
International Journal of Computer Applications (0975 – 8887)  

Volume 80 – No.9, October 2013 

20 

Automatic Transformation of Hospital Processes 

into an Executable Model with EPML 

 

Matthias Kühn 

Technical University Ilmenau 
Ehrenbergstraße 29 

98693 Ilmenau, Germany 

 

Joachim Lippold 

Technical University Ilmenau 
Ehrenbergstraße 29 

98693 Ilmenau, Germany 

 

Horst Salzwedel 

MLDesign Technologies Inc. 
2230 Saint Francis Drive 
CA 94303 Palo Alto, USA 

 

 

 

ABSTRACT 
Executable specifications are realized by models in simulation 

software systems. This requires collection of all necessary 

information about the real system and its environment. It is 

critical that all relevant information is included in the model 

and the correct level of abstraction is being used. 

Often, process descriptions are available for real systems (e.g. 

hospitals). To create executable specification out of existing 

documentations a transformation is required. The process 

descriptions are generally incomplete, often not formal 

standardized and thereby not able to be transformed into a 

simulation model. Therefore the appropriate process 

description language has to be selected and generally 

extended (e.g. to include resources) to enable an automated 

transformation into a simulation model. 

This paper describes how hospital processes (e.g. clinical 

pathways) can be transformed automatically into a simulation 

model using extended event driven process chains (eEPC). 

The event driven markup language (EPML) is used as 

interchange format. The transformation rules are defined by 

extensible style sheet language transformations (XSLT). 

KEYWORDS 
Process transformation, process modeling, simulation, 

hospital, EPML. 

1. INTRODUCTION 
Creating a comprehensive unified simulation model 

(executable model) of a dynamic and complex process such as 

the operational workflow of a hospital has shown to have a 

dramatic impact on reducing operating costs through process 

optimization. Traditional process improvements have been 

largely based on analytics and statistics coupled to experience 

and relative industry “role models”. These methods cannot 

analyze operational feedback to optimize the process and 

cannot cope with the non-linearities of those processes. Thus, 

advanced simulation methods to augment traditional analytics, 

becomes more and more important in development and 

evaluation of such complex projects. Faults and shortcomings, 

which are identified in early design stages of a project, can be 

removed with fewer costs and less time consumption than in 

later project stages [1, p. 19]. Davis [2, pp. 25 ff.] mentioned a 

multiplication factor of 10 of the relative costs for fixing 

specification failures during implementation phase. For that 

reason it is recommended to work with executable 

specifications (dynamic models), which are able to represent 

dynamic processes and allow validation and verification of 

specifications [3]. Thus, it is possible to overcome failure in 

early design stages, also in hospital projects as the increasing 

number of simulation studies shows [4, 5, 6]. Using 

executable specifications, improvements and potentials can be 

identified; different solutions can be tested and validated 

before implementation. Unintended interruption of the 

operation within the hospital as well as any endangerment of 

patients’ health can be avoided as shown in [6]. 

Hospitals and clinical institutions rarely have the necessary 

expertise to develop a simulation model on their own and 

have to establish necessary knowledge for a long term or need 

to use expensive external sources. 

Current challenges are seen in facilitating model building and 

system simulation for hospitals and clinical institutions. 

Therefore in [7] a library of standardized building blocks was 

developed and validated for modeling, simulation, and 

optimization of hospital processes. These building blocks can 

be used for an easy and fast building up of a simulation model 

within a simulation system environment. 

In this paper it will be shown how hospital processes and 

clinical pathways can be transformed into an executable 

specification. Clinical pathways and process documentations 

(e.g. for ISO 9001 certification) are common in hospitals. If 

an executable specification is built up out of these process 

documentations, it will guide to an easier and faster way of 

building up simulation models and facilitate simulation model 

building for hospitals and clinical institutions. 

For process documentation a standardized format is necessary. 

Within this paper and further work, extended event driven 

process chains (eEPC) are used. The hospital process used 

here consists of 15 clinical pathways of a cardiologic 

department of a university hospital. The mentioned clinical 

pathways include hospital admission, anamnesis by nurses 

and physicians, examination by physician, blood analyses, 

electrocardiographic and echocardiographic examinations, 

treatment in a heart catheter laboratory and discharge of 

patients. Handling of emergency patients and outpatients is 

also included. 

The transformation process described is visualized in the 

following Figure 1. 
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Figure 1: Schematic procedure of our approach 

Within the following sections the transformation process is 

shown in details. The next section of this paper points out the 

current stage of development and outlines our approach. 

Following on this the initial point of transformation is 

described and EPML is introduced. After that, our approach is 

described in detail by defining transformation rules and 

semantic. Then the implementation of eEPC import using 

XSLT is described (see Figure 1).  

Following on this, further requirements out of the field and 

restrictions of our approach are discussed and the validation 

of the created model and our approach is described. Upon this 

we make a proposal for simulation specific extensions within 

eEPC and EPML. The final section summarizes the results. 

2. CURRENT STAGE OF 

DEVELOPEMENT 
Within the field of model transformation there are different 

transformation languages known in literature, e.g. Model 

Driven Architecture (MDA) for software development [8]. 

UML plays an important role in this regard. A group of these 

are Graph-Transformation-Based Approaches, as UMLX [9], 

VIATRA - VIsual Automated model TRAnsformations [10], 

MOLA - Model transformation LAnguage [11] or GReAT - 

Graph Rewriting and Transformation language [12]. 

Moreover there are specific approaches for the transformation 

of a process model into an executable specification as it is 

intended in this paper, e.g. ProSiT (Process to Simulation 

Transformation) [13] and the continuation [14], based on 

hospital processes. With ProSit a concept for an intermediate 

transformation model is introduced, which also aims at 

standardization and formal rule based transformation of 

hospital processes. This transformation model represents an 

intermediate level between process and simulation model and 

is used to collect additional information which are needed to 

build up a simulation model (e.g. parameters and 

abstractions). The development has not completed yet. Till 

now the composition of the transformation model has been 

shown on an example of an emergency unit by using eEPC.  

Ammon [15] investigated the transformation of hospital 

processes, described as EPC using ARIS-Toolset, to create a 

simulation model in the simulation system “MLDesigner”. He 

showed that an automatic transformation of a process 

structure and some additional attached knowledge into a 

simulation model is possible. A converter was developed that 

translates process descriptions in AML (xml based ARIS 

Markup Language) into MLDesigner simulation model 

described in XML. The placement of imported EPC elements 

is done by coordinate transformation.  

Ammon found out, that the generated simulation model was 

not executable. The AML process descriptions did not include 

resources and the functional descriptions were incomplete to 

be transformed into an executable model. The translated 

model had to be modified by hand to become an executable 

model. 

3. INITIAL POINT OF 

TRANSFORMATION 
Initial point of process transformation is the knowledge of 

operational sequences and clinical processes (clinical 

pathways, treatment paths). This knowledge is available in 

documented form, e.g. as documented clinical pathway or just 

known by staff (e.g. doctors, nurses) without any 

documentation. This knowledge of the real system is 

necessary to build up an executable simulation model of the 

real system or a part of it. For building up a simulation model 

it is very time consuming for the model designer to collect all 

the needed knowledge of processes. On the other hand the 

knowledge owner in the real system is rarely able to put the 

knowledge directly into the simulation system and to build up 

the simulation model. Usually the necessary skills are not 

available to do so. Therefore, in a first step it is necessary to 

document the knowledge in a standardized format to work 

with it. It is a common and easy way to use EPC for 

documentation and visualization of business processes (Keller 

et al., 1992) and possible in the specific case of clinical 

pathways and hospital processes [16, pp. 55-81]. This first 

step of standardized documentation of the processes 

knowledge allows a further usage and automatic processing. 

A clinical pathway defines the commonly accepted way of 

processing and the timeline of a patient’s treatment associated 

with diagnostic and therapeutic procedures. The clinical 

pathway, based on a diagnosis or defined cardinal symptoms, 

controls the treatment process and the documentation of the 

individual case [17, pp. 272-274]. 

Guided by the question how these in EPC documented clinical 

pathways and clinical processes can be transformed into an 

executable simulation model, the next section will give an 

overview of EPC elements and the event driven markup 

language (EPML) will be introduced. 

4. EVENT- DRIVEN PROCESS CHAIN 

AND MARKUP LANGUAGE 
EPC are defined as alternating series of events and functions. 

Events are passive elements in EPC which represent the 

system state. Beside that they describe the circumstances 

which trigger a function (e.g. patient arrived at the admission 

desk) and determine the variants of the function results (e.g. 

patient is admitted).  

Functions are active elements, triggered by the above 

mentioned events. They model the tasks or activities within 

the process chain (e.g. admitting of a patient) and describe 

transformation from initial state (arriving of a patient) to 

resulting state (patient was admitted). Functions and events 

are connected with each other. The connection determines the 

control flow of the EPC. Logical connectors (rules) as OR 
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(inclusive disjunction), XOR (exclusive disjunction) and 

AND (logical conjunction) are used to combine functions and 

events. Functions can be refined into another EPC. In this case 

it is called hierarchical or refined function. The basic EPC 

process elements are defined in the documentation by Keller 

et al. [18]. The extended elements of EPC (eEPC) (e.g. 

process link or position) are neither formalized nor well 

documented see Figure 2. 

FunctionEvent

Basic EPC elements

Control flow

Connectors

DataObjekt

v

v XOR

Participant

AND XOROR

Used extended EPC elements

Prozess 

interface
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Figure 2: Overview of EPC and used eEPC process   

elements 

Efforts of the EPC research community for standardization 

leads to an XML-based free and open interchange format – 

the EPC Markup Language (EPML) [19, 20]. It allows a 

standardized transfer of EPC between computer applications. 

Based on this development it can be possible to transfer and 

import EPC automatically into a simulation system – in our 

case the MLDesigner (Mission Level Design Inc.). We use 

MLDesigner as simulation environment because we believe 

that for complex simulation aims a flexible and extendable 

environment is needed. 

Corresponding concepts for converting imported xml-files 

into simulation blocks already exist, as shown by Ammon 

[15] and Helbing [22], but were not tested by simulation run 

based on an example out of the field and they do not use EPC-

Markup Language. 

A free tool with EPML support is the Oryx Editor in 

combination with AProMoRe (Advanced Process Model 

Repository). Furthermore SemTalk as Add-On for Microsoft 

Visio supports EPML as output format, which is used for 

further work. SemTalk also supports import of SAP R/3 

reference model and within the EPC-Version to export content 

from SAP Solution Composer to Visio. The R/3 reference 

model contains scenario, processes, functions and components 

[22]. SAP software is used by almost all university hospitals 

in Germany in the configuration of SAP IS-H*med. This leads 

to further and may be better possibilities for automatic model 

building through export of processes out of the SAP system. 

For our further work EPML in version 1.1 is used, defined in 

[21]. A reason therefore is, that in version 1.1 all needed 

features are available and the used editor only supports 

version 1.1. Oryx/AProMoRe editor was tested, too. 

Hierarchical EPC structure is not supported yet and it still 

seems to work with version 1.1 instead of version 2.0 

(contrary to the given information). 

5. PROCESS TRANSFORMATION 

USING eEPC 
For transformation purposes the necessary (e)EPC elements 

need an assignment to the simulation environment. Therefore 

it is necessary to understand how the simulation environment 

works and which elements are needed. 

Simulation models, as they are understood here, can be 

characterized by block diagrams. The functionality of a block 

diagram is given by the structure and linkage of the contained 

blocks. Within the simulation model a block is representing 

either a primitive or a module. A module encapsulates a 

further block diagram and allows the building up of a 

hierarchy. A primitive, as a basic block element has its own 

functionality, based on programming code (ptlang). Primitives 

and modules expose an interface consisting of input- and 

output ports for interconnection and communication purposes 

and may provide additional configuration parameters. 

Between connected ports the particles are moving. Particles 

represent events and transmit information. They are moving 

from output- to input ports during the simulation run. This 

represents the event control. This corresponds to the selected 

simulation domain Discrete Event (DE), which is the 

strongest simulation domain within the choice of domains in 

MLDesigner and it fits the requirements of event control 

mechanism. 

In the following the rules for the transformation of EPC 

elements into components of the simulation environment are 

described step by step. Therefore we define simulation 

specific semantics for EPC elements and discuss possible 

implementations. 

5.1 Transformation of Functions 
In our approach functions will be transformed into modules in 

the simulation environment. There are different kinds of 

module types relating to their hierarchical order. A non-

refined EPC function represents activity which may consume 

time in connection with resource usage. This basic 

functionality is implemented in a “function module”. A 

refined EPC function instantiates a module which contains 

another EPC. This kind of function is called “EPC module”. 

5.2 Transformation of Events 
The interface of a function is defined by events, which 

describe the working circumstances of a function and the state 

a function results in. Contrary to the proposal by Ammon 

[15], events will not be transformed into modules. Instead of 

this, events will become input- and output ports of function 

modules and determine alternatives. On behalf of this start- 

and end events define in- and output ports in order to connect 

EPC modules with each other or to connect particle sources 

and sinks (e.g. for graphical output in a plot). The activation 

of ports e.g. the arrival of a particle triggers the underlying 

function of a module or primitive within the simulation 

model.  

5.3 Transformation of Logical Connectors 
For branching and synchronizing within the EPC the 

connectors AND, OR and XOR are used. Branching 

connectors divide the control flow into two or more branches. 

This may lead to parallel processes that may require 

synchronization. Within an EPC there is no need for matching 

of branching and synchronization connectors. This causes a 

decision problem for the synchronization connector. A 

synchronizing connector is unable to know how many inputs 

it has to wait for [24, pp. 29 f.]. To overcome this problem, 
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particles will be distinguished, regarding to their state 

between active and inactive ones. Inactive particles do not 

trigger a function and there is no time consumption while 

passing a module or primitive. They only have an effect on 

connectors. Following this, branching connectors within our 

concept will send one particle to every output port. Based on 

their functionality branching connectors determine which 

branch of the EPC will receive an active particle. All 

remaining branches receive an inactive particle. Out of this it 

is ensured that a synchronizing connector receives a particle 

on every input port. By this time and result of synchronization 

only depends on receiving particles and functionality of the 

synchronization connector, only using local information. 

Apart from this, connectors represent control flow 

functionality and will be transformed into two kinds of 

configurable primitives – one for branching (“spread”) and 

one for synchronization (“sync”). During instantiation the 

mode of operation is specified by setting the name and 

parameter value according to the represented eEPC connector 

(AND, XOR, OR). 

5.4 Transformation of Resources 
Resources are essential elements of simulation models. 

Therefore they need to be represented within the eEPC. But 

there are no elements dedicated to resources within the 

common eEPC elements. However, there are some eEPC 

elements that could be interpreted as resources like participant 

or application (see Figure 3 - left). These elements only allow 

an undirected association with functions. That means they can 

only be allocated during the execution of a single function. It 

is not possible to allocate the same resource over wider model 

sections that consist of multiple eEPC elements. Therefore 

allocation- and deallocation points need to be distinguished 

within the eEPC, e.g. by using directed association. Looking 

at the available eEPC the element data object meets the 

requirements by allowing input and output relations (see 

Figure 3 - right). 

Function

Participant

Application

Function

Event

Function

DataObject

DataObject

 

Figure 3: Modeling resources with eEPC elements 

 

Within the simulation system (MLDesigner) resources are 

divided into server resources and quantity resources (for 

resource types see: Mission Level Design Inc, 2012). Each 

resource type of the MLDesigner includes its own waiting 

queue which is able to consider priorities. Within the 

simulation model the same resource can be allocated by 

several blocks (shared resource). Server resources are active 

elements and are used to delay a particle for a defined service 

time. When a particle enters the block, it tries to allocate the 

linked server resource. If the server resource is available, the 

particle will be delayed by defined service time. After this the 

resource gets deallocated and the particle leaves the block. As 

long as a particle uses the resource and no further processing 

capacity is available all other particles requesting the resource 

have to wait till the resource is available again. For example, 

server resources can be used to model medical devices as 

ECG device. 

A quantity resource is able to provide an amount of resource 

units for a particle for a whole model section. Therefore 

resource units get allocated at a defined point within the 

simulation model and in case that the resource is no longer 

needed they will be deallocated on another point. If the 

capacity of the resource pool is currently depleted all other 

requesting particles have to wait. For example quantity 

resources can be used to model patient beds at a ward. 

Looking at the eEPC it is possible to associate multiple 

resources to a function. This leads to a synchronization 

problem on resource allocation within the simulation system. 

It is not guaranteed that the linked server resources are 

available simultaneously, e.g. due to possible delays on 

resource allocation. Within the simulation system it is 

appropriate only to work with quantity resources. Server 

resources can be substituted by quantity resources in the 

required functionality within our approach. 

Within the eEPC it is still possible to use both, 

participant/application and data object, to refer to the same 

resource. The defined transformation rule will take care, that 

all cases will be linked to the same quantity resource within 

the simulation model. As far as the associated resources are 

equally named within the eEPC, they are linked to the same 

central resource. 

In case the sequence of resource allocation is important, the 

sequence needs to be modeled within a refined function of the 

eEPC. For example in case of an inpatient admission: a 

patient bed, a patient and a nurse are needed. To avoid 

unneeded resource allocation of the nurse, until the bed and 

the patient are allocated, resource usage must be modeled in a 

reasonable sequence. Normally the patient is waiting till the 

bed is available. Then an available nurse is bringing the 

patient to the bed. 

In our approach each patient is represented by a particle with 

unique identifier within the simulation model. By this patients 

are passing the simulation model during simulation run. 

Looking at the eEPC again, it is possible to have parallel 

branches. Parallel branches are only meaningful to model 

parallel support processes that do not require the attendance of 

the patient. With regard to Sarshar, Dominitzki & Loos [25] 

an efficient modeling of elective-sequential processes is not 

given, when clinical pathways are modeled as EPC. This can 

be overcome by using parallel branches in conjunction with a 

dedicated patient resource. This resource is implemented as a 

special quantity resource that is allocated on per patient basis 

to ensure that a patient particle can only be part of one process 

step at the same time. To model elective-sequential processes 

a branching connector (AND/OR) is used to split involved 

sequential process steps into parallel branches. Each process 

step, that needs the patient has to receive an association to the 

dedicated patient resource within the eEPC. Allocation can be 

done as it was described for other resources.  In consequence 

it also can be done over model sections. 
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Figure 4: Mapping eEPC to MLDesigner 
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5.5 Transformation of Hierarchy 
As mentioned above, EPCs can form a hierarchy and a 

simulation model is able to be set up in a hierarchy as well. 

There are two ways to transfer hierarchy information from the 

EPC to the simulation model.  

 Composition (refinement): 

Upstream and Downstream events from the interface of 

the refined function correspond to the start and end events 

of the EPC on lower hierarchy level. While transforming 

the EPC into a simulation model, the refined function is 

used as an identifier. 

 Concatenation: 

Concatenation means connecting multiple EPC with each 

other on the same level of abstraction. Therefore the 

element process interface is used to mark the events at the 

concatenation point. While transforming the EPC into a 

simulation model, this element is used as an identifier.  

Based on this transformation rules are set up. The mapping is 

visualized in Figure 4. 

6. IMPORT OF eEPC INTO THE 

SIMULATION SYSTEM BY 

MEANS OF EPML 
For the Simulation of the processes, which are modeled as 

eEPC an import and conversion into executable structure of 

the simulation system are necessary.  

For this purpose a library of basic blocks is created in the 

simulation system. 

With relation to current requirements this library contains: 

 functionality offering modules which are required in the 

generated eEPC functions like resource allocation or time 

consumption, 

 primitives which are able to represent each kind of logical 

connectors, 

 auxiliary modules and primitives to manage control flow 

and data structures, 

 internal data structures to store the particle state and other 

needed information. 

These basic blocks offer the needed functionality to manage 

the control flow and take into account the distinction in active 

and inactive particles within the simulation model. Then the 

resulting library can be utilized by a software converter to 

perform transformation from eEPC to the target simulation 

system. Instead of having to generate all needed functionality 

on the fly the converter is able to acquire the needed 

functionality by instantiating and configuring basic blocks 

from the library. This leads to a reduction of complexity for 

the transformation process. 

To use these basic blocks for simulation purposes a matching 

internal data structure is necessary to manage the control flow. 

For example the internal data structure is used to store the 

state of particles (active/inactive) and to provide an interface 

for status information of the last simulated block, like arrival, 

completion or service time. 

6.1 Generating of function modules and 

ports 
Every non refined function of the eEPC gets transformed into 

its own function module with the same name. In the following 

step the interfaces of the function modules are determined. 

Therefore on the input side of the function the control flow in 

the eEPC will be traced back in opposite direction (upstream) 

until it hits upon an event. In case a connector is met, all its 

input flows are taken into account. The search will go on for 

each branch of the eEPC until an event is met. Each upstream 

event becomes an input port in the current function module. 

The same procedure is done to identify downstream events, 

except the control flow is followed in direction and in case 

that a connector is met, all output flows are considered. All 

found downstream events are transformed into output ports on 

the current function module. Each port name is derived from 

the corresponding event name (see Figure 5 and Figure 6). 

6.2 Generating of connectors 
Within the current function module all input ports get 

connected by using synchronizing connectors according to the 

connection structure of the corresponding events in the eEPC. 

The same happens in analog manner for the branching 

connectors on the output side. Connector primitives are 

configured and named according to their semantics (XOR, 

OR, AND) upon instantiation. Branching connectors use an 

equal weighted distribution for branching decision in initial 

(standard) configuration. 

6.3 Generating of basic functionality and 

of resource usage 
As it was already defined function modules may consume 

time or use resources as basic functionality. Therefore needed 

basic blocks from the library are instantiated and linked. 

Function modules always have a time consuming block 

instantiated. In opposite to this blocks for resource usage are 

only generated in case that at least one resource is assigned to 

the current function in the eEPC (see Figure 6). Each basic 

block that affects a resource must be linked to a shared 

quantity resource. Therefore quantity resources with external 

scope are generated and linked according to an associated data 

object, participant or application element. Thereby an external 

resource is not created as a concrete resource instance; it just 

provides an interface for further linkage on the next higher 

hierarchy level. 

6.4 Generating of EPC modules and of 

hierarchy 
A refined function references to a single eEPC. Out of this, a 

refined function is transformed in the same way as an eEPC. 

Each eEPC diagram gets transformed into an EPC module. 

Input- and output ports are generated according to the 

respective start and end events in the eEPC. Within these EPC 

modules the generated function modules get instantiated. The 

module instances may use resources that require a proper 

linking. Therefore external quantity resources are generated. 

Linking always happens in regard to the resource name. Out 

of this resources which are used by multiple function modules 

are linked to the same external resource within the EPC 

module. 

Ports get connected regarding to their linkage within the 

eEPC. In an EPC module, only ports representing the same 

event get connected with the help of connector primitives. 

Connection between different events can only occur on the 

level of function modules. 
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6.5 Generating of the top level system 
To simulate a model within the MLDesigner it must be 

instantiated within a “system model”. A system model in the 

MLDesigner is a top-level model and consists of instantiated 

primitives or modules. A system model does not have any 

input/output ports and cannot be instantiated. Global 

simulation parameters (e.g. seed for random number 

generation, length of simulation run) or global resources can 

be defined here [26]. 

Following this the converter generates a system model and 

instantiates the top level EPC module. The module instances 

may use resources that require a proper linking. Therefore all 

required resources get instantiated. Needed resources are 

identified by external resources of the EPC module. For each 

used external resource an internal resource is generated with 

standard parameter settings. Thereby an internal resource is a 

concrete resource instance; it provides resource capacity 

(standard capacity is one) and a waiting queue. 

To use the generated model in a simulation, it is necessary to 

connect a particle source. Therefore a particle source in line 

with the current specifications and internal data structure was 

implemented and added to the transformation library in 

MLDesigner. While importing the eEPC, the source can be 

instantiated with a standard parameter set of particles to be 

emitted during simulation run (default parameterization is 1 

particles every time step for 10 time steps). Connection points 

for sources are defined by not connected input ports of EPC 

modules after import of the eEPC into the simulation 

environment. These connection points get connected 

automatically with an instantiated source. To validate the 

simulation model, e.g. that released particles do not get stuck 

within a simulation run, particle sinks need to be connected. 

Elements from the standard library of MLDesigner are 

sufficient and can be connected to output ports of EPC 

modules that are not connected after eEPC import. 

By connecting particle sources and providing default 

parameters the imported eEPC is now able to be executed. 

6.6 Transformation on an example of an 

Function-Module 
In the following the transformation result is shown on an 

example of a function module (see Figure 5 and Figure 6). 

Event1 Event2

Event3 Event4

v

XOR

Function

Resource3

Resource1

Resource2

 

Figure 5: Example of a function with resource usage to 

illustrate the transformation process 

 

Upstream events (Event1, Event2) are transformed into input 

ports (see left side of the function module in Figure 5) and 

synchronized by a Sync primitive which is configured and 

named as AND connector. After that the sub module 

“SetArrivalTime“ is used to log the arrival time of the 

incoming particles into the internal data structure. Then the 

resource allocation is done by generating an allocation module 

for each resource that is assigned for allocation to the 

respective EPC function. For each resource in use, an external 

resource is generated to allow a later linkage to the shared 

global resource. Resource allocation may consume variable 

amount of time for the different resources. To synchronize the 

resources allocation a Sync primitive, which is configured and 

named as AND, is used. As soon as all needed resources are 

allocated, a service time is generated and the particle gets 

delayed by module “DoService”. Also within this module 

status information like service time and completion time are 

logged into the internal data structure. Resources designated 

by eEPC model to be deallocated, get deallocated by 

generating “Free Resource” modules. The resulting particles 

get synchronized for reason of flow control and meet the 

generated connector and ports on the output side 

corresponding to downstream events and connector structure 

of the eEPC. The generated elements are placed automatically 

according to an in advance defined raster layout. 

6.7 EPML Coding and Converting 
The described transformation process is done by a software 

converter using XSLT (Version 2.0) style sheets based on our 

met transformation rules. EPML was chosen as interchange 

format for the eEPC diagrams. The XSLT instructions are 

defined in regard to the EPML notations. EPML notations are 

a result of an export of eEPC from the modeling Editor 

(SemTalk). Selected EPML notations and their equivalence 

within eEPC are described in the following. 

An EPML file consists of collection of one or more eEPC 

diagrams. Each diagram is defined within an <epc> tag and 

has a unique identifier. Within the EPC tag all corresponding 

elements and edges are stored.  

In the scope of EPML we find <function> and <event> tags 

for function and event of EPC. Control flow edges of EPC are 

represented by <arc> tags. Connectors also have dedicated 

tags <and>, <or> and <xor>. 

For the elements participant, application and data object 

which are used as resources, EPML tags <participant>, 

<application> and <dataField> are provided. For association 

of these eEPC elements the <relation> tag is used. Also 

concatenation and composition are supported by EPML. The 

following  

Figure 7 shows the example of a directed resource usage 

coded in EPML. 

EPML in version 1.1 does not support directed associations. 

Therefore SemTalk is using the name attribute to distinguish 

between input and output relations. 

The transformation is done by executing the designed XSLT-

style sheets with a XSLT-processor. Therefor SAXON XSLT-

processor (Saxonia Ltd.) is used. The XSLT converter is used 

to transfer the EPML code into the simulation system. Our 

approach is implemented in the MLDesigner, which is the 

target simulation system for transformation. To achieve the 

support of other target simulation systems by our converter, 

the transformation rules are divided into two parts. All 

functions related to accessing and selecting eEPC elements, 

like for selection of input events are stored in a separate 

library template. The simulation specific definitions are stored 

within another XSLT template. Thus it is possible to easily 

adapt the converter by just adding a new XSLT template with 

necessary definitions regarding the new simulation system. 
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Figure 6: Resulting function module in target the simulation system 

 

<dataField id="4016" defRef="769"> 
   <name>Entitytyp.769</name> 
   <description>Resource</description> 

   <graphics> 
      <position height="150" width="200" x="732" y="696" /> 
   </graphics> 
   … 
</dataField> 

 
<relation id="4015" from="4006" to="4001" name="is Input for"/> 

 
<relation id="4017" from="4007" to="4016" name="has Output"/> 

Figure 7: Example of a directed resource usage in EPML 

 

7. RESTRICTIONS AND 

ADDITIONAL PROCESS DATA 
First of all, an eEPC describes processes – in our paper these 

are hospital processes, especially clinical pathways. Because 

of that our transformation approach is limited to process 

models. But, that is alright for process optimization and 

validation purposes, as it is the aim for our further work. 

Within our approach automatic model transformation is 

limited by the powerfulness of the used modeling language. 

Information, which cannot be described within the process 

modeling language (eEPC), cannot be transformed into a 

simulation model. The same applies to the used interchange 

format (EPML). 

EPC modeling allows only limited specifications of non-

refined functions. Functions are only defined by their shape 

and their name within the EPC. Also refining functions do not 

create functionality which is needed to execute a model. Even 

resource usage within the eEPC, which is an elementary 

scenario of executable process models, can only be handled 

by creating a specific semantic for simulation, as it is shown 

successfully in this paper. 

Furthermore, the automatic transformation into an executable 

model is limited by parameters needed for the simulation run, 

e.g. capacity of a resource. Till now parameters within the 

eEPC are not specified yet, to transfer them into the 

simulation model. However, there are already some EPC 

editors existing, e.g. SemTalk, ARIS Toolset. They allow 

defining parameters within the EPC. Also EPML provides a 

possibility for user defined attributes, which can be useful, 

e.g. for parameters. But it should be asked whether parameters 

are necessary at that point. The generated simulation model 

may not have the final stage with regard to the simulation 

aims. From this point of view an implementation of parameter 

transfer is not done but seems to be possible for us. Within 

our transformation approach the generated simulation model 

uses default parameter sets for instantiated elements.  

In many cases model transformation is the starting point for 

further model building of complex systems. Our approach 

ensures the possibility to connect a user specific central data 

structure to the instantiated elements of the simulation model 

without affecting the internal data structure. Therefore further 

modules are added to the MLDesigner library. 

8. VALIDATION AND 

VERIFICATION OF THE MODEL 

AND THE CONCEPT 
Simulation experiments should deliver reliable results to help 

decision making. Validation and verification are important to 

ensure this. Validation means whether the model is 

implemented correctly (also called technical validation). This 

also covers whether the model is operating in the intended 

manner - so that the eEPC is correctly transformed. The third 

aspect is external validation of the simulation model - whether 

the model correctly reflects the “real world” within the 

defined limitations of the model. Verification means whether 

the specification is met - if the implemented converter is 

working correctly. 

There are a lot of methods for validation and verification as 

Page [27, pp. 145-155], Kosturiak & Gregor [28, pp. 123-125] 

and Müller [29, pp. 181-203] have shown. It has to be 

checked for each individual case which of the possibilities can 

be used. There is no general accepted way or method. 

Validation and verification can only be done by consideration 

of the underlying modeling purpose or question of 

investigation. 

It is assumed, that eEPC modeling is done in line with 

modeling rules, in Becker, Rosemann & Schütte [30]. Modern 

modeling tools, as Microsoft Visio or SemTalk, support 

correct modeling by implemented checking rules. 

In the following used methods for validation and verification 

for our model design and transforming approach are 

described. In this paper an executable model is created out of 

an eEPC. First of all it is the aim to transfer knowledge 

automatically into the simulation environment in a 

standardized way. At the moment there are no specific 

simulation aims, which should be considered in the following 
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validation steps. To analyze specific questions the generated 

simulation model can be manually expanded by a user. By 

this the transformation result may change. 

That means that there have to be two steps. 

1. Validation and verification of transformation results 

and the correct working of the converter. 

2. Validation and verification of the further usability of 

the generated simulation model by using it for a 
specific simulation purpose. 

First of all the transformation result is reviewed whether the 

transformation rules are met, for example whether a non-

refined eEPC function is transformed into a function module 

within the generated simulation model. After this it is 

reviewed whether the structure and hierarchy buildup of the 

generated simulation model is the same as it is in the eEPC. 

Within this scope the completeness of all functions, logical 

connectors and the usage of the same interconnections as in 

the eEPC are checked. As mentioned, events are transformed 

into ports. The next check is to find out whether all events are 

transformed into ports within the simulation model. 

After transformation a detail check is to be done for the 

primitives representing logical connectors and the correct 

resource usage. The connectors need to be checked regarding 

their correct functionality and if the instantiation is in line 

with the original eEPC. Therefore the instantiated sources 

generate particles in a test run. The correct behavior of these 

particles is checked by passing the connectors. So it is 

possible to validate the right function and configuration of the 

connectors. This way it can also be checked, whether all 

particles pass the elements of the simulation model, whether 

the internal data structure works and whether no particles get 

stuck. 

For validation and verification purposes a complex hospital 

process of a patient’s stay, documented as eEPC, is used and 

transformed into an executable model. This process of a 

cardiologic department of a university hospital consists of e.g. 

admission of patient, several diagnosis procedures, treatment 

for example in a heart catheter lab, processes on cardiologic 

wards and discharge. 

Based on these steps it was detected, that loops within the 

eEPC lead to a problem with particle synchronization of XOR 

and OR connectors at the incoming feedback branch, which 

was fixed manually. For example in the case that a connector 

has two input ports, one of it is a feedback branch, the 

operation mode of the connector is switched to merge. That 

means that incoming active particles will just pass instead of 

waiting for particles on all input ports. Inactive particles on 

the feedback branch will be destroyed. The problem is to 

identify feedback loops on transformation run, to perform the 

necessary adaption. This will need further consideration to 

resolve this issue automatically during the transformation 

process. No further faults were found.  

Ongoing, the automatic generated simulation model will be 

used for a cardiologic department of a university hospital, to 

optimize the scheduling and sequencing of patients within the 

department, to reduce waiting time and length of stay. 

Therefore the created simulation model will be extended 

focused on this simulation aim. Based on real data (historical 

data), collected within the university hospital, a further 

(external) validation will be done. This will also show, 

whether the automatic generated simulation model is suitable 

to build up specific executable specifications as it is intended. 

9. PROPOSAL FOR A 

SIMULATION SPECIFIC 

EXTENTIONS WITHIN eEPC AND 

EPML 
The alternative usage of some elements (data object, 

participant, application) for modeling resources is only 

possible in case that these elements are not used within our 

modeling approach as originally intended. For example it is 

intended to model a data flow with the help of a data object, 

e.g. input and output of data during the process flow. 

For further modification and development of modeling 

language scope of eEPC and EPML it would be desirable to 

have separate elements for resource usage, e.g. resource usage 

in only one function or the usage over wider sections with 

possibilities to model allocation and deallocation points. 

Function

Function

Function

Resource

Resource

Resource 

Variant 1

Variant 2

 
Figure 8: Use cases for a proposed resource element in 

eEPC (usage, allocation, deallocation) 

 

Figure 8 shows a possible graphical realization of a proposed 

resource element for the mentioned two variants. The element 

may be connected to non-refined functions in directed or 

undirected fashion, this allows the allocation for just one 

function (variant 1) or over wider model sections that consist 

of multiple eEPC elements (variant 2). In EPML this proposal 

could lead to the introduction of a new “resource” eEPC 

element tag. Attributes and sub elements remain the same as 

for already existing tags (e.g. function, event). For 

interconnection possible relation types of the arc tag could be 

extended by “allocate”, “deallocate” and “uses”. This allows 

to model directed and undirected resource access. Resources 

are often shared among multiple eEPCs residing in the same 

EPML directory. To establish a proper link between these 

resource instances it is necessary to use unique identifiers 

throughout the model. So linked resources either need to have 

the same name or alternatively need to reference the same 

resource definition. As well the definition tag gets a new type 

value “resource”. An example of these proposed extensions to 

EPML can be seen in Figure 9. The modifications of this 

example are consistent to EPML version 2.0.  
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<definitions> 

  <definition defId="1002" type="resource"> 

      <name>Resource</name> 

      <description>Resource 

                    description</description> 

  </definition> 

</definitions> 

… 

<directory name="Root"> 

  <epc epcId="4" name="EPC 1"> 

 

    <function id="1"> 

      <name>Function</name> 

      <description>Function  

                    description</description> 

      … 

    </function> 

 

    <resource id="2" defRef="1002"> 

      <name>Resource</name> 

      … 

    <resource> 

 

    <arc id="3"> 

      <relation source="1" target="2"  

             type="allocate|deallocate|uses"/> 

      … 

    </arc> 

Figure 9: Integration of proposed resource element in EPML 

 

10. SUMMARY AND OUTLOOK 
On an example of hospital processes it was shown how an 

executable simulation model can be built up automatically out 

of extended event driven process chains (eEPC).  

It was shown, that eEPC are suitable to model hospital 

processes (e.g. treatment path) and can be transformed into a 

model within a simulation environment. Therefore we defined 

the needed semantic. To make the eEPC model able to 

execute in a simulation run, functionality (e.g. resource usage, 

control flow management) is needed. We have shown how 

this can be added to an eEPC process model during 

transformation run. 

In Detail a converter was developed to import eEPC models 

into a simulation environment (MLDesigner). As interchange 

format event driven process markup language (EPML) was 

used. Transformation rules were defined in XSLT. Based on 

the template structure of our style sheet design it is possible to 

easily adapt the converter according to the target simulation 

tool. 

As shown the standard definitions of EPC were not sufficient 

to model additional requirements like resource usage. 

Therefore the unspecified extended EPC was used but is also 

not sufficient. For the moment we use the eEPC elements data 

object, participant and application as resource identifiers. We 

suggest an extension of eEPC/EPML notations for simulation 

purpose. 

We have also shown that loops within the eEPC lead to a 

problem with particle synchronization of XOR and OR 

connectors at the incoming feedback branch. This needs 

further consideration on automatic transformation. 

In our further work, the approach described here will be used 

to generate an executable model that will be extended to allow 

optimization with regard to scheduling and sequencing of 

patients within the cardiologic department of a university 

hospital. This will show whether our approach is also feasible 

to build up simulation models with specific simulation aims 

out of the transformation results. 

Furthermore, we have a positive attitude towards the usage of 

standardized building blocks, which were developed in 

Salzwedel et al. (2007). These building blocks must be 

extended by our met EPC requirements and be filled up with 

functionality. Following this, standardized building blocks can 

be instantiated during the transformation process of eEPC 

models. This will lead to a higher level of automation, less 

manual adjustments and therefore faster buildup of executable 

specification. 
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