
International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.10, November 2013

39

Relationship between Factors of Quality Models and the

System Development Life Cycle
Basit Habib Rana Aamir Raza Ashfaq

Bahauddin Zakariya University Multan. Bahauddin Zakariya University Multan.

ABSTRACT

Gaining quality of software depends on the way how it is

developed. To develop a quality software “System

development life cycle” is the best technique to be adopted.

Good software has the ability to map itself on a Quality Model

so that its credibility can be seen on a set of factors along with

their criterion. In this paper a Relation between phases of

SDLC and popular Factors of different Quality Models is

shown.

Categories and Subject Descriptors

1.Why certain factors are there against certain phases of

SDLC?

2. Why certain phases of SDLC there against certain factors?

are discussed.

General Terms
Reliability, Experimentation, Performance, Design,.

Keywords

Quality, Factors, Criterion, System Development Life Cycle,

Quality Models, Phases.

1. INTRODUCTION

1.1 What is a Software Quality Model?

 A software quality model is a set of Factors and Criterion

against those factors. The main idea of a software quality

model is to show such attributes which can make a software

work properly in all manners of its Domain of work. A

Quality model is based a set of factors and these factors are

based on a set of different criterions. To understand a brief but

deep knowledge of a quality model, its definition needs to be

elaborated [1],[4].

1.2 What is a Factor?

In a quality model the factor or set of factors (as a quality

model is based on a set of factors) are similar to the bones of a

quality model which develop a skeleton structure from head to

toe which shows the positioning of steps of a project or work

to be done. If the steps are properly merged into the bone then

the skeleton becomes more and more strong. But the question

is how to make this skeleton move in a proper manner that

every bone of the skeleton shows full and exact working?

For the best to be gained by the skeleton we need to again

look at the second half of the definition of a quality mode [6]l.

1.3 What is criterion?

Criterion is the sub sets of a factor. They are the joints of the

bones (factors) which show how the step of a project or work

can show flexibility for the

bones to move in a free motion and show movement for the

skeleton can move. The criterion is important as they

strengthen the skeleton of a quality model.

Criterion basically shows more domains on which elaborately

the problem or step can be distributed for their better

development or solving solution.

So the Factors and Criterion is the base of any quality model

and by using them the quality of a product can be maximally

achieved [6].

2. History of Quality Models:

The idea of quality of software product was initially introduce

by McCall et al. (1977). The idea soon gathered widespread

acceptability and several other authors contributed

significantly in the exploration and refinement of the idea. A

chronological order will be observed in the following

discussion. We will restrict ourselves to the literature related

to following four models as Software Quality Engineering

Society recognizes only those[1],[4],[6].

 McCall’s Quality Model.

 Boehm’s Quality Model.

 Dromey’s Quality Model.

 ISO/IEC 9126 Quality Model.

2.2 Explanation of Quality Models:

2.1.1 McCall’s Quality Model

In a technical report McCall et al. (1977) introduced a

hierarchical definition of factors affecting software quality.

The definition was comprehensive to cover wide range of

software development phases and was able to split software

oriented and non-oriented characteristics. Programming

language-independent metrics were developed for software-

oriented factors using Air Force databases. The report was

prepared for Rome Air Development Centre (ISIS) and the

three authors belonged to General Electric Company.

Although the objective of the study and the report was to

establish a concept of software quality and to provide the host

organization with a mechanism to quantitatively specify and

measure the desired level of quality in a software product in

terms of software metrics but the idea was welcomed beyond

the host organization.

The report is divided into three volumes namely: Concept and

Definitions of Software Quality; Metric Data Collection and

Validation; and Preliminary Handbook on Software Quality.

This model is considered as the most influential one. This may

be because being the earliest and classical it is the mother of

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.10, November 2013

40

the all models. It defines the software product as hierarchy of

quality factors, quality characteristics and quality metrics. The

model defines a set of eleven quality factors which could, by

associating one or more metrics to each factor, be used to

gauge quality of software product fully. It not only defines

metrics for each criterion and a normalization function which

establishes and validates a relation between the metrics for all

of the criteria of a factor and an overall rating to that factor

but translates the results into guidelines[6],[9].

Figure 1. McCall’s Quality Model Adapted from McCall

(1977) and Pfleeger(2003)

2.1.2 Boehm’s Quality Model

The wide spread popularity of McCall’s model attracted the

attention of the readers and writers. Within a year of its

inception McCall’s models received appreciation and criticism.

The most prominent material in this regard was presented by

Boehem et al. (1978) who had started presenting such work a

year before McCall’s model as Boehm (1976).

Boehm’s model defines the quality of software in quantitative

terms by means of set of predefined attributes and metrics. He

defined three-level hierarchy namely high, intermediate and

primitive with tree, seven and twenty-three (fifteen distinct)

characteristics respectively. These characteristics collectively

contribute to the overall quality level [6].

Figure 2. Boehm’s Quality Model Adapted from

Boehm(1978) and Pfleeger(2003)

The characteristics at the highest level, for example, can be

explained as below:

As-is utility which determines how to use quality on the basis

of as-is and where-is basis.

Maintainability gauges the level of ease in maintaining

software, if required.

Portability means if software is workable in a different

environment.

2.1.3 Dromey’s Quality Model

Although Dromey termed it as Framework not the model but

it is recognized as so. Dromey's (1995) model takes a different

way to software quality than the two models defined

previously. Dromey (1995)states:

“What must be recognized in any attempt to build a quality

model is that software does not directly manifest quality

attributes. Instead it exhibits product characteristic that imply

or contribute to quality attributes and other characteristics

(product defects) that detract from the quality attributes of a

product. Most models of software quality fail to deal with the

product characteristics side of the problem adequately and

they also fail to make the direct links between quality

attributes and corresponding product characteristics.”

That is, Dromey presented a different type of model which

emphasizes that it is impossible to build high-level quality

attributes like reliability or maintainability into a product,

rather developers may build properties that are helpful in

achieving the quality targets. The distinguishes the model

from other models by verifying that it allows the quality

required to be achieved but the successful application of the

Dromey’s model requires that the various groups involved in

the development of a software product must agree on what

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.10, November 2013

41

quality attributes should be achieved and to what level. The

Dromey’s product model can be depicted as Fig. 2.3

Figure 3. Dromy’s Quality Model Adapted from

Dromey(1996) and Pfleeger(2003)

This model received some criticism as well as it states that the

high level characteristics of quality will manifest themselves if

the components of the software product— from the individual

requirements to the programming language variables—

exhibit quality-carrying properties. The provision of quality

components does not guarantee quality of the ultimate product.

Just as quality of the individual ingredients of an apple pie

does not guarantee quality of the apple pie unless you are

experienced baker [3].

2.1.4 ISO/IEC 9126 Standard

ISO/IEC 9126 is an international standard, given by

International Standard Organization (ISO) and International

Electrotechnical Engineering to manage quality of software

products including those software products whose failure may

be detrimental to lives. It provides an all-inclusive

specification and evaluation model for the quality of software

products[6].

It has been divided into four parts as:

Quality Model (ISO/IEC TR9126-1 dated 21-06-2001)

It classifies software quality in a structured set of

characteristics some of which are part of other standard

quality models as quality factors.

Table 1. Quality Factors Present in Various Quality

Models

External metrics (ISO/IEC TR9126-2 dated 09-07-2003)

These metrics are used to measure the characteristics (and

sub-characteristics) listed in the quality model presented

above. These are applicable to running software.

Internal metrics (ISO/IEC TR9126-3 dated 09-07-2003)

These metrics are used to measure the characteristics (and

sub-characteristics) listed in the quality model presented

above. These are applicable to static software.

Quality in use metrics (ISO/IEC TR9126-4 dated 07-03-2004)

It identifies the metrics used to measure the effects of the

combined quality characteristics for the user.

3. System Development Life Cycle

SDLC the abbreviation of “System Development Life Cycle”

as it is basically a technique which is used to develop any kind

of a system. Now it depends that which type of system can be

the one to be developed. The system can be any software

system, any system based on the developing on any business

strategy, and it also is concerned with the developing of any

other automated system.

The SDLC is based on seven different phases which are all

dependent on each other and show a relevancy between them.

By seeing this relevancy between them, they also show the

ability to recursively call each other if needed for the

betterment of the system while being developed.

In software engineering, the phases of SDLC are very much

similar to the phases of a “Water Fall Model”. As they

perform the similar working of:

 Writing the code.

 Fix and removal of errors.

As seen that Preliminary investigation, Requirement

Specification, System analysis and design, are used for the

developing or in other words used for writing the code of any

project. While the phase of Integration and testing can be

declared as a neutral or a phase which is used for determining

the capacity of the project. And Installation and acceptance

along with maintenance is used for the fix and removal of

errors in any project.

So these are the seven main phases which map on the above

mentioned two clauses to develop a tolerance free project.

Relation between Phases of SDLC and Software Quality

Factors

The table 2 summarizes the relation of various phases of

System Development Life Cycle to various Factors suggested

in four recognized software quality models proposed by

McCall, Boehm, Dromey, and ISO/IEC 9126.

The Table 2 can be analysed in two different ways. Mainly the

table has the potential to answer following questions.

4. Why certain factors are there

against certain phases of SDLC?

Why certain phases of SDLC there against certain factors?

Why Certain Factors are There against Certain Phases of

SDLC?

To answer first question we will be required to each row and

for answering the other question each column will be

discussed. First question is answered first and each phase of

SDLC is taken sequentially [5].

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.10, November 2013

42

Table 2. Relation Between Phases of SDLC and Quality

Factors

Phase-I (Preliminary investigation)

The required factors are understandability, modifiability, and

functionality. At one hand, system developers’ understanding

of what is required works as the foundation of the final

product but on the other hand intender’s understanding of

what is going to be developed gives a go-ahead to the

developers. At the preliminary stage of system development

this factor will induce potentials for the high quality in the

final product.

There are chances that the intentions of the intender could not

be understood properly. Similarly explanations of the

developers’ may not get down to the intender at a satisfactory

level. Because of this or other such reasons modification may

become inevitable. The potential of modification improves

functionality by taking the rigidity off the system. These

abilities are thus required to be adjusted at the very initial

stage of SDLC [8], [9].

Phase-II (Requirement Specification)

The title of the phase is elaborative enough where we translate

project goals into defined functions and operations. End-users’

information need is also analysed at this phase.

Three factors namely reliability, usability, and functionality

are found relevant here.

Reliability which is the ability of the software not to go failed

while running can only be managed if the requirements have

been understood and transformed into functions appropriately.

This will make the software work as per design and will make

the system dependable.

The other factor found relevant to this phase of SDLC is

usability. This factor says that the function performed by the

program is also useful elsewhere and is robust against human

error. To get the quality factor incorporated, efforts should be

done at this stage of SDLC.

Functionality is the third factor involved here. At every stage,

it must be assured that the software is fully functional in all of

its areas of application. It can only be guaranteed if

requirements have been taken and documented at a

satisfactory level.

Phase-III (System Analysis and Design)

Desired features and operations of the software products are

described in detail at this phase of SDLC. These details are

presented by means of screen layouts, business rules, process

diagrams, pseudo-code and other documentation.

This seems to be the most influential phase of SDLC as it

covers a lot detail. This influence makes it attract six factors

namely Efficiency, Functionality, Human Engineering,

Reliability, Understandability and Usability. Before going

ahead these factors deserve brief look at them.

Efficiency: Software should fulfil its purpose without waste of

resources i.e. getting most of the utilized resources. It is

usually gauged with respect to time and storage.

Functionality: The capability of the software product to adhere

to standards, conventions, or regulations in laws and similar

prescriptions relating to functionality

Human Engineering: it is about robustness, integrity,

accessibility, and communicativeness of the involved humans

[5].

Reliability: The reliability of the software assures that it can

be expected to perform its intended functions satisfactorily.

Understandability: Understandability of the software states

that the purpose of the software is clear. This implies that the

variable names or symbols are used consistently, modules of

code are self-descriptive, and control structure is simple or in

accordance with a prescribed standard.

Usability: It means that it is a blend of three factors as the

software should be reliable, efficient and human engineered. It

implies that the function performed by the program is useful

elsewhere, is robust against human error, or does not require

excessive core memory.

The six factors associated with the phase-III are all related to

development and allied activities. All six factors are desired

quality features of the ultimate features. If those are

accommodated at the initial stages, only then the desired

quality can be expected in the final software.

Phase-IV (Integration/Testing)

Integration means combining two or more than two software

modules together to grow a bigger module or the final

software. Managing development of the whole project or

larger modules is usually difficult. The development of

manageably smaller modules and then their integration into a

larger one not only facilitates the developer during

development but also makes the testing of the modules easier.

The testing may be required to be redone after integration as

there are chances of compatibility issues among the modules

being integrated. At the rerun only regression type testing

would suffice.

Following factors are listed to be relevant at the stage [5], [6].

Correctness: In the perspective of integration, correctness is

the ability to get various modules integrated correctly.

Functionality: Once integrated all the modules of software

involved demonstrate full functionality and operation without

any issues of compatibility or whatever.

Efficiency: Maintaining efficiency in relatively smaller

modules is far easier than their larger counterparts. It is

possible because of having more concentrated visualization

for specialized modules.

Reliability: As it has already been discussed, modular

approach provides better conception and visualization of the

final product. It, thus, improves testing and consequently

reliability of the software. So we could correctly expect that

the software will perform its intended functions at a high level

of satisfaction.

Testability: The modules and merger of modules to form the

semi-final or final product should be testable. If a module(s)

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.10, November 2013

43

cannot be tested then it can never be reliable and may

ultimately fail to perform the intended functions. This factor

defines different methods and tools to test the part or whole of

the software project being developed.

The five factors associated with the phase-IV are all related to

integration and/or testing. Testability and reliability are

obviously linked to testing whereas correctness, efficiency,

and functionality have direct link with the integration. Three

of the five factors— namely efficiency, functionality, and

reliability— are same as discussed in phase-III of SDLC and

are desired quality features of the ultimate features.

Accommodation of these factors at the initial stage assures the

desired quality in the final software.

Phase-V (Implementation)

No software will earn any appreciation or criticism of the end-

users (the ultimate masses of users) unless it has gone

implemented. The real run is not possible without

implementation. This phase of SDLC is all about implement

and following quality factors proposed in the recognized

software quality models are relevant:

Correctness: In this perspective, correctness means assurance

regarding correct implementation of the software in all areas

of application.

Functionality: Once the software has been implemented it

must be assured that it is fully functional in all of its areas of

application.

Efficiency: The implementation phase will not be considered

finished until it has been seen that the software is efficient in

different dimensions such as execution time and memory

usage. It should also be checked if change in working

environment such as computing or physical environment

should not deteriorate the efficiency.

Integrity: Access control is the basic tool for software security.

It is desired that access may be given in an appropriate

hierarchical order. Access beyond a defined level may not be

available to users. Moreover log of (un)successful attempts for

(un)authorized access may be prepared and notification of

unusual activities may be reported to the system administrator.

Correctness, functionality, efficiency and integrity are the

factors which have a direct and influential impact on the

successful implementation of the software. Non incorporation

of any or all of these factors makes us compromise on the

success of the implemented software. This explains inclusion

of these factors against the phase of SDLC [5].

Phase-VI-(Installation and Acceptance)

End-users’ acceptance for the software is misconceived as

final acceptance but the acceptance of the intender is final.

The acceptance of software in this perspective depends on the

smooth running and successful installation. The smooth

running largely depends upon successful installation and

compatibility with the platform and allied software being run

on the platform concurrently. The level of satisfaction leading

to acceptance should not get affected by the conventional

resistance from the end-users. An objective type analysis is

thus required to reach at the right decision on the final

acceptance. Relevance of the following factors is meaningful

here.

Correctness: In this perspective too, correctness means

assurance regarding correct and successful implementation of

the software in all areas of application. Once the software is

correctly working it will have a higher probability of getting

accepted.

Functionality: Once the software has been correctly installed it

must be assured that it is fully functional in all of its areas of

application. If the software is fully functional in all areas of

application then it will be hard to get rejected.

Correctly installed and fully functional software is more likely

to be accepted.

Phase-VII-(Maintenance)

To coop with the ever-changing scenarios of the dynamic

world, the implemented software is required to be adapted

every now-and-then. The set of activities fall under this

umbrella is termed as maintenance. Regular maintenance of

the software deserves deputation of skilled (group of) people

who may be from amongst the developers or from amongst

the users. To avoid delays and complications, procedural

details such as time-lines, payment, mode of payment etc.

must be documented properly in this phase. Following factors

have the potential to affect the maintenance phase of SDLC

[5].

Maintainability, modifiability, Flexibility, and portability are

the factors which could affect the maintenance phase of SDLC.

Maintainability: Obviously software cannot be maintained if

it is not maintainable. A software may not be maintainable for

a number of reasons e.g. an extreme case when the source

code is not available. Even if the code is available,

maintainability may not be possible. Maintainability of the

software gets compromised if it has not been coded properly.

Spaghetti type coding has all the potential to ruin

maintainability. Undue uses of GOTO type statements are

equally harmful.

Modifiability: Modification is as essentially required as

maintainability to keep the software workable over a long

duration of time. The ability of the software to get modified is

termed as modifiability. Software may not be modifiable on

the same grounds as noted under maintainability. To some

extent the two factors are overlapping. The discriminating

aspects are accommodation of the newer requirements

whereas in maintainability existing system is required to be

adapted to coop with the changing environment [6].

Flexibility: Software has to be flexible enough to get fully

used in different environments without needed to be changed.

This ability of the software widens its acceptability region and

improves its functionality. The flexibility can be induced by

giving designing of the software its due attention. Presence of

the factor in the software makes it less prone to maintenance

and modification.

Portability: Portability is the strategy of writing software to

run on one operating system or hardware configuration while

being conscious of how it might be refined with minimum

effort to run on other operating systems and hardware

platforms as well. This is how the software becomes

transferable. The acceptability, flexibility, modifiability, and

maintainability all goes better if the software is portable.

The four factors namely flexibility, maintainability,

modifiability, and portability are directly related to the ability

of maintenance of the software. Compromise on any of these

factors may affect maintenance. Of course, if software loses

maintenance, it cannot be maintained. Similarly if it does not

stay flexible no maintenance is possible. Absence of

modifiability makes its maintenance impossible. Lack of

portability snatches the maintenance.

International Journal of Computer Applications (0975 – 8887)

Volume 81 – No.10, November 2013

44

5. Why certain phases of SDLC there

against certain factors?

Now we have to have a look at the Table 2 from a different

aspect i.e. we are going to answer the second question we

posed at the beginning of this section. The question was “Why

certain phases of SDLC there against certain factors?”

The factors are discussed with respect to frequency of their

occurrence against various phases of SDLC.

Functionality: This factor has been found listed against

System Analysis and Design, Integration/ Testing,

Implementation, and Installation and Acceptance.

Functionality is the capability of the software product to

adhere to standards, conventions, or regulations in laws and

similar prescriptions relating to functionality. A closer look at

the definition of the factor reveals that functionality has to be

care about at System Analysis and Design phase of SDLC

without which the phase may not be a success. Integration

and/or testing will be a failure if the functionality of the

software has been compromised. Implementation of less

functional software can be easily ruled out.

Correctness: Relevance of Integration/Testing,

Implementation, and Installation and Acceptance phases of

SDLC has been reported in the table. No software will be

successful software if it is not integrated and/or tested

correctly. Incorrectly installed system cannot be accepted.

Correct implementation is also essentially required.

Efficiency: System Analysis and Design, Integration/Testing,

and Implementation are the three phases of SDLC which were

found having relevance to the factor. As it is obvious that

without giving proper attention to the System Analysis and

Design the efficiency of the final product cannot be met up.

As far as Integration and/or Testing are concerned, they

heavily rely upon the design of software. Good design makes

integration as well as testing of the software efficient because

activities’ efficiency are ultimately based upon the inherent

structure defined at design level. Efficient implementation of

the product is guaranteed for efficiently designed, integrated,

and tested software [5], [6].

Reliability: Good design and sound testing improve

dependence upon the product. System Analysis and Design,

and Integration/Testing phases of SDLC, thus, found their

way to get listed against the factor.

Contexualness and Descriptiveness: The two factors fall in the

Preliminary Investigation phase of SDLC. These factors

demands that the requirements are needed to be given in a

sufficiently descriptive form so that the software can be

managed effectively. For the obvious reason the first phase of

SDLC is the most relevant.

Flexibility, Maintainability, Modifiability, and Portability:

The four factors listed here are all related to the ability of the

software to get maintained over its entire service life. Each

factor somehow contributes towards maintenance so it is listed

against the Maintenance phase of SDLC.

Human Engineering, Understandability, and Usability: Two of

the three listed factors namely Understandability and Usability

are related to analysis of the system whereas Human

Engineering factor is about design. This makes these factor

fall in the System Analysis and Design phase of SDLC.

Integrity: The integrity, hierarchy of access control, has a

direct relation to the Implementation phase of SDLC.

Internal: Successful deployment and then running of software

is not possible unless requirements have been sought and

understood at initial stage. This perspective makes it directly

relevant to the Requirement Specification phase of SDLC.

Testability: The obvious direct relation between testability and

testing do not deserve any explanation on why this factor is

related to Integration/Testing phase of SDLC [6], [5].

6. Conclusion

The quality of software is based on its development. If the

phases of System Developing Life Cycle and Factors of

Quality Models relate with each other, this can cause a good

understanding of the software and it can be easy for the

developer to cross check parallel both the developing and

quality in his mind. By this the constraint of time can be

reduced and quality can improve.

7. REFERENCES

[1] Boehm, B. W.; Brown, J. R.; Kaspar, H.; Lipow, M.;

McLeod, G.; and Merritt, M., ”Characteristics of

Software Quality,” North Holland Publishing,

Amsterdam, The Netherlands, 1978, vol., no., pp.

[2] Deissenboeck, F.; Juergens, E.; Lochmann, K.; and

Wagner, S. 2009. Software quality models: purposes,

usage scenarios and requirements. In Proceedings of the

7th ICSE conference on Software quality (Munich,

Germany, 2009).

[3] Dromey, R. G., “A Model for Software Product Quality,”

IEEE Transactions on Software Engineering, 1995, vol.

21, no., pp 146-162.

[4] Kitchenham, B., Pfleeger, S. L. “Software Quality: the

Elusive Target,”1996. IEEE Software, vol. 13, no. , pp.

12-21.

[5] Pressman, R. S., Software Engineering: A Practitioner’s

Approach, New York: McGraw-Hill, ISBN: 0071267824

(April 2009).

[6] Al-Qutaish, R. E., “Quality Models in Software

Engineering Literature: An Analytical and Comparative

Study,” Journal of American Science, 2010. Vol. 6, no. 3,

pp. 166-175.

[7] ISO. ISO/IEC 9126-1: Software Engineering - Product

Quality - Part 1: Quality Model. International

Organization for Standardization, Geneva, Switzerland,

2001.

[8] Voas, J. (2003). Assuring Software Quality Assurance.

IEEE Software, 20(3), 48-49.

[9] McCall, J. A., Richards, P. K., Walters, G. F. “Factors in

Software Quality, Volumes I, II, and III,” 1977. US Rome

Air Development Center Reports, US Department of

Commerce, USA.

IJCATM : www.ijcaonline.org

