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ABSTRACT 
Software metrics provide desirable means to measure design 

traits of an application under development as well as quality 

of end product. These are beneficial at various stages to 

enhance developer productivity and to make the software 

more manageable post-deployment. Investigating the strength 

of relationships among these metrics can offer more 

meaningful insights than analyzing them in isolation. This 

paper carries out a case study on an open source java based 

web server to identify correlations between several metrics 

from well known OO metrics suites. Quantitative distributions 

of classes over different metric values have also been 

observed. Results have been compared with similar past 

studies to verify the findings.  
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1. INTRODUCTION 
Incorporating software metrics for measurement purposes 

promise better supervision and handling of project 

complexities, and a potential improvement in target product 

quality. Projects are measured so as to quantify structural 

properties of source code and to recognize interdependencies 

of attributes of interest. The IEEE Standard Glossary of 

Software Engineering Terms [1] defines a metric as “a 

quantitative measure of the degree to which a system, 

component, or process possesses a given attribute.” According 

to authors of CK metrics suite [2], these measures can identify 

areas of application which may require more rigorous testing, 

potential flaws, and areas that are candidates for redesign. 

However, for enhanced understanding of these quality 

determinants, investigating the relationship among them can 

offer more meaningful insights than analyzing them in 

isolation. We calculate correlations among each set of metrics 

chosen to determine which pairs hold strong connections than 

others, indicating positive or negative influence on each other. 

Also, quantitative distributions of classes over different 

metrics’ ranges have been established to observe the statistical 

trends of each metric domain.  

The objects of this study are source code of an open source 

popular web server and, some software metrics from CK suite 

[2] and a few others which are computed through a freeware 

robust metric calculation tool. Rest of the paper is organized 

as follows. Section 2 discusses prior research and related work 

in OO metrics. Section 3 identifies the tool, software to be 

analyzed and metrics under consideration. Section 4 

implements the chosen tool on selected software to compute 

metrics, results are produced and correlation coefficients are 

calculated for each pair of metrics. Section 5 deals with 

analysis and interpretation of results. Section 6 pinpoints the 

threats to validity of results. Concluding remarks are given in 

Section 7. 

2. RELATED WORK 
Evaluating internal structure of the products through metrics 

provides objective and economical solution to quality 

assessment. Researchers have used them widely to gain clarity 

in software design and to attain stability and maturity in 

software engineering processes. Nagappan [3] empirically 

studied five Microsoft systems to find that failure prone 

software entities are statistically correlated with code 

complexity measures. Jiang [4] found that source code metrics 

perform better than design level metrics and combination of 

them performs the best. Y Ma [5] proposed a hybrid set of 

complexity metrics for large scale object oriented systems. 

Authors [6] suggested new software metrics based on coding 

standards violations to capture latent faults in a development. 

Authors [7] carried out an experiment to evaluate the practical 

use of the proposed thresholds for some OO metrics including 

DIT, coupling, NPM etc. A. Meneely et al. [8] provided a 

comparative analysis of the metrics validation criteria found 

in the academic literature. Authors [9] performed 

measurements on the source code using CK and LOC metrics 

which are proven to be correlated with software quality for 

various phases of an agile project. Based on search-based 

refactoring [10], five cohesion metrics were assessed to 

explore relationships between them using java systems. In 

their analytical study [11], managers rated data and metrics as 

the most important factor to their decision making and 

developers are also more interested in source code metrics. In 

their Industrial Experience Report [12], usefulness of two 

architecture level metrics were evaluated to quantify the 

analyzability and encapsulation within a software system. In a 

comprehensive literature review [13], OO and process metrics 

were reported to be more successful in finding faults 

compared to traditional size and complexity metrics. A set of 

extended OO metrics were proposed in [14] to quantify and 

measure difficulty in implementing changes during 

maintenance, as well as the possible effects. 
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Table 1.  Description of metrics under consideration according to CKJM2 

Metric  Full Name Category of 

Metric-suite 

Description 

WMC  Weighted 

methods per class 

CK [2] It is equal to the number of methods in the class, assuming the complexity 

value of 1 for each method. 

DIT Depth of 

Inheritance Tree 

CK [2] It provides for each class a measure of the inheritance levels from the object 

hierarchy top. 

CBO Coupling 

between object 

classes 

CK [2] It represents the number of classes coupled to a given class. 

RFC Response for a 

Class 

CK [2] It measures the number of different methods that can be executed when an 

object of that class receives a message. 

LOC Lines of Code Size metric It is the sum of number of fields, number of methods and number of 

instructions in every method of given class. 

MFA Measure of 

Functional 

Abstraction 

QMOOD [16] This metric is the ratio of the number of methods inherited by a class to the 

total number of methods accessible by member methods of the class. 

IC Inheritance 

Coupling 

Coupling 

metric 

This metric provides the number of parent classes to which a given class is 

coupled. 

CBM Coupling 

Between Methods 

Coupling 

metric 

The metric measure the total number of new/redefined methods to which all 

the inherited methods are coupled. 

 

3. SELECTION OF DATA SOURCE, 

TOOL AND METRICS ANALYZED 
In this paper, the measurements and observations have been 

conducted on the source code of Apache Tomcat1 web server 

(version 7.0.39). It is an open source software implementation 

of the Java Servlet and Java Server Pages technologies, and 

coded in pure java. Apache Tomcat powers numerous large-

scale, mission-critical web applications across a diverse range 

of industries and organizations.  

To calculate the metric values for the software selected, 

CKJM-extended 2.02 has been used which is an enhanced 

version of the original ckjm tool [15] for calculating CK and 

many other metrics. It is freely downloadable command line 

tool which processes the bytecode of compiled Java files and 

delivers the results in plain text or .XML form. Optionally, an 

XSL transformation may be used to convert the output to 

html. Since it is further needed to analyze the outcomes of the 

tool, hence in this case, metric values would be captured in 

XML file. Moreover, for the tool, a command line batch script 

had to be written to specify all the directories containing .class 

files to be measured.  

The chosen tool is capable of computing 19 size and structure 

metrics for each class; however following 8 metrics have been 

shortlisted for this study. Table 1 records a brief description of 

them, as given in tool’s manual. Since the tool takes java 

bytecode as input, it is one of the prerequisite that the project 

compiles successfully to be able to start analysis. To meet this 

requirement, Apache Tomcat source code was compiled with 

Apache Ant3 (version 1.9.0) which is a Java library and 

command-line utility that helps building software. 

4. SOFTWARE MEASUREMENTS 
Once this comprehensive groundwork is accomplished, the 

batch script is invoked from command line to run CKJM for 

Tomcat. Metrics are computed and collected in XML format 

for all java classes. At this point, it is straightforward to 

import the XML file in any spreadsheet program to make it 

                                                           
1 http://tomcat.apache.org/ 
2http://gromit.iiar.pwr.wroc.pl/p_inf/ckjm/ 
3http://ant.apache.org/ 

ready for further examination. Table 2 shows the descriptive 

statistics for metrics under consideration.  

Table 2. Descriptive statistics of metrics 

Metric  MIN MAX AVG STD-DEV 

WMC  0 319 9.32 17.04 

DIT 1 6 1.77 1.01 

CBO 0 72 3.34 5.94 

RFC 0 639 22.86 39.04 

LOC 0 8986 206.50 521.45 

MFA 0 1 0.352 0.41 

IC 0 4 0.325 0.61 

CBM 0 26 0.832 2.35 

Though these statistics provide a good overview of the nature 

of data one is dealing with, yet some interesting facts are 

inhibited. For instance, one would like to know how many 

values fall within a certain range to have an idea of 

distribution of data in each metric domain. This information is 

revealed in Fig. 1 which illustrates the histograms for each 

metric of interest having count of classes on y-axis and 

corresponding metric values on x-axis.  
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Fig 1: Histograms 

One may notice in Fig. 1 that most of metrics are right-

skewed and none of the metrics are normally distributed. This 

guides the next step where key goal is to find out 

interdependence among all by calculating correlation 

coefficient for each pair of metrics. To achieve this, 

Spearman’s rank correlation [17] test has been applied which 

is not sensitive to non-normally distributed data. The 

correlation coefficient calculated takes value from +1 to -1. A 

value close to -1 indicates negative correlation, 0 implies no 

relation and +1 is designated as positive correlation. 

Correlations are obtained in Table 3 to show entities which 

signify the strength of relationship among their counterparts.  

 

Table 3. Correlation values between OO metrics 

  WMC DIT CBO RFC LOC MFA IC CBM 

WMC 1 

      

  

DIT 0.035 1 

     

  

CBO 0.418 0.110 1 

    

  

RFC 0.850* 0.065 0.597 1 

   

  

LOC 0.747 0.064 0.551 0.918* 1 

  

  

MFA -0.249 0.819* -0.048 -0.174 -0.160 1 

 

  

IC 0.195 0.568 0.188 0.259 0.263 0.407 1   

CBM 0.242 0.571 0.227 0.295 0.285 0.375 0.955* 1 

* indicates strong relationships 

5. ANALYSIS AND RESULT 

INTERPRETATION 
Histograms, in addition, might allow us to have an 

understanding of realistic metric thresholds. Thresholds are 

highly important in interpreting values of a metric. Knowing 

reference values of software metrics might strongly contribute 

to make them useful in practice [7]. Thresholds for software 

metrics are often used in the context of fault-proneness. This 

means that a measured entity is more fault-prone, if it violates 

a threshold [18]. Hence, they can act as guidelines for 

developers to keep them at optimum levels to reduce potential 

risks. 

In Fig. 1, for instance, DIT values are 1 for 54% of the classes 

and 99.8% classes lie between 0 to 5 which is also an 

acceptable limit according to NASA technical report SATC 

[19].  In case of CBO, upper limit for 83% of classes is 5, 

again in agreement with SATC thresholds.     

It is observed in Table 3 that (RFC, WMC), (LOC, RFC), 

(DIT, MFA), (IC, CBM) hold strong connections having 

correlation coefficient greater than 0.80. RFC inspects method 

calls within the class's method bodies and WMC implies 

number of methods in a class. It is apparent that both are 

significantly associated because if the count of method 

increases, logically it will have a positive influence on number 
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of different methods that can be executed in response to a 

message. For similar reasons, RFC and LOC are also fairly 

correlated to a higher degree.  

DIT is a measure of how many ancestor classes can 

potentially affect a certain class [2]; while MFA is the ratio of 

the number of methods inherited by a class to the total number 

of methods accessible. Consequently, more the number of 

inheritance levels in object hierarchy, more the likelihood of 

having higher MFA ratio.  

IC carries highest degree of relationship with CBM as sound 

as 0.95. This makes sense because a class is coupled to its 

parent class (in case of IC) if one of its inherited methods are 

functionally dependent on the new or redefined methods; 

while CBM is the total number of new/redefined methods as 

mentioned earlier in Table 1.  

In an endeavor to verify these findings, outcomes produced 

have been compared with results of [20][21][22][23][24] 

which carried out similar studies in the past on different set of 

software and various other metrics along with subset of 

metrics undertaken by us. Results are motivating as RFC, 

WMC, LOC have been found quite significant in their case 

studies as well, along with CBO. Interestingly, CBO showed 

off no significant association with any of the metrics in our 

case. DIT is found to be weak in relation with other 

significant threesome stated above and results are in 

accordance with [20][21][22][23][24] as well.    

6. THREATS TO VALIDITY AND 

FUTURE WORK 
Like any empirical study, there are number of issues which 

should be addressed in future to build more confidence in the 

results: 

a) Software as data set was randomly chosen based on their 

huge customer base and usage in previous research studies. 

Our conclusions may be biased according to what 

representative data set (source code) was used to produce 

them. Also, data extracted and employed is from a single 

version of a project. Future research might lead us to verify 

the results across multiple versions and similar other projects. 

b) Our findings are subject to set of metrics undertaken by us. 

There exist many other which may have crucial influence on 

inferences drawn. Moreover, pairs of metrics show strong 

association in one case, but it may not be the same with 

different set of software. Change of software may indicate the 

same metrics pair to have weak connection as shown in 

various past studies also. So without taking into consideration 

other factors such as type, platform and size of software, 

generalizations to other research settings is questionable. 

Metrics that were either insignificant or were not mentioned 

here require further study. Their measured values may be low 

as a result of the distinct nature of the software.           

c) There are many tools that can measure quality metrics for 

the Java code base. This study is limited by the assumptions 

and accuracy of the CKJM in producing metrics values. 

Comparison of results with other measurement tools is an 

additional future course of action.  

7. CONCLUSION 
In this paper, a set of metrics for Apache Tomcat server have 

been calculated with the aid of CKJM, a metrics measurement 

tool, after building the source code (generating java byte 

code) with Apache ant. Degree of strength of relationship 

between each pair of metrics was derived using spearman 

correlation technique. Histograms were generated to show 

trends of distribution of values in each metric domain. Results 

reveal that (RFC, WMC), (LOC, RFC), (DIT, MFA), (IC, 

CBM) have strong connections having correlation coefficient 

greater than 0.80. Nevertheless, the relationship established 

here may be valid for only a specific population of systems.  

There are various ways in which metrics can be interpreted 

that is why metrics should be placed in a context in order to 

maximize their benefits [25]. It would be beneficial for project 

managers to use metrics to identify extreme values, isolate 

problem areas, and stay well-versed about the trade-off 

between various software attributes of interest. As 

significance of metrics is related to nature of projects and 

goals of the organization, so these should be appropriately 

chosen with the aim to reduce cost and foster ease of 

development, implementation and maintenance over the life 

cycle of project.          
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