
International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.11, November 2013

7

Prediction of Protein Structure using Parallel Genetic

Algorithm

Jasdeep Singh Bhalla

Department of Computer Science,

Bharati Vidyapeeth’s College of Engineering,

New Delhi, INDIA

Anmol Aggarwal
Department of Information Technology,

Bharati Vidyapeeth’s College of Engineering,
New Delhi, INDIA

ABSTRACT

The Genetic Algorithms are generally used to draw a

similarity between the Genetic mutation and Cross Over

within populations from the field of biology. Genetic

algorithms are highly and significantly parallel in nature and

performance. These types of algorithms can be used to solve

many other important problems such as the Graph Partitioning

problem that deals with partitioning of graph, the famous

Travelling salesman problems etc. Implementation of these

algorithm shows a trade-off between Genetic search capable

qualities and execution performance qualities. In this paper

we worked in order to improvise the execution performance

rate of algorithms, those particular implementations with

lesser communications between populations are considered

best and highly efficient. In this same direction, we tried to

present an algorithm using discrete small subpopulation

groups. Therefore, this particular implementation tries to

reduce the quality of search of the algorithm. Thus, we tried to

improve the quality of this type of search by having a

centralized population system. Here, we analyzed some of the

other alternatives for the implementation of these algorithms

on distributed memory architectures in which centralized data

can be significantly implemented. Prediction of tertiary

protein structure is also presented in the paper as an example

in which we tried to implement these alternatives of parallel

algorithms on it. In the last section, we tried to summarize the

performance analysis of the various proposed architectures.

Keywords

Genetic Algorithms, Protein Structure Prediction, Parallel

Genetic Algorithms, Distributed Memory Architecture

1. INTRODUCTION
Genetic Algorithms is a search technique which is heuristic in

nature and execution. This concept draws its inspiration from

the anciently popular scheme “the survival of the fittest” of

natural evolution in science and technological field. This logic

was first pioneered by John Holland in the age of 1960s.

Genetic Algorithms is the theory that has been widely studied

and it is used in most of the fields. In genetic algorithms, a

collection of possible solutions, known as population are

maintained, monitored and executed. This type of search

algorithm proceeds in steps generally referred as generations

similar as in nature. Therefore, each generation mainly

involves transformation of many individual solutions based on

their individual fitness functions and results in a new

population of solutions with different parameters associated

with them. There are majorly two operators of transformation

that are considered in genetic algorithms: crossover and

mutation.

In cross over transformation, the individual pieces of solution

are completely swapped to give new solutions and their

fitness is tested upon for results. After finishing crossover, the

concept of mutation is applied which involves random

selection of new characteristics for the solution obtained. The

termination is completely based on pre- defined number of

steps or a pre-specified level of optimality for future reference

as well. Genetic Algorithms significantly provides alternative

methods for solving the problem and consistently performs

other traditional methods efficiently without any errors. Most

of the real world problems that involves finding of optimal

parameter may seem to be difficult for traditional methods but

are ideal for Genetic Algorithms in many cases. Although

these are highly skilful in solving hard problems, they might

also take longer execution times as compared to others. To

counter this execution delay problem, scientists resorted to

exploit the parallel nature of Genetic Algorithms. Thus, these

came to be known as parallel genetic algorithms. Their

implementation generally involves very similar issues as other

parallel algorithms do which are explained in terms of

granularity, synchronization and locality of reference etc. In

addition to all these parameters, considerations about

replication strategy, mutation, distribution of population and

quality of search also must be addressed for better results. In

this paper, we tend to address the issue of population

distribution on distributed memory architectures. Thus, the

distribution of population, improves the execution

performance considerably. The main key point is to design

independent processes which handle subpopulations of

solutions individually. Implementations with least

communications are always considered best, unique and

significant. Other than this, there is a compromise with the

quality of search in such implementations and results

obtained. Here, we try to present certain alternatives for the

parallel implementations that can be beneficial. These are

characterized as centralized, partially distributed or fully

distributed. Also to prove its application, we explain the

quality of search and the execution performance of our

strategies on the problem of predicting protein structure.

2. PARALLEL GENETIC ALGORITHM

Some strategies for distribution of population for parallel

Genetic Algorithms are discussed in this section. Here, we

considered and analysed the synchronized processes in which

the processors run for a certain number of generations and

then communicate significantly. In this case, Parallel Genetic

Algorithms can be easily implemented and are efficient in

situations where the processors perform sufficient work

between communications. Various memory machines are

discussed below:

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.11, November 2013

8

2.1 Distributed memory machine
The Distributed memory here means a multiple processor

(more than one processor) system in which each processor has

its own private (distinct) memory on which operations

(processes) can be performed. Most of the computational

procedures can be processed only on local data, and if the

need of remote data is initiated, the computational task must

converse with single or additional remotely connected

processors and process the operation respectively. For such

type of communication some form of interconnection is

allowed and preferred to some extent. There are some links

between processors and these links can follow standard

protocol.

2.2 Shared memory machines
 In these, a number of multiprocessors have an access to a

large memory which is different from private memory.

Therefore, the processors need not be aware of where the data

resides and where it should be located. But somehow, there

are performance penalties and race conditions that need to be

avoided in these types of implementations.

3. Use of Parallel Genetic Algorithm on

Distributed Memory Architectures

Genetic Algorithms are highly parallel in nature as compared

to other algorithms. Therefore, it is simple to implement these

on distributed memory machines for efficient results. But, the

distribution results in destruction of the quality of search

results obtained in contrast to those obtained through

centralized implementations of algorithms. This main trade-

off between search quality and distribution can be resolved

through semi-distributed implementations. All the processors

have their own private memories in these cases. In addition to

these, the processors are combined together in order to form

clusters of data. Out Of this, each cluster has its own large

shared memory. This type of strategy exhibits least contention

and communication overhead problems. Although, it may

suffer from execution overhead problem. It still draws the

benefits of centralized implementation and result in obtaining

better search results in fewer generations as compared to

others. In the subsequent sections we described the different

implementation strategies we studied and analysed.

3.1 Covenant Implementation
The Covenant Implementation is used to achieve the most

challenging scenario distribution of population is a single

large population. Covenant technique solves the issue by

creating an agreement between the kernel processor and slave

processor. The arrangement is done in form of star topology

where only master gets power to access the memory. The role

of master is to gather information from the memory and run

replication algorithm. After this, the master sends the couple

solutions to the slaves. The slaves need to transform them

using the genetic operators and then test their validity using

the fitness functions. The transformed form is sent back to

master.[1] The challenges faced by this mechanism are the

large amount of communication, a fraction is sequential

computation (replication) and the granularity is too fine. Such

complications can be reduced by making the slaves work on

several generations. Another issue is the time when master

remains idle, while slaves are working. This problem can be

solved by making the master work on different subset of

population. After master is done with his work, the slaves can

send back subpopulations to master. And the process

continues like a handshake.

3.2 Semi-Disparate implementations

This strategy aims at settling for an intermediate level of

distribution of population. It benefits from the global

knowledge of current population and its distribution. In this

strategy, we have clusters of processors, each having its own

kernel which is arranged in a torus topology. After certain

intervals of time, all the kernels communicate with each other

to exchange some of their best individuals. The

communication done is synchronized, to prevent contention in

the network. This implementation succeeds in reducing the

overhead of maintaining a single master but suffers from the

problem of large amount of inter-processor communication

and semi distributed replication.

3.3 Disparate implementations
In this scheme all nodes work independently of each other.

Every node has the total population of solutions and is free

from shared population. Every node runs the complete

sequential Genetic Algorithm on it independently. All the

nodes are connected in torus topology. After certain intervals

of time, all the kernels communicate with each other to

exchange some of their best individuals. The communication

happens during initialization (to get a description of [2]

problem to be solved) and termination (in which all

processors send their best individuals to the processor

responsible for displaying the results). This implementation is

beneficial as there is no contention among processors and all

have their own population set also the amount of

communication can be made as minimum as desired.

However a lot of time is wasted because of computations done

on locally fit solutions.

3.4 Totally disparate implementations
This is the other extreme followed in the distribution of

population. In this strategy, the processors don’t exchange

their individuals. Communication takes place only at

initialization and termination of the algorithm. Thus, there is

absolutely no contention and the communication is even

lesser.

4. Prediction Of Protein Structure Using

Genetic Algorithms

Proteins are classified as complex molecules that can be

broken down into sequences of amino acids bounded by a

peptide bond, which plays the main role in nearly all

biological processes, for instance, immune response

mechanisms, signal transduction etc. Tertiary structure is a 3

dimensional structure, [20] native structure of a single

polypeptide or protein, set in such a way that the hydrophobic

side chains are held internally and the hydrophilic groups are

held externally, providing steadiness to the molecule. This

tertiary structure assembles the different secondary structure

components by describing the folding of the polypeptide chain

in a protein structure arrangement. Thus, the domain field is

the entity of tertiary structure. The Multi-domain based

proteins, which can be built from several other domains,

[17][3] may represent their arrangement within each chain and

relative to each other. However, these can also be separated

into numerous classes on the basis of their size, their physical

and other chemical characteristics. The chief categorization is

done into hydrophobic residues, referring to its fragile (or

weak) interaction to solvent water molecules, and hydrophilic

based residues, due to its ability in construction of hydrogen

bonds along with water (H2O). [16] Therefore, every amino

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.11, November 2013

9

acid constitutes a common main-chain part, including the

atoms N, C, O, Ca, two hydrogen atoms and a definite side

chain. These amino acids are united by the peptide bond, the

planar CO– NH cluster. The foremost (or main) degrees of

freedom in forming the three Dimensional (3D) trace of the

polypeptide chain are the two dihedral angles, x and y on each

side of the Ca atom. [15] The side chains branch out of the

main chain from the Ca atom and have supplementary degrees

of freedom enabling them to adjust their local conformation to

their surroundings. Protein structure prediction constitutes its

importance which generally lies in its wide presence in living

organisms, usage of the computational protein structure

prediction directed to computer assisted drug design and

computer assisted molecular design. Use of a near-optimal

meta-heuristic in nature, such as a Genetic Algorithm, which

is one of the most significant and promising optimization

methods as it explores minimal figure of potential structures

in this field. [4] A more prevailing exploration of the

conformational space can be accomplished by using these

population-based meta-heuristics. Thus, given the primary

structure of a specified protein, we call for determining its

ground state conformation. However, they have limited search

intensification capacities.

5. Existing Work

Traditionally, two search methods have been employed to

estimate the tertiary structure of a protein from its primary

(main) structure. These two are referred to as: Molecular

Dynamics (MD) and Monte Carlo (MC).

Molecular Dynamics takes into account, the system’s reaction

to the forces the atoms on each other, thus assuming that

atoms move in a Newtonian manner on the basis of theory of

molecular dynamics [7]. As Molecular Dynamics

methodologies are based on the direct (straight) simulation of

the natural folding processes, the Monte Carlo algorithms are

based on minimization of an energy function, through a path

that does not essentially follow the natural folding pathway

set primarily.

Monte Carlo method calculates the free energy of successive

small conformational step which is then accepted if the free

energy is reduced compared to the previous conformation.

Therefore, the Molecular Dynamics methods almost by

definition require a full atomic model [5] of the protein and a

detailed energy function, but Monte Carlo methods can be

used both on detailed models as well as on simplified models

of proteins.

6. Proposed Model

The Monte Carlo algorithms, although efficient, are more

likely to get caught in a local minimum. Therefore, use of

Genetic Algorithms to tackle the protein folding trouble can

be more effectual and significant. While folding a chain with

a Monte Carlo algorithm (MC algo) based typically on

altering a single amino acid, it may be general to get into a

state where every single amendment is rejected because of a

significant increase in free energy, and thus, only a concurrent

change of several angles might enable further energy

minimization. This type of concurrent change is provided

naturally by the crossover operator of the Genetic Algorithm.

To employ a genetic algorithm, it is obligatory to encode the

variables of the optimization problem (complexity) into the

genes. These genes of the parents are then operated on

through recombination and mutation to construct the genes of

the children.

6.1 Selection Operator
The selection operator tries to use a fitness function to identify

the test individuals of the existing population that will supply

as parents for the next upcoming generations. Fitness value of

every individual is specified by a problem-specific function.

Thus, the selection mechanism guarantees that the finest

individuals have a higher probability to be selected to

reproduce to form a novel generation.

6.2 Fitness Function used in selection
Various numerous energy functions have been used as a part

of the various Genetic Algorithm based protein structure

prediction protocols, which ranges from the hydrophobic

potential in the simple HP lattice model to energy models

such as CHARMM (Chemistry at Harvard Molecular

Mechanics), based on complete and detailed molecular

mechanics. Thus, the fitness function here can be easily

modified to include terms that are not used in the traditional

methods of protein structure prediction.

6.3 Crossover
Crossover tends to randomly select pairs of crossing points

and exchanges substrings between them to produce new off-

springs. Thus, this primary exploration mechanism for

Genetic Algorithms is crossover. An example of this

operation (crossover) is that a branch is selected for crossover

in each of the parent trees. In this particular example, the

primary left branch from the primary parent is replaced with

the primary right branch of the secondary parent. Therefore,

this forms two new trees.

6.4 Mutation
The mutation operator is typically taken as a secondary

operator. It is used mostly for restoring the diversity that may

be lost from the recurring application of selection and

crossover. Nevertheless, this operator merely takes one string

from the population and randomly alters some value within it.

6.5 Algorithm: Protein Structure

Prediction
1. Select Initial Population and consider it as G(0)

2. Put, t ←0;

3. Repeat loop while n(G(t))>1(Number of

offspring’s >1)

4. Evaluate the value (P(t));

5. Apply the fitness function on G(t) as

G(t) ← Selection(G(t));

6. Alter the various reproduction operators and

apply the chosen operator to obtain the new

population G(t+1): G (t+1) ← Apply

Reproduction Operator(G(t));

7. G(t + 1) ← G(t)

8. Change, t = t + 1;

9. End loop in started in Step 3

In this above algorithm, reproduction operators are applied at

the initial population to yield the first set of offspring's rather

than other steps. Then, every new set of offspring's is

iteratively tested by the fitness function (see Step 5) and if the

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.11, November 2013

10

offspring's are closer to the solution, they try to undergo

further reproduction operation (see Step 6). Thus, note that

any of the reproduction operators may be applied to the

offspring's. These offspring's, G (t+1) then serves as our new

population G(t) (Steps 7 and step 8). A problem specific

fitness function must be applied for evaluation.

7. Experimental Results

Fig. 1. Experimental Results

In Fig 1, we assessed the performance of the above mentioned

algorithm on every of the planned architectures and illustrated

the results (outcome) as a graph amongst the running time and

the count of processors used in the system model. It can be

inferred from the above graph model that the running time in

an incongruent implementation is significantly reduced, and

therefore, the performance (presentation) of this

implementation is enhanced than a covenant performance.

Thus, there exists a trade-off amongst the performance and

quality of search. Selection (choice) of the architecture is

reliant in the application model. But if Genetic Algorithm is

being used to forecast a serious problem where search quality

(value) is a critical aspect, it would be better to prefer a

covenant implementation despite its slow running time.

8. CONCLUSION
The protein structure prediction based problem is in particular

appropriate for the Genetic Algorithms, as these algorithms

have produced significantly better results as contrasted to the

Monte Carlo (MC) method (technique). Therefore, the ability

of the parallel genetic algorithms in describing numerous

biological processes arrives from its exceptional ability to

model cooperative pathways, which makes it better matched

to predict protein structure in the respective field of study.

The implementations in the form of disparate and semi

disparate implementations have been proved to be more

effective and of better time complexity. Thus, making the

protein structure prediction even better suited concept for

distributed memory architecture. Parallel Genetic Algorithms

model the methods that retrieve an optimum value in an

iterative manner. The prediction of Protein structure serves as

an excellent example in this domain.

9. FUTURE SCOPE
We used genetic algorithms to predict the protein structure. In

future some other problems can be analysed using genetic

algorithm. As there is no end for generation building thus,

there is no end for research on genetic algorithms. More new

methods for dealing with these algorithms could be developed

and analysed. We considered parallel genetic algorithm over

distributed memory architectures. Thus, our proposed

methodology can be improvised in terms of algorithm,

execution time and uniqueness.

10. REFERENCES
[1] R. Tanese. Parallel Genetic Algorithm for a hypercube.in

proc of 2nd int. conference on Genetic Algorithms and

its applications,1987 Volkan Kurt, Protein Structure

Prediction Using Decision Lists, 2005.

[2] ALFRED A. RABOW AND HAROLD A. SCHERAGA,

Improved genetic algorithm for the protein folding

problem by use of a Cartesian combination operator.

[3] Akshay Gupta, Sunil Kr. Singh, Khushboo Aggarwal,

“Performance of Parallel Genetic Algorithms on

Distributed Memory Architectures”, Journal of

Engineering Research and Studies, E-ISSN 0976-7916,

JERS/Vol.II/ Issue I/January-March 2011/10-17.

[4] B. Manderick, P. Speissens, Fine Grained Parallel

Genetic Algorithms, In proc of 3rd int. conference on

Genetiv Algorithms and its applications pages 428-

433,in 1989.

[5] Jane S Richardson, The Anatomy & Taxonomy of

Protein Structure Joseph D. Szustakowski and Zhiping

Weng, Protein Structure Alignment Using a Genetic

Algorithm.

[6] Ricardo Bianchini, Christopher Brown, Parallel Genetic

Algorithms on Distributed Memory Architecture.

[7] Richard Dallaway, Genetic programming and cognitive

models.

[8] Ron Unger, The Genetic Algorithm Approach to Protein

Structure Prediction Ron Unger, The Genetic Algorithm

Approach to Protein Structure Prediction.

[9] J.Y Suh and D.V. Gutch.Distributed Genetic

algorithms.Technical Report 225,Indiana

University,Computer Science Department,1987

SHAOJIAN SUN, Reduced representation model

ofprotein structure prediction Statistical potential and

genetic algorithms.

[10] Sunil Kr. Singh, Khushboo Aggarwal, Akshay Gupta, In

proc of Int. conference on Innovative Practices in

Management & Information technology for Excellence at

MAIMT, India, page 133-140.

[11] Steffen Schulze-Kremer, Genetic Algorithms for protein

tertiary structure.

[12] S. Cahon, N. Melab, E.-G. Talbi, An enabling framework

for parallel optimization on the computational grid, in:

Proc. 5th IEEE/ACM Intl. Symposium

onClusterComputing and the

Grid,CCGRID’2005,Cardiff, UK, 9–12 May, 2005.

[13] E.-G. Talbi, A taxonomy of hybrid

metaheuristics,Journal of Heuristics 8 (2002) 541–564.

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.11, November 2013

11

[14] E. Alba, G. Luque, E.-G. Talbi, N. Melab, in: E. Alba

(Ed.), Metaheuristics and Parallelism,John Wiley and

Sons, 2005.

[15] S.Cahon,N.Melab,E.-G.Talbi,ParadisEO:Aframework

forthe reusable design of parallel and distributed

metaheuristics,Journal of Heuristics 10 (2004) 357–380.

[16] B. Parent, A. Kok¨ osy, ¨ D. Horvath, Optimized

evolutionary strategies in

conformationalsampling,Journal of SoftComputing

(2006).

[17] C. Levinthal, How to fold graciously, in: J.T.P.

DeBrunner, E. Munck (Eds.), Mossbauer Spectroscopy

in Biological Systems (Proceedings of a Meeting Held at

Allerton House, Monticello, Illinois), University of

Illinois Press, 1969, pp. 22–24.

[18] J.D. Knowles, D.W. Corne, Reducing local optima in

single-objective problems by multi-objectivization, in: E.

Zitzler, et al. (Eds.), Proc. First International Conference

on Evolutionary Multi-criterion Optimization, EMO’01,

Springer,Berlin, 2001, pp. 269–283.

[19] B. Ma, S. Kumar, C.-J. Tsai, R. Nussinov, Folding

funnels and binding mechanisms, Protein Engineering

12, 713–720.

[20] J.J. Grefensttete, Parallel Adaptive Algorithms for

function Optimization, Technical reportCS-81- 19,

Nashville, Vanderbilt University.

IJCATM : www.ijcaonline.org

