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ABSTRACT 

In this paper, proofs of some theorems relating to fuzzy 

subgroups, pseudo fuzzy cosets and pseudo fuzzy double 

cosets have been provided. Some new theorems are also stated 

and proved. 
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1. INTRODUCTION 
Researches are becoming enormously growing in the theory 

and the application of fuzzy theories particularly in science of 

logics and engineering. Following the foundational work of 

Lofti A. Zadeh who introduced fuzzy subset theory as another 

way of studying set which are not crisp, so many other works 

have been done. There is the use of fuzzy to be precise, in 

electrical engineering and others. R. Nagarajan and A. 

Solairaju [4] have done some foundational works in this area 

but here we have some alternative and/or even independent 

proofs of some of their works. 

1.1 Preliminaries 
Definition 1.1.1: Let X be a non-empty set. A fuzzy subset µ 

of the set G is a function µ:G→[0, 1]. 

Definition 1.1.2: Let G be a group and µ a fuzzy subset of G. 

Then µ is called a fuzzy subgroup of G if 

(i) µ(xy) ≥ min {µ(x), µ(y)} 

(ii) µ(x-1) = µ(x) 

(iii) µ is called a fuzzy normal subgroup if 

µ(xy) = µ(yx) for all x and y in G 

Definition 1.1.3: Let µ be a fuzzy subgroup of a group G. For 

a in G, the fuzzy coset aµ of G is defined by (aµ) (x) = µ(a-1x) 

for all x in G. 

Definition 1.1.4: Let µ be a fuzzy subgroup of a group G. For 

a and b in G, the fuzzy middle coset aµb of G is defined by 

(aµb) (x) = µ(a-1xb-1) for all x in G. 

Definition 1.1.5: Let µ be a fuzzy subgroup of group G and an 

element a in G. Then pseudo fuzzy coset (aµ)p is defined by 

(aµ)p(x) = p(a) µ(x) for all x in G and p in P. 

Definition 1.1.6: Let µ and λ be any two fuzzy subsets of a set 

X and p in P. then the pseudo fuzzy double coset (µxλ)p is 

defined by (µxλ)p = (xµ)p∩(xλ)p for every x in X. 

Definition 1.1.7: Let µ and λ be any two fuzzy subsets of a set 

X. then  

(i) λ and µ are equal if µ(x) = λ(x) for every 

x in X 

(ii) λ and µ are disjoint if µ(x) ≠ λ(x) for 

every x in X 

(iii) λ ⊆	 µ if µ(x) ≥ λ(x) 

Definition 1.1.8: Let µ be a fuzzy subset of a set X. The 

collection ξ = {µi: µi is a fuzzy subset of X and µi (x) ≤ µ(x) 

for all x in X} is a fuzzy partition of µ if 

(i) ∪μi	=	µ and  

(ii) Any two members of ξ are either disjoint 

or identical 

Remark 1.1.8.1: Definition 1.1.7 gives the inequality µ1 < µ2 < 

µ3 < … < µj where j = |ξ|. We can also infer that either µi = µj 

or µi < µj if i ≠ j. 

Definition 1.1.9: Let µ be a fuzzy subset (subgroup) of X. 

Then, for some t in [0, 1], the set µt = {x in X: µ(x) ≥ t} is 

called a level subset (subgroup) of the fuzzy subset 

(subgroup) µ. 

Remark 1.1.9.1: the set µt if it is group can be represented as 

Gt
µ 

Definition 1.1.10: Let µ be a fuzzy subgroup of a group G. 

The set H = {x in G: µ(x) = µ(e)}is such that o(µ) = o(H). 

Definition 1.1.11: Let µ be a fuzzy subgroup of a group G. µ 

is said to be normal if sup µ(x) = 1 for all x in G. It is said to 

be normalized if there is an x in G such that µ(x) = 1. 

Theorem 1.1.12: A fuzzy subset µ of the group G is a fuzzy 

subgroup of G if and only if µ(xy-1) ≥ min{µ(x), µ(y)}. 

Proposition 1.1.13: A fuzzy subset µ of a group G is a fuzzy 

subgroup of G if and only if µ(xy-1) ≥ min { µ(x), µ(y)} 

2. FUZZY SUBGROUPS 

2.1 Proofs of Some Results 
Proposition 2.1.1: Let G be a group and µ a fuzzy subgroup of 

G. Then the level subgroup µt is a subgroup of G, with µ(e) ≥ t 

in [0, 1] and e is the identity of G. 

Proof: Since G is a group, g, g-1, e∈G, the equation e = gg-1 is 

true. Note that µt is not empty since µ(e) ≥ t. Let g, g-1, be in 

µt. See that µ(gg-1) = µ(e). Then µ(e) = µ(gg-1) ≥ min {µ(g), 

µ(g-1)}≥t since both g and g-1 are in µt. Then, µ(gg-1) ≥ t. 

Thus, the product gg-1 is in µt. Hence µt is a subgroup of G. 

Proposition 2.1.2: Let G be a group and µ a fuzzy subset ofG. 

Then µ is a fuzzy subgroup of G and only if Gt
µ is a level 

subgroup of G for every t in [0, µ(e)], where e is the identity 

of G. 

Proof: Assume that µ is a fuzzy subgroup of G. Then any x, y 

in Gt
µ is such that x, y in G. Hence, µ(xy) ≥                        

min { µ(x), µ(y)}≥ t and µ(y-1) = µ(y). If we let x, y-1 be in Gt
µ 

then they are also in G. So µ(xy-1) ≥ min { µ(x), µ(y-1)}≥ t. 

Then, xy-1 is in Gt
µ. Gt

µ is a subgroup of 
. By 2.1,                  

0 ≤ t ≤ μ(�). Hence, Gt
µ is a group for all t ∈ �0, μ(�)�. 



International Journal of Computer Applications (0975 – 8887)  

      Volume 81 – No 14, November 2013 

21 

Conversely, assume Gt
µ is a subgroup of G for all t in           

[0, µ(e)]. Then, for any x, y is in Gt
µ, xy is also in Gt

µ. Hence, 

µ(e) = µ(xx-1) ≥ min{µ(x), µ(x-1)}= µ(x) or µ(x-1). If 

min{µ(x), µ(x-1)}= µ(x) and choosing x = y, µ(xy-1) ≥ 

min{µ(x), µ(x)}≥ min{ µ(x), µ(y)}. Or if µ(xx-1) ≥ min{µ(x), 

µ(x-1)}= µ(x-1) = min{ µ(x-1), µ(x-1)}. If y = x-1 is chosen and 

y-1 = (x-1)-1, µ(xy-1) ≥ min{µ(x), µ((x-1)-1)} = min{µ(x), µ((x)} 

≥ min{µ(x), µ(x-1)} = min{µ(x), µ(y)}. Then the inequality 

µ(xy-1) ≥ min{µ(x), µ(y)} holds. In both cases, apply 1.12. So, 

µ is a fuzzy subgroup of G. 

Proposition 2.1.3: Let µ be a fuzzy subgroup of a group G and 

x in G. Then µ(xy) = µ(y) for every y in G if and only if µ(x) 

= µ(e). 

Proof: Assume µ(xy) = µ(y). Since G is a group, g, g-1, e in G 

and the equation e = gg-1 is true for e in G. Also associativity 

holds in G such have that µ((xy)y-1) = µ(yy-1) implies that 

µ(x(yy-1)) = µ(yy-1) which also implies that µ(xe) =µ(x) = 

µ(e). 

Conversely, assume µ(x) = µ(e). Let y and y-1 be in G. µ(x) = 

µ(e) implies the following: µ((xy)y-1) = µ(e), µ((xy)y-1) = 

µ(e), µ((xy)y-1y) = µ(ey) and µ(xy) = µ(y). 

Proposition 2.1.4: H as described in 1.1.10 can be realized as 

a level subgroup. 

Proposition 2.1.5: Let µ be an improper (i.e. constant) fuzzy 

subgroup of G. Then the order of o(G) = o(µ). 

Proof: The set H = {x in G: µ(x) = µ(e)}is such that o(µ) = 

o(H). But µ is constant on G so that for all x in G, µ(x) is say 

t. But e is also in G. Then µ(e) = µ(x) = t. The set H = G so 

that o(µ) = o(H) = o(G). 

Proposition 2.1.6: Let G be a finite group of order n and µ a 

fuzzy subgroup of G. The following are equivalent: 

(i) G is cyclic 

(ii) o(µ) = 1 

(iii) The only level subgroup of G is trivial 

Proof: Assume G is cyclic. G = {am: m in Z}. Since G is of 

order n, (am)n = e. This element in G is unique. So H = {e} 

and o(µ) = o(H) = 1 

Assume o(µ) = 1. H which is a level subgroup of G by 2.1.4 

has just one element. This is the group {e}. 

Assume that G has only one level subgroup {e}. Then amn = e 

for some m, n in Z. So G = {a1, a2, a3, … , amn = e}. Hence, am 

generates G so that G = {am: m in Z}. 

 Proposition 2.1.7: The group G is abelian if and only if every 

fuzzy subgroup of G is normal. 

Proof: If G is abelian, xy = yx for every x and y in G. 

Obviously, for any fuzzy subgroup µ of G, µ(xy) = µ(yx). 

This means µ is a fuzzy normal subgroup. 

Conversely, let any µ of G be a fuzzy normal subgroup, then 

µ(xy) = µ(yx) which implies that xy =yx for all x and y in G. 

G is abelian.  

3. FUZZY COSETS 
3.1 Independent Proofs of Some Results On 

Fuzzy Cosets 

Proposition 3.1.1: Let µ be a fuzzy subgroup of a group G. 

Then aGt
µ = Gt

aµ for every a in G and t in [0, µ(e)]. 

Proof: By 2.1.2, Gt
µ is a subgroup of G. Let                         

aGt
µ = {ax: x is in Gt

µ}. Then, aGt
µ is a left coset in G 

containing a so that aGt
µ is a partition of G into its level 

subgroups. Also, define Gt
aµ = {x in G: (aµ)(x) = µ(a-1) ≥ t}. 

Then µ(a-1x) ≥ min{µ(a-1), µ(x)} ≥ t. Then x and a-1 belong to 

a level subgroup of G. That level subgroup also contains a 

since it contains a-1. But G is partitioned into level subgroups 

so that if both Gt
aµ and aGt

µ are level subgroups which contain 

a, then they are the same class. 

Proposition 3.1.2: Let µ be a fuzzy subgroup of a group G. 

Then, the pseudo fuzzy coset (aµ)p is a fuzzy subgroup of G. 

Lemma 3.1.3: All left cosets of a subgroup H of a group G 

have the same order. 

Proposition 3.1.4: Let µ be a fuzzy subgroup of a finite group 

G and t in [0, 1]. Then o(G t
(aµ)p) ≤ o(G t

µ) = o(a G t
µ). 

Proof: Define Gt
(aµ)p = {x in G: (aµ)p(x) = p(a)µ(x) ≥ t} and  

Gt
µ = {x in G: µ(x) ≥ t}. Note that 0 ≤ p(a) ≤ 1 since (aµ)p(x) 

is a fuzzy subgroup of G by 3.1.2. Then, µ(x) ≥ p(a)µ(x) ≥ t. 

Thus (aµ)p(x) ≤	 µ(x) and (aµ)p ⊆	 µ. Then,                          

o(G t
(aµ)p) ≤ o(G t

µ). 

Furthermore, define aGt
µ = {ax: x in Gt

µ and µ(x) ≥ t}. By 

2.1.2, Gt
µ is a subgroup of G. Then, aGt

µ is a left coset of G. 

By 3.1.3, o(Gt
µ) = o(aGt

µ). Hence, o(Gt
(aµ)p) ≤ o(Gt

µ) = 

o(aGt
µ). 

4. PSEUDO FUZZY COSET  
4.1  Proofs of Some Fundamental Results 
Proposition 4.1.1: Any two pseudo cosets of a fuzzy subgroup 

of a group G are either identical or disjoint. 

Proof: Assume that (aµ)p and (bµ)p are any two identical 

pseudo fuzzy cosets of µ for any a and b in G. Then,         

(aµ)p (x) = (bµ)p(x) for all x in G. Assume also on the contrary 

that they are disjoint. Then, there is no y in G such that     

(aµ)p (y) = (bµ)p(y) which implies that p(a)µ(y) ≠ p(b)µ(y). 

The consequence is that p(a) ≠ p(b). This makes the 

assumption (aµ)p (x) = (bµ)p(x) false.  

Conversely, assume that (aµ)p and (bµ)p are disjoint, then 

p(a)µ(y) ≠ p(b)µ(y) for every y in G. But if it is assumed that 

this is also identical, then p(a)µ(y) = p(b)µ(y) and that means 

p(a) = p(b) so that p(a)µ(y) ≠ p(b)µ(y) cannot be true. 

Proposition 4.1.2: Let λ and µ be any two fuzzy subsets of a 

set G. Then for a in G (aµ)p is contained in (aλ)p not in the 

strict sense if and only if µ is also contained in λ not in the 

strict sense. 

Proof: Assume that (aµ)p is contained in (aλ)p. Then     

(aµ)p(x) ≤ (aλ)p(x). Thus, p(a)µ(x) ≤ p(a)λ(x). This means that 

µ(x) is contained in λ(x) not in a strict sense using definition 

1.1.7 (iii). 

Assume also that µ is contained in λ not in the strict sense. 

Then µ(x) ≤ λ(x), which implies that p(a)µ(x) ≤ p(a)λ(x). 

Hence, (aµ)p is contained in (aλ)p not in the strict sense. 

Proposition 4.1.3: Let µbe a positive fuzzy subset of a set X 

then 

(i) Any two pseudo cosets of µ are either 

identical or disjoint. 

(ii) ∪p in P{(aµ)p} = µ if p is normal 

(iii) ∪x in X{(aµ)p} = ∪p in P{(aµ)p}if	and	only	if	

p	is	normal. 
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(iv) The collection {(aµ)p : a in X} is a fuzzy 

partition of µ if and only if p is normal. 

Proof: By 4.1.1, (i) is true. 

(ii), p(a)µ(x) ≤ µ(x). Then (aµ)p(x) ≤ µ(x). Without loss of any 

generality, ∪p in P(aµ)p(x) ≤ µ(x). Thus ∪p in P(aµ)p(x)	⊆µ(x)	
by	 1.1.7 

 

(iii) Since p is normal, there is an a in X such that p(a) = 1 so 

that such p(a)µ(x) = µ(x) shows that sup (aµ)(x) = µ(x). Then 

µ(x)	 ⊆∪p in P(aµ)p(x).	 These	 two	 set	 inclusions	 give	 that					

∪p in P{(aµ)p} = µ.	

(iv)	 	 If	 ∪p in P{(aµ)p} = ∪x in X{(aµ)p},	 then	∪p in P{(aµ)p}⊆					

∪x in X{(aµ)p}.	Then	for	a	p	in	P,	(aµ)p	⊆	∪x in X{(aµ)p}.	Then	

p(a)µ(x)	≤	p(a)µ(x)	≤	µ(x)	for	all	a	in	X.	Then	there	is	an	a	

in	X	such	that	p(a)	=	1	for	which	p(a)µ(x)	≤	µ(x)	for	any	a	

or	any	p.	Hence	p	is	normal.	

Conversely,	 if	 p	 is	 normal,	 there	 is	 an	 a	 in	 X	 such	 that				

p(a)	 =	 1	 for	 which	 p(b)µ(x)	 ≤	 p(a)µ(x)	 =	 µ(x).																			

∪x in X{(aµ)p}	⊆	 	 	∪p in P{(aµ)p}.	Note	that	each	member	of		

∪p in P{(aµ)p}	 is	 in	 	 ∪x in X{(aµ)p}	 so	 that	 	 ∪p in P{(aµ)p} ⊆							
∪x in X{(aµ)p}.	

For	(iv)	Assume	{(aµ)p:	a	in	X}	is	a	partition	of	µ.	
∪(aμ)p = µ and (aµ)p ≠ (bµ)p if a ≠ b. By the assumption that 

∪(aμ)p = µ, we have ∪(aμ)p ⊆ µ. Hence, each of (aµ)p ≤µ. 

Also from the assumption µ is also in ∪(aμ)p so that µ is 

strictly greater than any of (aµ)p	 since any two elements in 

∪(aμ)p are either identical or disjoint. Then, (aµ)p(x)	<	µ(x). 
Hence there is an a in X such that p(a) = 1 and             

(aµ)p(x)	<	p(a)µ(x)	=	µ(x). Hence p is normal. Conversely, 

assume that p is normal, sup p(a) = 1. Let p(b) = 1.             

µ(x) = p(b)µ(x) in ∪(aμ)p. This implies that µ(x) ≤ (aµ)p so 

that µ ⊆	  (aµ)p	 	⊆	  ∪(aμ)p . Usually, p(a)µ(x) ≤ µ(x). This 

implies that ∪(aμ)p ⊆ µ. These inclusions show that 

∪(aμ)p = µ. 

 

Proposition 4.1.4: Let µ and λ be any two fuzzy subsets 

of X. Then for a in X, (aµ)p	⊆	(aλ)p if and only if µ ⊆	λ. 

 

Proof: Assume (aµ)p	⊆	(aλ)p. Then for any x in X,  

(aµ)p(x)	≤	(aλ)p(x) which implies that p(a)µ(x) ≤ p(a)λ(x). 

Hence, µ(x) ≤ λ(x). In which case µ ⊆	λ. 

Conversely, assume µ ⊆	 λ, then µ(x) ≤ λ(x) which also 

implies p(a)µ(x) ≤ p(a)λ(x). Thus, (aµ)p(x)	 ≤	 (aλ)p(x), 

meaning that (aµ)p	⊆	(aλ)p. 
Proposition 4.1.5: Let µ be a fuzzy subgroup of any group G. 

Let {µi} be a partition of µ. Then  

(i) each µi is normal if µ is normalized 

(ii) each µi is normal if µ is normal. 

Proof: Note that for each i µi ⊆ µ which implies that µi(x) ≤ 

µ(x) for all x in G. (i) Since µ is normalized, there is an xo in 

G such that µi(xo) ≤ µ(x) ≤ µ(xo) = 1for each i. Then µi(xo) ≤ 1. 

Then sup µi(xo) = 1. (ii) Since µ is normal, sup µ(x) = 1, then 

µ(x) ≤ 1. But µi(x) ≤ µ(x) ≤ 1. Then, µi(xo) ≤ 1 and               

sup µi(xo) = 1. 

5. Pseudo Fuzzy Double Coset 

5.1 Independent Proofs 
Proposition 5.1.1: Let µ and λ be any two fuzzy subsets of a 

set X and p in P. The set of all pseudo fuzzy double coset 

{(λxµ)p : x in X} is a partition of (λ∩µ) if and only if p is 

normal. 

Proof: Assume that the set {(λxiµ)p : x in X} is a partition of 

(λ∩µ). Then any two members are either identical or disjoint. 

By the equality λ∩µ = ∪(λxiµ)p, ∪(λxµ)p ⊆  λ∩µ holds. 

Hence the chain (λx1µ) p < (λx2µ)p < (λx3µ)p <…< λ∩µ holds. 

This yields (x1λ)p∩(x1µ)p < (x2λ)p∩(x2µ)p < (x3λ)p∩(x3µ)p 

<…<λ∩µ = min{λ, µ}. This in turn yields               

min{p(x1)λ, p(x1)µ} < min{p(x2)λ, p(x2)µ}<           

min{p(x3)λ, p(x3)µ}< … < min{λ, µ}. Then, p(x1)min{λ, µ} < 

p(x2)min{λ, µ}< p(x3)min{λ, µ}< … < min{λ, µ}. Hence, 

p(x1) < p (x2) < p (x3) < … < 1. Then there is an xo in X so 

that p(xo) = 1 and p(x1) < p(x2) < p(x3) < … p(x) = 1. Then 

p(x) ≤ 1 and Sup p(x) = 1. Then p is normal. 

Conversely, if p is normal, then xo is in X such that            

p(x) ≤ p(xo) = 1. Then (λxiµ)p ≤ (λxoµ)p = p(xo)λ ∩ p(xo)µ = 

λ∩µ for all i. Then ∪(λxiµ)p ⊆  λ∩µ. (*). p(xo) λ ∩ p(xo)µ = 

(λxoµ)p ⊆ ∪(λxµ)p (**). (*) and (**) show that λ∩µ = 

∪(λxµ)p. Any (λxiµ)p
 = (λxjµ)p for i ≠ j implies p(xi) = p(xj). 

Hence no y in X so that (λxiµ)p(y) ≠ (λxjµ)p(y). Thus, the set 

{(λxiµ)p : x in X}is either identical or disjoint. 
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