,

Speech and Signal Processing, vol. ASSP-24, no. 5, pp.

356-359, Oct. 1976.

[3] G. Jaberipur and B. Parhami, “Unified Approach to the

Design of Modulo-(2n ± 1) Adders Based on Signed-LSB

Representation of Residues,” Proc. 19th IEEE Symp.

Computer Arithmetic, pp. 57-64, 2009.

[4] J.J. Shedletsky, “Comment on the Sequential and

Indeterminate Behavior of an End-Around-Carry Adder,”

IEEE Trans. Computers, vol. C-26, no. 3, pp. 271-272,

Mar. 1977.

[5] R. Zimmermann, “Binary Adder Architectures for Cell-

Based VLSI and Their Synthesis,” PhD dissertation,

Swiss Fed. Inst. Of Technology, 1997.

[6] R. Zimmerman, “Efficient VLSI Implementation of

Modulo 2n±1 Addition and Multiplication,” Proc. 14th

IEEE Symp. Computer Arithmetic, pp. 158-167, Apr.

1999.

[7] H.T. Vergos, C. Efstathiou, and D. Nikolos,

“Diminished-One Modulo 2n + 1 Adder Design,” IEEE

Trans. Computers, vol. 51, no. 12, pp. 1389-1399, Dec.

2002.

[8] C. Efstathiou, H.T. Vergos, and D. Nikolos, “Modulo 2n

± 1 Adder Design Using Select Prefix Blocks,” IEEE

Trans. Computers, vol. 52, no. 11, pp. 1399-1406, Nov.

2003.

[9] S.-H. Lin and M.-H. Sheu, “VLSI Design of Diminished-

One Modulo 2n + 1 Adder Using Circular Carry

Selection,” IEEE Trans. Circuits and Systems II, vol. 55,

no. 9, pp. 897-901, Sept. 2008.

[10] G. Dimitrakopoulos and D. Nikolos, “High-Speed

Parallel-Prefix VLSI Ling Adders,” IEEE Trans.

Computers, vol. 54, no. 2, pp. 225- 231, Feb. 2005.

[11] H.T. Vergos and C. Efstathiou, “Efficient Modulo 2n + 1

Adder Architectures,” Integration, the VLSI J., vol. 42,

no. 2, pp. 149-157, Feb. 2009.

[12] M. Bayoumi, G. Jullien, and W. Miller, “A VLSI

Implementation of Residue Adders,” IEEE Trans.

Circuits and Systems, vol. CAS-34, no. 3, pp. 284-288,

Mar. 1987.

[13] A. Hiasat, “High-Speed and Reduced-Area Modular

Adder Structures for RNS,” IEEE Trans. Computers, vol.

51, no. 1, pp. 84-89, Jan. 2002.

[14] C. Efstathiou, H.T. Vergos, and D. Nikolos, “Fast

Parallel-Prefix Modulo 2n + 1 Adders,” IEEE Trans.

Computers, vol. 53, no. 9, pp. 1211-1216, Sept. 2004.

[15] H.T. Vergos and C. Efstathiou, “A Unifying Approach

for Weighted and Diminished-1 Modulo 2n + 1

Addition,” IEEE Trans. Circuits and Systems II, vol. 55,

no. 10, pp. 1041-1045, Oct. 2008.

[16] R.P. Brent and H.T. Kung, “A Regular Layout for

Parallel Adders,” IEEE Trans. Computers, vol. C-31, no.

3, pp. 260-264, Mar. 1982.

[17] S. Mathew, M. Anders, R.K. Krishnamurthy, and S.

Borkar, “A 4- GHz 130-nm Address Generation Unit

with 32-bit Sparse-Tree Adder Core,” J. Solid-State

Circuits, vol. 38, no. 5, pp. 689-695, May 2003.

[18] Haridimos T. Vergos and Giorgos Dimitrakopoulos, “On

Modulo 2n + 1 adder design”, IEEE transactions on

computers, vol. 61, No. 2, Feb, 2012.

[19] K. Nehru, A. Shanmugam and S. Vadivel, “Design of 64-

Bit Low Power Parallel Prefix VLSI Adder for High

Speed Arithmetic Circuits”.

IJCATM: www.ijcaonline.org

