
International Journal of Computer Applications (0975 8887)
Volume 81 - No. 12, November 2013

Real-time Operating System for Wireless Sensors
Powered by Renewable Energy Source

Hussein El Ghor
Lebanese University - IUT Saida

SNCS Research Center, UT, Saudi Arabia
B.P. 813 Saida, Lebanon

El-Hadi M Aggoune
Electrical Engineering Department

Sensor Networks and Cellular Systems (SNCS) Research Center
University of Tabuk, 71491 Tabuk, Saudi Arabia

ABSTRACT
Energy management is a central problem in real-time systems de-
sign, in particular for embedded wireless devices such as sensor
devices. In our work, we aim at the improvement of real-time op-
erating systems that are powered by renewable energy source (so-
lar energy, for example). The objective of this work is to develop
software components for the design of real-time operating systems.
We provide an on-line scheduling scheme, named Earliest Deadline
with energy guarantee (EDeg), in order to address the limitations in
energy harvesting systems. We also integrate EDeg scheduling al-
gorithm into CLEOPATRE open-source component library, a patch
to Linux/RTAI and evaluate the scheduling overheads of EDeg ob-
served under Linux/RTAI.

Keywords:
Energy Management, Real-time, Operating Systems, Energy Har-
vesting, RTAI.

1. INTRODUCTION
Real-time computing systems play a critical role in our society.
This is due to the fact that many complex systems rely, in part or
completely, on computer control. Examples of applications that re-
quire real-time computing include: sensor and cellular networks,
plant and process control, detection and tracking, etc.
A robust guarantee of the performance of a real-time system un-
der all possible operating conditions can be achieved only by using
more sophisticated design methodologies. Such methodologies are
combined with a static analysis of the source code and specific op-
erating systems mechanisms, purposely designed to support com-
putation under time constraints. Moreover, in critical applications,
the control system must be capable of handling all anticipated sce-
narios, including peak load situations, and its design must be driven
by pessimistic assumptions on the events generated by the environ-
ment.
Typically, a real-time system is implemented as a set of concurrent
tasks that are managed by a software called Real-Time Operating
System (RTOS). Each task performs a computational activity ac-
cording to a set of constraints. Thus, the objective of the RTOS is to
manage and control the assignment of system resources (including
the microprocessor) to the tasks in order to meet such constraints.
Nowadays, energy management becomes the central problem in
real-time systems design, in particular for autonomous communi-

cating devices (sensor networks). Such devices, mainly character-
ized by restrictions in terms of energy capacity, memory size and
computing power, impose new constraints to real-time operating
systems (RTOS). Today, the challenge, raised by the emergence of
embedded systems powered by renewable energy, is to ensure sus-
tainable autonomy if not perpetual that involves new guidelines for
RTOS in terms of scheduling and power management.
In this paper, we address the problem of scheduling hard real-time
tasks under energy constraints. The scope of the paper is to develop
software components for the design of real-time operating systems
for wireless sensors that are powered by renewable energy sources
such as solar panel and relies on a battery with limited capacity.
The remainder of the paper is organized in the following manner.
In the next section, we summarize the state of art relative to en-
ergy management in both real-time systems and real-time operat-
ing systems. Section 3 describes the CLEOPATRE project includ-
ing scheduling and fault tolerance mechanisms. In section 4, we
present the energy guarantee scheduler. Section 5 introduces the
integration of EDeg into Linux based systems. Performance eval-
uation is studied in section 6. Section 7 concludes the paper and
gives some new directions of work.

2. STATE OF ART
2.1 Energy Management in Real-Time Systems
Energy-aware real-time scheduling has been the subject of inten-
sive research. Most of the works focus on either minimizing the
energy consumption or maximizing the system performance such
as the lifetime achieved under energy constraints [1]. However,
the rechargeability of the energy storage unit is disregarded. Other
works use the techniques of Dynamic Voltage and Frequency Scal-
ing (DVFS) and Dynamic Power Management (DPM) [2]. But
solely applying these techniques has limitations in energy harvest-
ing systems because they minimize CPU power, rather than dy-
namically manage power according to the profiles of both available
energy and processor workload.
In the last decade, researchers started to address power and schedul-
ing issues but most of them do not consider both rechargeability of
the batteries and real-time constraints. In the work by Allavena et
al. in [3], power scavenged by the energy source is constant and
all tasks consume energy at a constant rate. Later in [4], Moser et
al. propose LSA (Lazy scheduling Scheduling Algorithm) to opti-
mally schedule tasks with deadlines, periodic or not. In that work,
the total energy consumption of every task is directly connected

1

International Journal of Computer Applications (0975 8887)
Volume 81 - No. 12, November 2013

to its execution time through the constant power of the processing
device. But in a real application, instantaneous power consumed
by tasks may vary along time depending on circuitry and devices
required by the tasks.

2.2 Real-time Operating Systems
In recent years, wireless sensor networks (WSN) have received
tremendous attention in the research community, with applications
ranging from home automation to industrial and environmental
monitoring. This attention imposes additional challenges on the de-
sign of special purpose operating systems deviated from the tradi-
tional ones. However, most of these OSs are non-real-time and can-
not support real-time applications. Moreover, various problems will
arise when attempting to convert a non-real-time OS to a real-time
version. Some RTOS are available, which include ThreadX from
Xpresslogic, VxWorks by Wind River, QNX Neutrino by QNX
Software Systems, and Real-time Linux (by several vendors).
Real-time operating systems are classified into two categories: sys-
tems that use light and standard versions of optimized operating
system and those who seek the best determinism by liberating
any operating system. The main difficulty with standard systems
is to find a balance between providing services of classical sys-
tems (such as dynamic allocation of memory pages that is non-
deterministic) and the predictability of these services. This pre-
dictability is a key factor for application development with strict
real-time constraints. A lot of commercial operating systems based
on UNIX are derived from this approach such as QNX53, OS-954
and LynxOS55. Moreover, research projects have been emerged
such as Mach Real-Time system that is an extension of the Mach
project [11].
Systems from the second category are derived from research
projects such as Spring [12], Maruti [14] and YARTOS [15]. Some-
times real-time operating systems of this category are based on
standard systems such as Linux. But, unlike previous systems, they
are modified to give priority to real-time applications that use only
deterministic services. The standard operating system is relegated
to the status of the task background of the real-time system that con-
trols scheduling. These systems can be found as patches to Linux
which render real-time: RTLinux [6] and RTAI [5].
Regrettably, all these systems consider time as the only limiting
factor, leaving energy efficiency as a hopeful consequence of em-
piric decisions.
Linux is now the host of most RTOS, especially for wireless sensor
networks that operate with an ambient energy source and cannot
rely on a power outlet on the wall. Thus, a power management de-
sign is needed to make the best use of the available power and to
adapt the performance of the environmental energy harvesting to
the available energy profile.
The most well-known versions of real-time Linux are: Real Time
Application Interface (RTAI) [5] and RTLinux [6]. RTAI is an open
source real-time operating system based on the standard Linux ker-
nel. The RTAI project was originated by the Dipartimento di In-
gegneria Aerospaziale del Politecnico di Milano (DIAPM) about
sixteen years ago [7]. RTAI is a plug-in which permits Linux to
fulfill some real-time constraints with no event loss. On the other
hand, RTLinux is a hard real-time operating system that runs Linux
as its lowest priority thread. RTLinux, which was originally devel-
oped at the New Mexico Institute of Technology, is an open-source
product.
Thus, we aim to enhance the power management capabilities of ex-
isting versions of Linux, such as RTLinux or Linux/RTAI, so as
to ensure sustainable autonomy if not perpetual that involves new

guidelines of RTOS for autonomous communicating devices (sen-
sor networks).

3. CLEOPATRE PROJECT
3.1 Generalities
A project named CLEOPATRE (Composants Logiciels sur
Etagères Ouverts Pour les Applications Temps Réel Embarquée)
was labeled in April 2001 and notified in January 2002 by the
French Ministry of Education and Research. The objective of this
project was to provide solutions to the development of embedded
real-time applications by providing free and open source software
components based on Linux [7]. CLEOPATRE aims to enhance the
real-time services of existing versions of Linux, such as RTLinux
[6] or Linux/RTAI [5].
In addition, many components, dedicated to real-time systems,
like dynamic scheduling, aperiodic task service, resource con-
trol access, fault-tolerance and QoS scheduling are offered by the
CLEOPATRE library (figure 1).
RTAI permits Linux to fulfill some real-time constraints in a few
milliseconds deadline and with no event loss. It is based on a Hard-
ware Abstraction Layer (HAL) [7]. The HAL defines a clear inter-
face which exports some Linux data and functions related to the
hardware.
RTAI has a microkernel, which is very close to the proposed archi-
tecture for CLEOPATRE. In fact, CLEOPATRE components can be
directly treated as microkernel system servers since they have the
same goal. We therefore choose RTAI to base our development and
to contribute its evolution by providing significant improvements.
Moreover, the choice of RTAI enables us to develop a complete
operating system where we can benefit from the rich Linux envi-
ronment (drivers, compilers, interfaces, etc.).

CLEOPATRE

Synchronization QoS Schedulers
Fault-tolerant

Schedulers

Aperiodic

Servers

RTAI

RTAI Scheduler

TCL

Task

LINUX

Scheduler

Linux Processes

T1 T2 Tn

CL1 CL2 CLn

LINUX Operating System

Hardware Abstraction Layer

Hardware

Fig. 1. CLEOPATRE Framework

The Task Control Layer (TCL) is a specific Linux module that inter-
faces CLEOPATRE with RTAI. TCL provides an internal interface
for the CLEOPATRE services [7]. The main role of TCL is to make

2

International Journal of Computer Applications (0975 8887)
Volume 81 - No. 12, November 2013

the other components independent from the operating system. Con-
sequently, we should only modify TCL to adapt the CLEOPATRE
to another real-time operating system.

3.2 Fault Tolerance Mechanisms
In any real-time operating system, many interactions are found be-
tween the control system and the various actuators [16]. Conse-
quently, many human operator functions in CLEOPATRE need to
be verified especially with respect to their temporal constraints.
Fault-tolerance is achieved via time. In real-time environments, a
fault-tolerance policy should be selected and implemented to re-
cover from errors within a certain time limit [16]. In CLEOPATRE,
the two major strategies are: software redundancy and time redun-
dancy. With time redundancy, the task schedule has some slack in
it. This is because, if some tasks need to be rerun, possibly with
less precision, critical deadlines can be still met.
In CLEOPATRE, a deadline mechanism was implemented where
each task is composed of two versions, a primary and a backup
version [17].
What is missed in CLEOPATRE is the strategy related to energy re-
dundancy. With energy redundancy, each task schedule must have
some slack energy, so that some tasks can be rerun without deplet-
ing the energy reservoir and while respecting deadlines.
As a summary, fault tolerance policy must be implemented to re-
cover from errors within an acceptable time and energy consump-
tion limit.

3.3 Scheduling Mechanisms
In real-time systems theory, task scheduling policies are princi-
pally performed by priorities. A strong work has been done during
the last decade in static and dynamic scheduling. Whereas static
scheduling requires complete predictability of the real-time envi-
ronment in which it is deployed. Instead, dynamic scheduling en-
tails higher run-time costs; however, it can adapt to changes in the
environment. Dynamic scheduling has been relegated to systems
with dynamic nature such as robotics systems, multimedia systems,
and complex control systems.
CLEOPATRE supports both static (Deadline Monotonic algorithm)
and dynamic (Earliest Deadline First) scheduling policies. Dead-
line monotonic algorithm (DM) [18] is optimal in the sense that if a
set of tasks can be scheduled by any algorithm, then it can be sched-
uled by DM [18]. The only problem in DM scheduling algorithm
is that it cannot dynamically change periods. On the other hand,
Earliest Deadline First (EDF) schedules at each instant of time t,
the ready task (i.e. the task that may be processed and is not yet
completed) whose deadline is closest to t. EDF is also an optimal
scheduling algorithm. DM and EDF are commonly implemented
in commercialized and free real-time operating systems including
Linux/ RTAI [19].
However, such algorithms consider time as the only limiting con-
straint leaving energy efficiency as a hopeful consequence of em-
piric decisions. Hence, the critical issue is how to design an energy
harvesting system that is able to find both power management and
scheduling mechanisms that can adapt dynamically the activity of
the wireless sensors according to the available energy.

4. ENERGY GUARANTEE SCHEDULER
We present a scheduling framework called EDeg [8] resulting from
the extension of the earliest deadline as late as possible (EDL)
server [9]. We modify earliest deadline first (EDF) scheduler so
as to account for the properties of the energy source, capacity of

the energy storage as well as energy consumption of the tasks. We
propose a slack-based method for delaying tasks and making the
processor inactive during recharging phases of the energy storage
unit. On-line computing by how long the tasks should be delayed
is possible thanks to EDL properties. EDeg is also based on a new
concept, the slack energy, in order to execute tasks only whenever
this cannot provoke energy starvation. The behavior of the Energy
Guarantee scheduler is illustrated in figure 2.

Energy Source

E
n

e
rg

y

S
to

ra
g

ePr(t)

Uniprocessor

Computing System

Task τ1

Task τn

τ1(C1,D1,E1,T1)

τn(Cn,Dn,En,Tn)

Scheduled Tasks

{τ1,τ2,…,τn}

Fig. 2. A Real-Time Energy Harvesting System model

So, in order to formally present the EDeg scheduler, we need to
describe precisely the two following data:

DEFINITION 1. The slack time of the system at current time
t, is the length of the longest interval starting at t during which
the processor may be idle continuously while still satisfying all the
timing constraints of the tasks.

Slack time analysis has been extensively investigated in real-time
applications where aperiodic (or sporadic) tasks are jointly sched-
uled with periodic tasks.
Slack time is computed as follows: before the system begins to op-
erate, we compute the static EDL schedule for the given task set.
More precisely, we estimate the localization and the duration of the
idle times within the EDL schedule produced at time t = 0 till the
end of the hyperperiod (TLCM). The EDL schedule for the interval
[0, TLCM] can be described by means of two vectors respectively
called static deadline vector and static idle time vector, denoted by
K and D [13].
Determining the slack time at any current time t then requires
to dynamically build the EDL schedule at time t. The dynamic
EDL schedule can be memorized thanks to two vectors denoted by
K(t) and D(t) [13]. The first component of K(t) corresponds to
current time t and the following components are the deadlines of
the instances from time t until the end of the current hyperperiod.
Consequently, with such a representation, the (i+ 1)th element of
D(t) gives the length of the idle time that follows the ith deadline
in the dynamic EDL schedule produced at t. And the first element
of D(t) enables us to get the slack time of the system.

Whereas slack time is a well known concept used in the conven-
tional literature about real-time scheduling, slack energy is new and
will be explained in what follows.

DEFINITION 2. The slack energy of the system at current time
t, is the maximum amount of energy that can be consumed from t
continuously while still satisfying all the timing constraints of the
tasks.

3

International Journal of Computer Applications (0975 8887)
Volume 81 - No. 12, November 2013

So, the slack energy of the system gives the maximum energy that
could be consumed by tasks which do not belong to the task set
without ensuring the feasibility of this task set.
The computation of the slack energy for instance with deadline Dj

is performed as follows: First, the slack energy of task instance τj
at time t will be given by:

Slack energy(τj , t) = E(t) +

∫ Dj

t

Pr(k)dk −Aj (1)

Where where Pr(k) is the recharging power that varies with time
k and E(t) is the energy storage capacity at time t.
Aj is considered as the energy demand within [t,Dj) required by
the periodic instances ready to be processed between t and Dj .

Aj =
∑

Dk≤Dj

Ek (2)

Thus, the slack energy of the system at time t is determined by:

Slack energy(t) = min(Slack energy(τj , t)) (3)

The major components of the EDeg algorithm are: E(t),
Slack.energy(t) and Slack.time(t).E(t) is the energy currently
stored in the energy storage unit and Slack.time(t) is the slack
time of the system at current time t. PENDING is a boolean which
equals true whenever there is at least one job in the ready list queue.
We use function wait() to put the processor in sleep mode and
function execute() to put the processor in active mode. Task in-
stances are ordered according to the EDF rule.
The pseudo-code of EDeg algorithm is as follows.

1: while (1) do
2: while PENDING=true do
3: while (E(t) > Emin and Slack.energy(t) > 0) do
4: execute()
5: end while
6: while (E(t) < Emax and Slack.time(t) > 0) do
7: wait()
8: end while
9: end while

10: while PENDING=false do
11: wait()
12: end while
13: end while
EDeg is designed to schedule any set of time critical tasks, peri-
odic or not, given any energy source profile with constant power
production or not, and given an energy storage unit with limited ca-
pacity. It is model-free with respect to the energy source: it can be
implemented in any energy harvesting system without the need for
a priori information about the source which may be uncontrollable
and time-varying.
We demonstrated the benefits of the Energy Guarantee scheduler
by means of simulations [10]. We showed that EDeg is the most
convenient ones to be extended in real world in order to bring to
light how such algorithms can be implemented in practice in order
to provide a better efficiency and performance.

4.1 Illustrative Example
Let us consider an application that is composed of 3 periodic tasks
τi such that τi = (Ci,Di, Ti, Ei). Ci is the worst case execu-
tion time (WCET), Di is the critical delay, Ti is the period and Ei

is the energy consumption. We consider that τi will be executed

on a real-time operating system that relies on a battery of capacity
E = 6 energy units. We use a solar panel with rechargeable power
Pr = 2 to recharge the battery.
Tasks τi have the following characteristics: We used this applica-

Table 1. Task characteristics
Task WCET Critical Delay Period Consumed Energy

1 3 ms 6 ms 9 ms 8

2 3 ms 8 ms 12 ms 8

3 3 ms 12 ms 18 ms 8

tion with two components combinations. First, we tested the appli-
cation with EDF and the with EDeg.
The EDF schedule produced during the first hyperperiod is depicted
in figure 3.

time

Battery is

empty

time

time

1

2

3

Release time Deadline i Execution of task i under EDF

Fig. 3. EDF Scheduling

Applying a classical greedy scheduler such as EDF reveals impos-
sible because the system fails as soon as energy shortage occurs. In
this example, task instances τ1, τ2 and τ3 are scheduled from t = 0
till t = 9 where the battery becomes empty. Hence, the sensor ex-
ecuting the application will fail without fully executing the whole
application.
In contrast, singularity of EDeg lies in inserting processor idle
times for recharging the storage unit only whenever necessary. And
the recharging time is computed from the current slack time of the
task set in order to still guarantee all the deadlines while avoiding
energy overflow. Then, the sensor is let inactive as long as the en-
ergy storage has not filled completely and the latest start time of
the next periodic task has not been attained. Clearly, this amounts
to make slack stealing controlled by the residual capacity of the
energy storage. The EDeg schedule is described in figure 4.

time

time

time

1

2

3

Release time Deadline i Execution of task i under EDF

1 1 1

2 2

3

Fig. 4. EDeg Scheduling

In contrast to EDF, EDeg feasibly schedules the task set, with the
same characteristics of the storage unit and the power source pro-
file.

4

International Journal of Computer Applications (0975 8887)
Volume 81 - No. 12, November 2013

5. INTEGRATING EDEG INTO A LINUX BASED
SYSTEM

The CLEOPATRE library offers a set of scheduling algorithms:
Deadline Monotonic (DM), Earliest Deadline First (EDF) and Ear-
liest Deadline as Late as possible (EDL). In addition, five resource
management protocols are available: FIFO (First In First Out), Pri-
ority, SPP (Super Priority Protocol), PIP (Priority Inheritance Pro-
tocol) and PCP (Priority Ceiling Protocol).
As described in [16], the Task Control Layer (TCL) plays
the role of managing the TaskType through a set of functions
(TCL CREATE, TCL DESTROY, TCL KILL, TCL READY,
TCL BLOCK and TCL SCHEDULE).
Dynamic scheduling of periodic tasks with energy constraints,
namely EDeg algorithm, is put in additional shelf called Energy
Harvesting Shelf (EHS).

5.1 Basic Structures
The main structure of our EHS scheduler is the task
parameters, which is defined in a header file named,
$RTAI DIR/include/EHS.h, as struct TaskParameters.
This structure contains the parameters for every task as described
in the following structure:

typedef struct TaskParameters TaskType;
struct TaskParameters{
void (*fct) (TaskType *); /*pointer to the task function*/
TaskType TCL task; /*task parameters*/
TimeType delay; /*critical delay*/
TimeType period; /*period of activation*/
TimeType release time; /*time at which the task is released*/
EnergyType consumed energy; /*energy needed to execute the task*/
unsigned int slack time; /*slack time of the system*/
unsigned int slack energy; /*slack energy of the system*/
};
At initialization time, the user has to set all the task parameters in
the task set (period Ti, critical delay Di, energy consumption Ei

...). In addition, the user has several functions to use in the EDeg
scheduler as given below:

— EHS create: create a new task.
— EHS resume: resume a task.
— EHS wait: wait till next period.
— EHS delete: delete a task.
— EHS execute: execute a task.
— EHS compute E(t): compute the capacity of the storage unit at

time t.
— EHS compute slack energy(t): compute the slack energy of the

system at time t.
— EHS compute slack time(t): compute the slack time of the sys-

tem at time t.

5.2 Scheduling Algorithms
The scheduling of EHS tasks is coded in the EHS schedule() func-
tion where two modules are added: EDF module and EDeg module.
We aim at providing scheduling solutions for weekly-hard real-
time systems where energy constraints are taken into considera-
tion. At this level, will enrich the CLEOPATRE library with en-
hanced scheduling components based on EDeg scheduling algo-
rithm. Scheduling of EDeg occurs on timer handler activation (each

8254 interrupt) as used in [16]. The list of waiting tasks (wait-
ing list) is sorted in increasing order of deadline. Preemption is
enable in the sense that a job can be preempted and later resumed
at any time and we have to compute the time loss associated with
such preemption.

5.2.1 EDF Algorithm Implementation. In EDF module, the
EHS schedule() routine attempts to release tasks from the waiting
list. The task is executed as soon as possible with no inserted idle
time. Such implementation is known as earliest deadline as soon as
possible (EDS) [9]. For a given periodic task set, the EDS schedule
can be pre-computed and memorized in order to reduce scheduling
overheads at run time.
The algorithmic description of EDF is given below:

EHS schedule (t : current time)
begin
/*Check the waiting list (waiting list) in order to release tasks*/

while (task=next(waiting list)=not(∅)) do
if (task→release time <t) then

break
else if (EHS compute E(t)<0) then

break
else

EHS execute
Erase task from waiting list

end if
end while
end

5.2.2 EDeg Algorithm Implementation. In EDeg module, the
EHS schedule() routine attempts to release tasks from the waiting
list. The task is executed as soon as possible as long as there is
sufficient energy in the storage unit. When this condition is not ver-
ified, the processor has to sleep so that the storage unit recharges
as much as possible and as long as all the deadlines can still be met
despite execution postponement.

EHS schedule (t : current time)
begin
/*Check the waiting list (waiting list) in order to release tasks*/

while (task=next(waiting list)=not(∅)) do
while (task→release time <t) do

EHS wait
end while
while (EHS compute E(t)>0 &&
EHS compute slack energy(t)>0) do

EHS execute
end while
while (EHS compute E(t)<E &&
EHS compute slack time(t)>0) do

EHS wait
end while
Erase task from waiting list

end while
end

6. PERFORMANCE EVALUATION
The performance of our real-time operating system was studied on
a 1.8GHz Core 2 Duo. During initialization and termination, we
can create and destroy a task in 1.4µs and 0.22µs respectively.

5

International Journal of Computer Applications (0975 8887)
Volume 81 - No. 12, November 2013

6.1 Varying Number of Tasks
One of the most important experiments is the overhead introduced
by the EHS schedulers. By definition, the overhead of an operating
system represents the time lost in handling all kernel mechanisms,
such as context-switching overhead, task scheduling management
overhead and so on.
In this experiment, we take interest in the overhead caused by con-
text switching and by computing the slack time and slack energy.
Experiments done in this category assess overhead by varying the
number of tasks with periods of 10 milliseconds each one. Tasks
are generated with a hyperperiod of 3360 ticks. Measurements were
performed over a period of 100 seconds on a computer system with
a 1.8GHz Core 2 Duo processor with 2 GB RAM.

0 5 10 15 20 25 30
0

100

200

300

400

500

600

700

800

900

1000

Number of Tasks

O
ve

rh
ea

d
(µ

 s
)

EDF
EDeg

Fig. 5. Overhead of EDF and EDeg schedulers by varying the number of
tasks

The overhead we show for the EHS scheduling components indi-
cates that overhead of EDF and EDeg scales with the number of
installed tasks. The overhead in EDF is directly linked to the time
needed to preempt a task, save its context, load the context of an-
other task, and resume that task. As the number of tasks increase,
the number of preemptions increase and consequently the time
overhead increases. This time is approximately negligible when
compared to the task period (max. 0.6%).
Figure 5 shows that when the number of tasks increases, the time
overhead coming from one computation of slack time and slack en-
ergy increases and consequently the time overhead increases. How-
ever, this time is very low when compared to the whole measure-
ment period (max. 10%).

6.2 Varying Processor Utilization
In this experiment, we compute the time overhead by varying the
processor utilization (Up =

∑n
i=1

Ci
Ti

). Under EDeg, as Up varies,
overhead of slack energy is approximately constant. This is because
we compute slack energy each time we start the execution of a task
while higher priority tasks will be released in the future. In addi-
tion, overhead for slack time is approximately constant since we
compute the slack time each time the battery is empty.
As for EDF, as the processor utilization increases, the number of
preemptions increases and consequently the time overhead will in-
crease. However, the overhead time under full processor utilization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

100

200

300

400

500

600

700

800

900

1000

1100

Processor Utilization (Up)

O
ve

rh
ea

d
(µ

s)

EDF
Slack Time
Slack Energy
EDeg

Fig. 6. Overhead of EDF and EDeg schedulers by varying Up

is about 100µs which is 1% of the task period. This time is approx-
imately negligible.
The overhead time for EDeg is computed by adding the overhead
time due to slack time, slack energy and preemptions. The max-
imum overhead time is obtained when the processor utilization is
equal to one. This time is about 1050µs which is 10.5% of the task
period. Thus, the overhead time is still in the acceptable margin
and does not affect the gain in performance of EDeg.

7. CONCLUSION
Real-time operating systems has been a very active research area in
the last fifteen years. Many RTOS have been built with extremely
different ideas. Real-time research has also influenced many stan-
dards such as real-time variants of Linux. Real-Time Linux pro-
vides a way to answer the needs of the new wireless sensor applica-
tions such as overload conditions and quality of service guarantees.
However, new challenges continue to be posed to RTOSs. Re-
cently, significant attention has been also paid to power manage-
ment RTOSs where the operating system attempts to operate in a
so-called energy neutral mode by consuming only as much energy
as harvested. In addition, new generation of wireless sensors are
more energy consuming and in most of them, recharging or replac-
ing batteries is not practical or permitted. Consequently alternative
power sources which are present in the environment should be em-
ployed.
Our work is then to develop a software model to evaluate the feasi-
bility of integrating real-time scheduling algorithms under energy
constraints in the form of software components on a real-time oper-
ating system. Starting from application specifications (tasks, profile
of the energy source and the characteristics of the energy storage
unit), the operating system must decide the feasibility of the appli-
cation and build an appropriate solution regarding scheduling and
dynamic power management.
Simulation study evaluate the impact of overheads on the relative
performance of EDeg and EDF. From the beginning, we demon-
strated that there the time overhead under EDF scheduling is ap-
proximately negligible since it does not exceed 1% of the task pe-
riod in the worst strategies. In addition, we proved that the overhead
time caused by EDeg scheduling is not greater than 11% of the task

6

International Journal of Computer Applications (0975 8887)
Volume 81 - No. 12, November 2013

period in the above experiments. Such value is still in the accept-
able margin and does not affect the gain in performance of EDeg.
In practice, EDeg algorithm offered an efficient scheduling of pe-
riodic tasks in terms of the low time overhead. Hence, it will be
interesting to be used in applications involving even more than 30
tasks.
Several interesting issues need further attention. To expand the
applicability of our operating system, it is important to incor-
porate additional power management techniques including volt-
age/frequency scaling and dynamic power management to support
more effective power-aware designs.

Acknowledgment
The Authors gratefully acknowledge the support for this study from
SNCS Research Center, the University of Tabuk, and the Ministry
of Higher Education in Saudi Arabia.

8. REFERENCES

[1] A. Sinha, A. Chandrasan, Dynamic power management in
wireless sensor networks, IEEE Design and Test of Com-
puters 18(2), pp. 62-74, 2001.

[2] M.T. Scmitz, B.M. Al-Hashimi and P. Eles. System-Level Tech-
niques for Energy Efficient Embedded Systems. Kluwer Aca-
demic Publishers, 194 pages, 2004.

[3] A. Allavena and D. Mosse. Scheduling of frame-based embed-
ded systems with rechargeable batteries. In Workshop on
Power Management for Real-time and Embedded systems (in
conjunction with RTAS 2001), 2001.

[4] C. Moser, D. Brunelli, L. Thiele, L. Benini. Real-time schedul-
ing for energy harvesting sensor nodes. Real-Time Systems,
Volume 37, Issue 3, Pages: 233 - 260, December 2007.

[5] P. Mantegazza. DIAPM RTAI for Linux : Why’s, what’s and
how’s. Real Time Linux Workshop, University de Technol-
ogy of Vienna, 1999.

[6] C.M. Krishna and K.G. Shin. Real-Time Systems. McGraw-
Hill Series in Computer Science, 448 pages, 1997.

[7] Maryline Silly-Chetto, Thibault Garcia-Fernandez and Audrey
Marchand. CLEOPATRE: Open-source Operating System Fa-
cilities for Real-time Embedded Applications. Journal of
Computing and Information Technology - CIT 15, 2007.

[8] Hussein El Ghor, Maryline Chetto, and Rafic Hage Chehade, A
Real-Time Scheduling Framework for Embedded Systems with
environmental energy harvesting. International Journal of
Computers & Electrical Engineering, pp. 498-510, 2011.

[9] H. Chetto, and M. Chetto. Some results of the earliest dead-
line scheduling algorithm. IEEE Transactions on Software
Engineering, 15(10): 1261-1269, 1989.

[10] Maryline Chetto, Hussein EL Ghor and Rafic Hage Chehade.
Real-Time Scheduling for Energy Harvesting Sensors. The
6th International Conference for Internet Technology and Se-
cured Transactions, Abu Dhabi, UAE, December 11-14, pp.
396 - 402, 2011.

[11] Tokuda H., Nakajima T., Rao P. Real time MACH: Towards
a predictable real-time system. Proceedings of the Usenix
MARCH Workshop, vol. 1, 1990.

[12] Stankovic J.A., Ramamritham K. The Spring kernel: A new
paradigm for real-time systems. IEEE Software, 1991.

[13] M. Silly-Chetto, The EDL Server for scheduling periodic and
soft aperiodic tasks with resource constraints, Real-Time Sys-
tems, 17(1), pp.1-25, 1999.

[14] Saksena M., Da Silva J. Agrawala A. Principles of real-time
systems. chapter design and Implementation of Maruti II Pren-
tice Hall, 1994.

[15] Jeffay K., Stone D.L., Poirier D.E. Kernel support for effi-
cient, predictable real-time systems. Proceedings of Joint IEEE
Workshop on real-time operating systems and software, pages
8-13, 1991.

[16] T. Garcia, A. Marchand and M. Silly-Chetto. CLEOPATRE:
A R & D project for providing new real-time functionalities to
RTAI Linux. 5th Real Time Linux Workshop, Valence (Esp.)
, 9-11 Nov 2003.

[17] H. CHETTO, M. SILLY-CHETTO. An adaptive scheduling
algorithm for a fault-tolerant real time system. Software En-
gineering Journal, 6(3), pp. 93?100, May 1991.

[18] Leung J-Y-T, Whitehead J. On the complexity of fixed-priority
scheduling of periodic real-time tasks. Performance Evalua-
tion Journal. 2(4):237?50, 1982.

[19] J.-W.-S. Liu. Real-Time Systems. Prentice-Hall, 2000.

7

	Introduction
	State of Art
	Energy Management in Real-Time Systems
	Real-time Operating Systems

	CLEOPATRE Project
	Generalities
	Fault Tolerance Mechanisms
	Scheduling Mechanisms

	Energy Guarantee Scheduler
	Illustrative Example

	Integrating EDeg into a Linux Based System
	Basic Structures
	Scheduling Algorithms
	EDF Algorithm Implementation
	EDeg Algorithm Implementation

	Performance Evaluation
	Varying Number of Tasks
	Varying Processor Utilization

	Conclusion
	References

