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ABSTRACT 

The Genetic Algorithms are generally used to draw a 

similarity between the Genetic mutation and Cross Over 

within populations from the field of biology. Genetic 

algorithms are highly and significantly parallel in nature and 

performance. These types of algorithms can be used to solve 

many other important problems such as the Graph Partitioning 

problem that deals with partitioning of graph, the famous 

Travelling salesman problems etc. Implementation of these 

algorithm shows a trade-off between Genetic search capable 

qualities and execution performance qualities. In this paper 

we worked in order to improvise the execution performance 

rate of algorithms, those particular implementations with 

lesser communications between populations are considered 

best and highly efficient. In this same direction, we tried to 

present an algorithm using discrete small subpopulation 

groups. Therefore, this particular implementation tries to 

reduce the quality of search of the algorithm. Thus, we tried to 

improve the quality of this type of search by having a 

centralized population system. Here, we analyzed some of the 

other alternatives for the implementation of these algorithms 

on distributed memory architectures in which centralized data 

can be significantly implemented. Prediction of tertiary 

protein structure is also presented in the paper as an example 

in which we tried to implement these alternatives of parallel 

algorithms on it. In the last section, we tried to summarize the 

performance analysis of the various proposed architectures.   
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1. INTRODUCTION 
Genetic Algorithms is a search technique which is heuristic in 

nature and execution. This concept draws its inspiration from 

the anciently popular scheme “the survival of the fittest” of 

natural evolution in science and technological field. This logic 

was first pioneered by John Holland in the age of 1960s. 

Genetic Algorithms is the theory that has been widely studied 

and it is used in most of the fields. In genetic algorithms, a 

collection of possible solutions, known as population are 

maintained, monitored and executed. This type of search 

algorithm proceeds in steps generally referred as generations 

similar as in nature. Therefore, each generation mainly 

involves transformation of many individual solutions based on 

their individual fitness functions and results in a new 

population of solutions with different parameters associated 

with them. There are majorly two operators of transformation 

that are considered in genetic algorithms: crossover and 

mutation.  

In cross over transformation, the individual pieces of solution 

are completely swapped to give new solutions and their 

fitness is tested upon for results. After finishing crossover, the 

concept of mutation is applied which involves random 

selection of new characteristics for the solution obtained. The 

termination is completely based on pre- defined number of 

steps or a pre-specified level of optimality for future reference 

as well. Genetic Algorithms significantly provides alternative 

methods for solving the problem and consistently performs 

other traditional methods efficiently without any errors.  Most 

of the real world problems that involves finding of optimal 

parameter may seem to be difficult for traditional methods but 

are ideal for Genetic Algorithms in many cases. Although 

these are highly skilful in solving hard problems, they might 

also take longer execution times as compared to others. To 

counter this execution delay problem, scientists resorted to 

exploit the parallel nature of Genetic Algorithms. Thus, these 

came to be known as parallel genetic algorithms. Their 

implementation generally involves very similar issues as other 

parallel algorithms do which are explained in terms of 

granularity, synchronization and locality of reference etc. In 

addition to all these parameters, considerations about 

replication strategy, mutation, distribution of population and 

quality of search also must be addressed for better results. In 

this paper, we tend to address the issue of population 

distribution on distributed memory architectures. Thus, the 

distribution of population, improves the execution 

performance considerably. The main key point is to design 

independent processes which handle subpopulations of 

solutions individually. Implementations with least 

communications are always considered best, unique and 

significant. Other than this, there is a compromise with the 

quality of search in such implementations and results 

obtained. Here, we try to present certain alternatives for the 

parallel implementations that can be beneficial. These are 

characterized as centralized, partially distributed or fully 

distributed. Also to prove its application, we explain the 

quality of search and the execution performance of our 

strategies on the problem of predicting protein structure.  

2.  PARALLEL GENETIC ALGORITHM 

Some strategies for distribution of population for parallel 

Genetic Algorithms are discussed in this section. Here, we 

considered and analysed the synchronized processes in which 

the processors run for a certain number of generations and 

then communicate significantly. In this case, Parallel Genetic 

Algorithms can be easily implemented and are efficient in 

situations where the processors perform sufficient work 

between communications.  Various memory machines are 

discussed below: 
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2.1 Distributed memory machine 
The Distributed memory here means a multiple processor 

(more than one processor) system in which each processor has 

its own private (distinct) memory on which operations 

(processes) can be performed. Most of the computational 

procedures can be processed only on local data, and if the 

need of remote data is initiated, the computational task must 

converse with single or additional remotely connected 

processors and process the operation respectively. For such 

type of communication some form of interconnection is 

allowed and preferred to some extent. There are some links 

between processors and these links can follow standard 

protocol.  

2.2 Shared memory machines 
 In these, a number of multiprocessors have an access to a 

large memory which is different from private memory. 

Therefore, the processors need not be aware of where the data 

resides and where it should be located. But somehow, there 

are performance penalties and race conditions that need to be 

avoided in these types of implementations.  

3. Use of Parallel Genetic Algorithm on 

Distributed Memory Architectures 

Genetic Algorithms are highly parallel in nature as compared 

to other algorithms. Therefore, it is simple to implement these 

on distributed memory machines for efficient results. But, the 

distribution results in destruction of the quality of search 

results obtained in contrast to those obtained through 

centralized implementations of algorithms. This main trade-

off between search quality and distribution can be resolved 

through semi-distributed implementations. All the processors 

have their own private memories in these cases. In addition to 

these, the processors are combined together in order to form 

clusters of data. Out Of this, each cluster has its own large 

shared memory. This type of strategy exhibits least contention 

and communication overhead problems. Although, it may 

suffer from execution overhead problem. It still draws the 

benefits of centralized implementation and result in obtaining 

better search results in fewer generations as compared to 

others. In the subsequent sections we described the different 

implementation strategies we studied and analysed. 

3.1  Covenant Implementation 
The Covenant Implementation is used to achieve the most 

challenging scenario distribution of population is a single 

large population. Covenant technique solves the issue by 

creating an agreement between the kernel processor and slave 

processor. The arrangement is done in form of star topology 

where only master gets power to access the memory. The role 

of master is to gather information from the memory and run 

replication algorithm. After this, the master sends the couple 

solutions to the slaves. The slaves need to transform them 

using the genetic operators and then test their validity using 

the fitness functions. The transformed form is sent back to 

master.[1] The challenges faced by this mechanism are the 

large amount of communication, a fraction is sequential 

computation (replication) and the granularity is too fine. Such 

complications can be reduced by making the slaves work on 

several generations. Another issue is the time when master 

remains idle, while slaves are working. This problem can be 

solved by making the master work on different subset of 

population. After master is done with his work, the slaves can 

send back subpopulations to master. And the process 

continues like a handshake. 

3.2 Semi-Disparate implementations 

This strategy aims at settling for an intermediate level of 

distribution of population.  It benefits from the global 

knowledge of current population and its distribution. In this 

strategy, we have clusters of processors, each having its own 

kernel which is arranged in a torus topology. After certain 

intervals of time, all the kernels communicate with each other 

to exchange some of their best individuals. The 

communication done is synchronized, to prevent contention in 

the network. This implementation succeeds in reducing the 

overhead of maintaining a single master but suffers from the 

problem of large amount of inter-processor communication 

and semi distributed replication. 

3.3 Disparate implementations 
In this scheme all nodes work independently of each other. 

Every node has the total population of solutions and is free 

from shared population. Every node runs the complete 

sequential Genetic Algorithm on it independently. All the 

nodes are connected in torus topology. After certain intervals 

of time, all the kernels communicate with each other to 

exchange some of their best individuals. The communication 

happens during initialization (to get a description of [2] 

problem to be solved) and termination (in which all 

processors send their best individuals to the processor 

responsible for displaying the results). This implementation is 

beneficial as there is no contention among processors and all 

have their own population set also the amount of 

communication can be made as minimum as desired. 

However a lot of time is wasted because of computations done 

on locally fit solutions. 

3.4 Totally disparate implementations 
This is the other extreme followed in the distribution of 

population. In this strategy, the processors don’t exchange 

their individuals. Communication takes place only at 

initialization and termination of the algorithm. Thus, there is 

absolutely no contention and the communication is even 

lesser. 

 

4. Prediction Of Protein Structure Using 

Genetic Algorithms 

Proteins are classified as complex molecules that can be 

broken down into sequences of amino acids bounded by a 

peptide bond, which plays the main role in nearly all 

biological processes, for instance, immune response 

mechanisms, signal transduction etc. Tertiary structure is a 3 

dimensional structure, [20] native structure of a single 

polypeptide or protein, set in such a way that the hydrophobic 

side chains are held internally and the hydrophilic groups are 

held externally, providing steadiness to the molecule. This 

tertiary structure assembles the different secondary structure 

components by describing the folding of the polypeptide chain 

in a protein structure arrangement. Thus, the domain field is 

the entity of tertiary structure. The Multi-domain based 

proteins, which can be built from several other domains, 

[17][3] may represent their arrangement within each chain and 

relative to each other. However, these can also be separated 

into numerous classes on the basis of their size, their physical 

and other chemical characteristics. The chief categorization is 

done into hydrophobic residues, referring to its fragile (or 

weak) interaction to solvent water molecules, and hydrophilic 

based residues, due to its ability in construction of hydrogen 

bonds along with water (H2O). [16] Therefore, every amino 
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acid constitutes a common main-chain part, including the 

atoms N, C, O, Ca, two hydrogen atoms and a definite side 

chain. These amino acids are united by the peptide bond, the 

planar CO– NH cluster. The foremost (or main) degrees of 

freedom in forming the three Dimensional (3D) trace of the 

polypeptide chain are the two dihedral angles, x and y on each 

side of the Ca atom. [15] The side chains branch out of the 

main chain from the Ca atom and have supplementary degrees 

of freedom enabling them to adjust their local conformation to 

their surroundings. Protein structure prediction constitutes its 

importance which generally lies in its wide presence in living 

organisms, usage of the computational protein structure 

prediction directed to computer assisted drug design and 

computer assisted molecular design. Use of a near-optimal 

meta-heuristic in nature, such as a Genetic Algorithm, which 

is one of the most significant and promising optimization 

methods as it explores minimal figure of potential structures 

in this field. [4] A more prevailing exploration of the 

conformational space can be accomplished by using these 

population-based meta-heuristics. Thus, given the primary 

structure of a specified protein, we call for determining its 

ground state conformation. However, they have limited search 

intensification capacities. 

 

5. Existing Work 

Traditionally, two search methods have been employed to 

estimate the tertiary structure of a protein from its primary 

(main) structure. These two are referred to as: Molecular 

Dynamics (MD) and Monte Carlo (MC). 

Molecular Dynamics takes into account, the system’s reaction 

to the forces the atoms on each other, thus assuming that 

atoms move in a Newtonian manner on the basis of theory of 

molecular dynamics [7]. As Molecular Dynamics 

methodologies are based on the direct (straight) simulation of 

the natural folding processes, the Monte Carlo algorithms are 

based on minimization of an energy function, through a path 

that does not essentially follow the natural folding pathway 

set primarily.  

Monte Carlo method calculates the free energy of successive 

small conformational step which is then accepted if the free 

energy is reduced compared to the previous conformation. 

Therefore, the Molecular Dynamics methods almost by 

definition require a full atomic model [5] of the protein and a 

detailed energy function, but Monte Carlo methods can be 

used both on detailed models as well as on simplified models 

of proteins. 

 

6. Proposed Model 

The Monte Carlo algorithms, although efficient, are more 

likely to get caught in a local minimum. Therefore, use of 

Genetic Algorithms to tackle the protein folding trouble can 

be more effectual and significant. While folding a chain with 

a Monte Carlo algorithm (MC algo) based typically on 

altering a single amino acid, it may be general to get into a 

state where every single amendment is rejected because of a 

significant increase in free energy, and thus, only a concurrent 

change of several angles might enable further energy 

minimization. This type of concurrent change is provided 

naturally by the crossover operator of the Genetic Algorithm. 

To employ a genetic algorithm, it is obligatory to encode the 

variables of the optimization problem (complexity) into the 

genes. These genes of the parents are then operated on 

through recombination and mutation to construct the genes of 

the children.  

6.1 Selection Operator 
The selection operator tries to use a fitness function to identify 

the test individuals of the existing population that will supply 

as parents for the next upcoming generations. Fitness value of 

every individual is specified by a problem-specific function. 

Thus, the selection mechanism guarantees that the finest 

individuals have a higher probability to be selected to 

reproduce to form a novel generation. 

6.2 Fitness Function used in selection  
Various numerous energy functions have been used as a part 

of the various Genetic Algorithm based protein structure 

prediction protocols, which ranges from the hydrophobic 

potential in the simple HP lattice model to energy models 

such as CHARMM (Chemistry at Harvard Molecular 

Mechanics), based on complete and detailed molecular 

mechanics. Thus, the fitness function here can be easily 

modified to include terms that are not used in the traditional 

methods of protein structure prediction.  

6.3 Crossover 
Crossover tends to randomly select pairs of crossing points 

and exchanges substrings between them to produce new off-

springs. Thus, this primary exploration mechanism for 

Genetic Algorithms is crossover. An example of this 

operation (crossover) is that a branch is selected for crossover 

in each of the parent trees. In this particular example, the 

primary left branch from the primary parent is replaced with 

the primary right branch of the secondary parent. Therefore, 

this forms two new trees.  

6.4 Mutation 
The mutation operator is typically taken as a secondary 

operator. It is used mostly for restoring the diversity that may 

be lost from the recurring application of selection and 

crossover. Nevertheless, this operator merely takes one string 

from the population and randomly alters some value within it. 

6.5 Algorithm: Protein Structure 

Prediction 
1. Select Initial Population and consider it as G(0) 

2. Put, t ←0; 

3. Repeat loop while n(G(t))>1(Number of 

offspring’s >1) 

4. Evaluate the value (P(t)); 

5. Apply the fitness function on G(t) as                                     

G(t) ← Selection(G(t)); 

6. Alter the various reproduction operators and 

apply the chosen operator to obtain the new 

population G(t+1): G (t+1) ← Apply 

Reproduction Operator(G(t)); 

7. G(t + 1) ← G(t) 

8. Change, t = t + 1; 

9. End loop in started in Step 3 

In this above algorithm, reproduction operators are applied at 

the initial population to yield the first set of offspring's rather 

than other steps. Then, every new set of offspring's is 

iteratively tested by the fitness function (see Step 5) and if the 
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offspring's are closer to the solution, they try to undergo 

further reproduction operation (see Step 6). Thus, note that 

any of the reproduction operators may be applied to the 

offspring's. These offspring's, G (t+1) then serves as our new 

population G(t) (Steps 7 and step 8). A problem specific 

fitness function must be applied for evaluation. 

7. Experimental Results 

 

Fig. 1. Experimental Results 

In Fig 1, we assessed the performance of the above mentioned 

algorithm on every of the planned architectures and illustrated 

the results (outcome) as a graph amongst the running time and 

the count of processors used in the system model. It can be 

inferred from the above graph model that the running time in 

an incongruent implementation is significantly reduced, and 

therefore, the performance (presentation) of this 

implementation is enhanced than a covenant performance. 

Thus, there exists a trade-off amongst the performance and 

quality of search. Selection (choice) of the architecture is 

reliant in the application model. But if Genetic Algorithm is 

being used to forecast a serious problem where search quality 

(value) is a critical aspect, it would be better to prefer a 

covenant implementation despite its slow running time. 

 

8. CONCLUSION 
The protein structure prediction based problem is in particular 

appropriate for the Genetic Algorithms, as these algorithms 

have produced significantly better results as contrasted to the 

Monte Carlo (MC) method (technique). Therefore, the ability 

of the parallel genetic algorithms in describing numerous 

biological processes arrives from its exceptional ability to 

model cooperative pathways, which makes it better matched 

to predict protein structure in the respective field of study. 

The implementations in the form of disparate and semi 

disparate implementations have been proved to be more 

effective and of better time complexity. Thus, making the 

protein structure prediction even better suited concept for 

distributed memory architecture. Parallel Genetic Algorithms 

model the methods that retrieve an optimum value in an 

iterative manner. The prediction of Protein structure serves as 

an excellent example in this domain. 

9. FUTURE SCOPE 
We used genetic algorithms to predict the protein structure. In 

future some other problems can be analysed using genetic 

algorithm. As there is no end for generation building thus, 

there is no end for research on genetic algorithms. More new 

methods for dealing with these algorithms could be developed 

and analysed. We considered parallel genetic algorithm over 

distributed memory architectures. Thus, our proposed 

methodology can be improvised in terms of algorithm, 

execution time and uniqueness. 
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