
International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.12, November 2013

24

Development and Implementation of a Linux- Xenomai

based Hard Real-Time Device Driver for PCI Data

Acquisition System (DAS) Card

Amit Bhaira Gaurav Rudra Tanmoy Bag Yusuf Husainy
Advanced Computing Training School (ACTS),

Centre for Development of Advanced Computing (CDAC), Pune

ABSTRACT

This paper elaborates the implementation of a PCI based

device driver for a Data Acquisition System (DAS) Card

using the RTDM (Real-Time Driver Model) skin over

Xenomai kernel, which is integrated with the Linux kernel. A

C language kernel module was written for the PCI bus based

driver to provide hard real-time capabilities and determinism

to any application accessing the DAS card. The PCI DAS card

used consisted of 12-bit ADC, 12-bit DAC, Programmable

Digital I/O lines (TTL compatible) and Timers/Counters. In

order to test all the features of the DAS and the performance

of the driver, a test system, consisting of a 3-axis analog

accelerometer connected to the ADC of the DAS via a

junction box and powered by its DAC, was been constructed.

Additionally, a 3-axis digital accelerometer communicated

with an AVR development board via I2C in order to generate

conditioned input for the programmable digital I/O lines of

the DAS card. A graphical tilt measurement application

involving real time acquisition of the accelerometers data was

implemented using OpenGL. Finally, the driver was

thoroughly tested with this arrangement, and the interrupt

latencies were noted to be around 4µsec.

General Terms

Data Acquisition Systems, Real-Time, Xenomai, PCI, RTDM.

Keywords

Real-Time PCI Device Driver, Xenomai, RTDM, Data

Acquisition Systems

1. INTRODUCTION
There are numerous research laboratories and work places

which are working on Data Acquisition Systems and most of

the work is on PCs. Thus, these high speed PCI devices find

their utility in such scenarios and this involves these real-time

development frameworks into the picture. This device driver

is responsible for the communication between the DAS

hardware and the user space applications, in Xenomai

environment, in hard real time. The application is provided

with certain routines to configure the device as per

requirement.

1.1 Data Acquisition Systems
Data acquisition, sometimes abbreviated as DAQ or DAS,

typically involves sampling of the real world analog signals

and waveforms and then processing them accordingly to make

them suitable for digital computation.

The DAS hardware is responsible for interfacing the various

signals to PC. It can be in the form of components that can be

connected to the computer's ports (parallel, serial, USB, etc.)

or cards that can be plugged into the slots (PCI, ISA, PCI-E,

etc.) available in the mother board. The DAS application

software accesses the input values from the hardware with the

help of the device driver. This driver software allows the

operating system to recognize the DAS hardware and

conditions the incoming signals to serve the user space DAS

applications .

1.2 Real-Time Driver Model (RTDM)
The Real-Time Driver Model (RTDM) [1][2] is a

methodology to integrate the offered interfaces for developing

device drivers and associated applications under Xenomai. It

is intended to act as an intermediary between the application

requesting a service from a certain device and the device

driver offering it. It supports two different types of devices,

namely Protocol devices (All message-oriented devices fall in

this group) and Named devices (Devices registered with the

real-time subsystem under a unique clear-text name).

1.3 Peripheral Component Interconnect
Peripheral Component Interconnect (PCI) [3][4], as its name

implies is a characteristic specification that defines how to

connect the various peripheral components of a system

together meticulously in an organized fashion. The standard

elaborates the behavior of the system components and the way

they are electrically connected

PCI devices are automatically configured at boot time and the

OS then allocates the resources and provides the allocation

information to each device. Then, the device driver must be

able to access configuration information in the device in order

to complete initialization. Thus, this characteristic of auto-

detection of PCI cards or interface boards turns out to be the

most relevant subject to a PCI driver developer.

1.4 Device Drivers
A device driver [6] is a suite of kernel routines that drive a

hardware device with the help of the programming interfaces

defined by the canonical set of Virtual File System (VFS)

functions (open, read, lseek, ioctl etc.). The computational

loads levied by device drivers tend to be erratic as they are

elicited by the events that occur in the device and may

arbitrarily block or preempt other time-critical tasks. This

attribute poses significant challenges in real-time systems,

where schedulability analysis is crucial for ensuring real-time

scheduling and achieving deterministic timing requirements

without neglecting the device driver workloads at the same

time.

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.12, November 2013

25

2. XENOMAI
Xenomai [7] is a development framework, providing generic

RTOS services, which can be patched seamlessly with the

Linux kernel, to adhere to numerous RTOS environments

named as skins placed over the nucleus in order to add to the

hard real time capabilities of the Linux Operating System. In

this implementation, the RTDM skin has been used.

The Adeos/ I-Pipe allows Xenomai nucleus to handle all

incoming interrupts first, before the Linux kernel has had the

opportunity to notice them, and guarantees enforcement of

proper priority management for its threads, regardless of their

current execution domain. The Fig: 1 shows how the Nucleus

provides real-time support to the user-space and kernel-space

modules.

Fig 1: Xenomai kernel co-operating with Linux kernel

3. SOFTWARE ARCHITECTURE
This PCI driver handles multiple device instances and

maintains the list of devices handled by the driver. A private

object is maintained for each device to provide reentrancy.

The driver accesses the configuration space [8] of the device

to obtain the information about devices resources.

The user space application software comprised of five tasks

for writing DAC, reading ADC, setting timer, programmable

digital I/O and for the graphical display, which used dedicated

interfaces defined in the driver for writing DAC, reading ADC

and sending ioctl commands for setting ADC modes, DIO

modes, Timer modes, updating data registers etc.

Routines were written for initializing, exiting, probing and

removing the module. An interrupt handler [9] was also

developed for the all the interrupts arriving on the irq line

designated to the PCI card.

Fig 2: Layered Schematic of the software

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.12, November 2013

26

4. IMPLEMENTATION AND TESTING

4.1 Implementation Overview

Fig 3: Sequence Diagram for Driver Module Insertion and

Device Register

The Fig. 3 elaborates the sequence of steps followed to load

the driver module, register and probe the device[9] and

allocate resources accordingly. The blocks in the sequence

diagram, with the corresponding alphabet tags, are described

as follows:

insmod()

A. Loads the driver and calls the init() routine.

B. Calls pci_driver_register() to register itself with the

Linux PCI System.

C. Gets driver info supplied by the driver, and starts

searching for device (which was enumerated at boot

time) with matching credentials. If found, calls

driver probe() method by passing pci_dev info to it.

D. Enables the PCI device, requests for appropriate

“BAR” region of configuration space and then

registers the device with the RTDM using

rtdm_dev_register(). While registering, it provides

the addresses of the rt VFS functions for read(),

write() and iocti() and nrt functions of open() and

close().

E. RTDM maintains the addresses, and any future calls

to these driver routines from the user/fs will be

routed to the appropriate driver routine.

The Fig. 4 describes the sequential flow for the open(), ioctl()

and read() routines through the various layers with the help of

an instance from the driver i.e. ADC read. The blocks in the

sequence diagram, with the corresponding alphabet tags, are

described as follows:

Fig 4: Sequence Diagram for Open, Read and Ioctl

routines

rt_dev_open()

A. Calls driver’s open() method.

B. Does some basic h/w initialization and registers ISR

for DAS Card.

rt_dev_ioctl()

C. Calls driver’s ioctl() method.

D. Initializes ADC for use.

E. Required ADC mode and ADC channel is set.

rt_dev_read()

F. Calls driver’s read() method.

G. Enables PCI interrupt, issues start conversion

request to ADC, and then waits for hardware

interrupt.

H. Starts conversion of accelerometer data, issues end

of conversion signal which will generate interrupt.

I. Xenomai will call driver’s ISR.

J. Copies data from ADC to local buffer and signals

event on which read() was waiting.

K. In driver’s read() method, after ISR signals event,

read() will come out of wait state and ADC data is

copied from local buffer to user buffer via RTDM

by calling rtdm_safe_copy_to_user().

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.12, November 2013

27

L. RTDM will ensure read/write to user-space buffer is

safe or not, then only will copy ADC data to user-

space.

M. User-space application gets ADC data, computes tilt

and displays it graphically.

This explanation can be applied for other methods like exit(),

remove(), write() etc. as well.

4.2 Test System
Components:

 DAS Card

 Junction box

 3-axis analog and digital accelerometer

 Connecting wires.

 AVR development board

The PCI DAS card used consisted of 12-bit ADC, 12-bit

DAC, Programmable Digital I/O lines (TTL compatible) and

Timers/Counters. Thus, to test all its features and the

corresponding routines of the driver, 3-axis analog and digital

accelerometers were used.

The x, y and z axis values of the analog accelerometer were

supplied to three channels of the ADC of the DAS card

through a junction box. The driver provides these values to

the user space application which computes the tilt [10][11] on

x and y axes, and displays them as an animated graphical

scene.

Similarly the digital accelerometer communicates with the

AVR development board through I2C and sends the desired x,

y and z axis values to the DAS through the programmable

digital I/O lines which in turn is used by the same user-space

application.

Fig 5: Schematic diagram of the Test System Implementation

4.3 Observations
It was observed that the real-time performance of the driver

was excellent with a deterministic interrupt latency of around

4µsec.

Fig 6: Interrupt latency results of the kernel module

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.12, November 2013

28

4.4 Challenges Faced
Some of the major challenges that were confronted and

addressed during the experiment have been listed below:-

1. The vender id and the device id were required for

registering the PCI device, which was not specified

by the manufacturer. This was addressed by locating

this information from the configuration space or at

the following locations of the kernel:

/sys/bus/pci/devices/0000:04:00.0/vendor

/sys/bus/pci/devices/0000:04:00.0/device

2. In order to register the interrupt handler (using

rt_request_irq), the interrupt line number (IRQ

number) was a prerequisite. However, different

values of IRQ number were observed, from the

Configuration space and the PCI device structure

that is supplied by the system. Then according to the

kernel documentations available, it was concluded

that memory (MMIO), and I/O port addresses

should NOT be read directly from the PCI device

configuration space. Instead the values in the

pci_dev [9] structure should be used, as the PCI

"bus address" might have been remapped to a "host

physical" address by the arch/chip-set specific

kernel support. Thus the confusion was resolved and

the IRQ number provided by the system through

pci_dev structure was used to install the interrupt

handler.

3. Moreover, the IRQ line was shared with a Linux

device so the Linux device had to be disabled from

the BIOS settings.

5. CONCLUSION
The paper provides an insight to develop a PCI device driver

for Linux- Xenomai with a splendid real- time performance,

for systems involving acquisition of data through PC. The

implementation discussed in the paper would be helpful for

the readers, not only to work with the RTDM skin but would

also provide a picture to experiment similarly with the other

existing skins over Xenomai. And as today most Scientists

and Engineers are using personal computers for laboratory

research, industrial control and test and measurement, such

intricate PCI kernel modules built on open source platforms

would prove a lot beneficial.

6. ACKNOWLEDGEMENT
This work would never have been so successful without the

supervision, technical guidance, suggestions and critical

comments of Mr. Babu Krishnamurthy. Sincere gratitude to

him. Earnest appreciation and tribute to Mr. Rajesh Sola and

Ms. Bhawwna Aggarwal for all their assistance and support.

Lastly, a mention to the various internet forums and the kernel

documentations provided by Linux and Xenomai for their

valuable contributions throughout the research process.

7. REFERENCES
[1] Xenomai documentation at www.xenomai.org.

[2] J. Kiszka, “The Real-Time Driver Model and First

Applications”, svn.gna.org.

[3] Doug Abbott, “PCI Bus Demystified”, Elsevier, 2004.

[4] “PCI 9052 Data Book”, PLX Technology, 2000.

[5] Daniel P. Bovet, Marco Cesati, “Understanding the

Linux Kernel”, O’Reilly, 2006

[6] Jonathan Corbet, Alessandro Rubini, Greg Kroah-

Hartman, “Linux Device Drivers”, O’Reilly 2005.

[7] P. Gerum, “Xenomai – Implementing a RTOS emulation

framework on GNU/Linux”, 2004, 2008.

[8] Don Anderson, Tom Shanley, “PCI System

Architecture”, Mindshare, 1999

[9] Robert Love, “Linux Kernel Development”, Pearson

Education, 2010.

[10] Mark Pedley, AN3461 Application Note, “Tilt Sensing

Using a Three-Axis Acclerometer”, Freescale

Semiconductor, 2013.

[11] AN3182 Application Note “Tilt measurement using a

low-g 3-axis accelerometer”, ST Microelectronics, 2010.

IJCATM : www.ijcaonline.org

