
International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.9, October 2013

20

Automatic Transformation of Hospital Processes

into an Executable Model with EPML

Matthias Kühn

Technical University Ilmenau
Ehrenbergstraße 29

98693 Ilmenau, Germany

Joachim Lippold

Technical University Ilmenau
Ehrenbergstraße 29

98693 Ilmenau, Germany

Horst Salzwedel

MLDesign Technologies Inc.
2230 Saint Francis Drive
CA 94303 Palo Alto, USA

ABSTRACT
Executable specifications are realized by models in simulation

software systems. This requires collection of all necessary

information about the real system and its environment. It is

critical that all relevant information is included in the model

and the correct level of abstraction is being used.

Often, process descriptions are available for real systems (e.g.

hospitals). To create executable specification out of existing

documentations a transformation is required. The process

descriptions are generally incomplete, often not formal

standardized and thereby not able to be transformed into a

simulation model. Therefore the appropriate process

description language has to be selected and generally

extended (e.g. to include resources) to enable an automated

transformation into a simulation model.

This paper describes how hospital processes (e.g. clinical

pathways) can be transformed automatically into a simulation

model using extended event driven process chains (eEPC).

The event driven markup language (EPML) is used as

interchange format. The transformation rules are defined by

extensible style sheet language transformations (XSLT).

KEYWORDS
Process transformation, process modeling, simulation,

hospital, EPML.

1. INTRODUCTION
Creating a comprehensive unified simulation model

(executable model) of a dynamic and complex process such as

the operational workflow of a hospital has shown to have a

dramatic impact on reducing operating costs through process

optimization. Traditional process improvements have been

largely based on analytics and statistics coupled to experience

and relative industry “role models”. These methods cannot

analyze operational feedback to optimize the process and

cannot cope with the non-linearities of those processes. Thus,

advanced simulation methods to augment traditional analytics,

becomes more and more important in development and

evaluation of such complex projects. Faults and shortcomings,

which are identified in early design stages of a project, can be

removed with fewer costs and less time consumption than in

later project stages [1, p. 19]. Davis [2, pp. 25 ff.] mentioned a

multiplication factor of 10 of the relative costs for fixing

specification failures during implementation phase. For that

reason it is recommended to work with executable

specifications (dynamic models), which are able to represent

dynamic processes and allow validation and verification of

specifications [3]. Thus, it is possible to overcome failure in

early design stages, also in hospital projects as the increasing

number of simulation studies shows [4, 5, 6]. Using

executable specifications, improvements and potentials can be

identified; different solutions can be tested and validated

before implementation. Unintended interruption of the

operation within the hospital as well as any endangerment of

patients’ health can be avoided as shown in [6].

Hospitals and clinical institutions rarely have the necessary

expertise to develop a simulation model on their own and

have to establish necessary knowledge for a long term or need

to use expensive external sources.

Current challenges are seen in facilitating model building and

system simulation for hospitals and clinical institutions.

Therefore in [7] a library of standardized building blocks was

developed and validated for modeling, simulation, and

optimization of hospital processes. These building blocks can

be used for an easy and fast building up of a simulation model

within a simulation system environment.

In this paper it will be shown how hospital processes and

clinical pathways can be transformed into an executable

specification. Clinical pathways and process documentations

(e.g. for ISO 9001 certification) are common in hospitals. If

an executable specification is built up out of these process

documentations, it will guide to an easier and faster way of

building up simulation models and facilitate simulation model

building for hospitals and clinical institutions.

For process documentation a standardized format is necessary.

Within this paper and further work, extended event driven

process chains (eEPC) are used. The hospital process used

here consists of 15 clinical pathways of a cardiologic

department of a university hospital. The mentioned clinical

pathways include hospital admission, anamnesis by nurses

and physicians, examination by physician, blood analyses,

electrocardiographic and echocardiographic examinations,

treatment in a heart catheter laboratory and discharge of

patients. Handling of emergency patients and outpatients is

also included.

The transformation process described is visualized in the

following Figure 1.

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.9, October 2013

21

Figure 1: Schematic procedure of our approach

Within the following sections the transformation process is

shown in details. The next section of this paper points out the

current stage of development and outlines our approach.

Following on this the initial point of transformation is

described and EPML is introduced. After that, our approach is

described in detail by defining transformation rules and

semantic. Then the implementation of eEPC import using

XSLT is described (see Figure 1).

Following on this, further requirements out of the field and

restrictions of our approach are discussed and the validation

of the created model and our approach is described. Upon this

we make a proposal for simulation specific extensions within

eEPC and EPML. The final section summarizes the results.

2. CURRENT STAGE OF

DEVELOPEMENT
Within the field of model transformation there are different

transformation languages known in literature, e.g. Model

Driven Architecture (MDA) for software development [8].

UML plays an important role in this regard. A group of these

are Graph-Transformation-Based Approaches, as UMLX [9],

VIATRA - VIsual Automated model TRAnsformations [10],

MOLA - Model transformation LAnguage [11] or GReAT -

Graph Rewriting and Transformation language [12].

Moreover there are specific approaches for the transformation

of a process model into an executable specification as it is

intended in this paper, e.g. ProSiT (Process to Simulation

Transformation) [13] and the continuation [14], based on

hospital processes. With ProSit a concept for an intermediate

transformation model is introduced, which also aims at

standardization and formal rule based transformation of

hospital processes. This transformation model represents an

intermediate level between process and simulation model and

is used to collect additional information which are needed to

build up a simulation model (e.g. parameters and

abstractions). The development has not completed yet. Till

now the composition of the transformation model has been

shown on an example of an emergency unit by using eEPC.

Ammon [15] investigated the transformation of hospital

processes, described as EPC using ARIS-Toolset, to create a

simulation model in the simulation system “MLDesigner”. He

showed that an automatic transformation of a process

structure and some additional attached knowledge into a

simulation model is possible. A converter was developed that

translates process descriptions in AML (xml based ARIS

Markup Language) into MLDesigner simulation model

described in XML. The placement of imported EPC elements

is done by coordinate transformation.

Ammon found out, that the generated simulation model was

not executable. The AML process descriptions did not include

resources and the functional descriptions were incomplete to

be transformed into an executable model. The translated

model had to be modified by hand to become an executable

model.

3. INITIAL POINT OF

TRANSFORMATION
Initial point of process transformation is the knowledge of

operational sequences and clinical processes (clinical

pathways, treatment paths). This knowledge is available in

documented form, e.g. as documented clinical pathway or just

known by staff (e.g. doctors, nurses) without any

documentation. This knowledge of the real system is

necessary to build up an executable simulation model of the

real system or a part of it. For building up a simulation model

it is very time consuming for the model designer to collect all

the needed knowledge of processes. On the other hand the

knowledge owner in the real system is rarely able to put the

knowledge directly into the simulation system and to build up

the simulation model. Usually the necessary skills are not

available to do so. Therefore, in a first step it is necessary to

document the knowledge in a standardized format to work

with it. It is a common and easy way to use EPC for

documentation and visualization of business processes (Keller

et al., 1992) and possible in the specific case of clinical

pathways and hospital processes [16, pp. 55-81]. This first

step of standardized documentation of the processes

knowledge allows a further usage and automatic processing.

A clinical pathway defines the commonly accepted way of

processing and the timeline of a patient’s treatment associated

with diagnostic and therapeutic procedures. The clinical

pathway, based on a diagnosis or defined cardinal symptoms,

controls the treatment process and the documentation of the

individual case [17, pp. 272-274].

Guided by the question how these in EPC documented clinical

pathways and clinical processes can be transformed into an

executable simulation model, the next section will give an

overview of EPC elements and the event driven markup

language (EPML) will be introduced.

4. EVENT- DRIVEN PROCESS CHAIN

AND MARKUP LANGUAGE
EPC are defined as alternating series of events and functions.

Events are passive elements in EPC which represent the

system state. Beside that they describe the circumstances

which trigger a function (e.g. patient arrived at the admission

desk) and determine the variants of the function results (e.g.

patient is admitted).

Functions are active elements, triggered by the above

mentioned events. They model the tasks or activities within

the process chain (e.g. admitting of a patient) and describe

transformation from initial state (arriving of a patient) to

resulting state (patient was admitted). Functions and events

are connected with each other. The connection determines the

control flow of the EPC. Logical connectors (rules) as OR

eEPC

Documentation

& abstraction

by staff

real world system

Automatic

conversion & import

into simulation

environment

EPML/XSLT

simulation model

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.9, October 2013

22

(inclusive disjunction), XOR (exclusive disjunction) and

AND (logical conjunction) are used to combine functions and

events. Functions can be refined into another EPC. In this case

it is called hierarchical or refined function. The basic EPC

process elements are defined in the documentation by Keller

et al. [18]. The extended elements of EPC (eEPC) (e.g.

process link or position) are neither formalized nor well

documented see Figure 2.

FunctionEvent

Basic EPC elements

Control flow

Connectors

DataObjekt

v

v XOR

Participant

AND XOROR

Used extended EPC elements

Prozess

interface
Association

Application

Figure 2: Overview of EPC and used eEPC process

elements

Efforts of the EPC research community for standardization

leads to an XML-based free and open interchange format –

the EPC Markup Language (EPML) [19, 20]. It allows a

standardized transfer of EPC between computer applications.

Based on this development it can be possible to transfer and

import EPC automatically into a simulation system – in our

case the MLDesigner (Mission Level Design Inc.). We use

MLDesigner as simulation environment because we believe

that for complex simulation aims a flexible and extendable

environment is needed.

Corresponding concepts for converting imported xml-files

into simulation blocks already exist, as shown by Ammon

[15] and Helbing [22], but were not tested by simulation run

based on an example out of the field and they do not use EPC-

Markup Language.

A free tool with EPML support is the Oryx Editor in

combination with AProMoRe (Advanced Process Model

Repository). Furthermore SemTalk as Add-On for Microsoft

Visio supports EPML as output format, which is used for

further work. SemTalk also supports import of SAP R/3

reference model and within the EPC-Version to export content

from SAP Solution Composer to Visio. The R/3 reference

model contains scenario, processes, functions and components

[22]. SAP software is used by almost all university hospitals

in Germany in the configuration of SAP IS-H*med. This leads

to further and may be better possibilities for automatic model

building through export of processes out of the SAP system.

For our further work EPML in version 1.1 is used, defined in

[21]. A reason therefore is, that in version 1.1 all needed

features are available and the used editor only supports

version 1.1. Oryx/AProMoRe editor was tested, too.

Hierarchical EPC structure is not supported yet and it still

seems to work with version 1.1 instead of version 2.0

(contrary to the given information).

5. PROCESS TRANSFORMATION

USING eEPC
For transformation purposes the necessary (e)EPC elements

need an assignment to the simulation environment. Therefore

it is necessary to understand how the simulation environment

works and which elements are needed.

Simulation models, as they are understood here, can be

characterized by block diagrams. The functionality of a block

diagram is given by the structure and linkage of the contained

blocks. Within the simulation model a block is representing

either a primitive or a module. A module encapsulates a

further block diagram and allows the building up of a

hierarchy. A primitive, as a basic block element has its own

functionality, based on programming code (ptlang). Primitives

and modules expose an interface consisting of input- and

output ports for interconnection and communication purposes

and may provide additional configuration parameters.

Between connected ports the particles are moving. Particles

represent events and transmit information. They are moving

from output- to input ports during the simulation run. This

represents the event control. This corresponds to the selected

simulation domain Discrete Event (DE), which is the

strongest simulation domain within the choice of domains in

MLDesigner and it fits the requirements of event control

mechanism.

In the following the rules for the transformation of EPC

elements into components of the simulation environment are

described step by step. Therefore we define simulation

specific semantics for EPC elements and discuss possible

implementations.

5.1 Transformation of Functions
In our approach functions will be transformed into modules in

the simulation environment. There are different kinds of

module types relating to their hierarchical order. A non-

refined EPC function represents activity which may consume

time in connection with resource usage. This basic

functionality is implemented in a “function module”. A

refined EPC function instantiates a module which contains

another EPC. This kind of function is called “EPC module”.

5.2 Transformation of Events
The interface of a function is defined by events, which

describe the working circumstances of a function and the state

a function results in. Contrary to the proposal by Ammon

[15], events will not be transformed into modules. Instead of

this, events will become input- and output ports of function

modules and determine alternatives. On behalf of this start-

and end events define in- and output ports in order to connect

EPC modules with each other or to connect particle sources

and sinks (e.g. for graphical output in a plot). The activation

of ports e.g. the arrival of a particle triggers the underlying

function of a module or primitive within the simulation

model.

5.3 Transformation of Logical Connectors
For branching and synchronizing within the EPC the

connectors AND, OR and XOR are used. Branching

connectors divide the control flow into two or more branches.

This may lead to parallel processes that may require

synchronization. Within an EPC there is no need for matching

of branching and synchronization connectors. This causes a

decision problem for the synchronization connector. A

synchronizing connector is unable to know how many inputs

it has to wait for [24, pp. 29 f.]. To overcome this problem,

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.9, October 2013

23

particles will be distinguished, regarding to their state

between active and inactive ones. Inactive particles do not

trigger a function and there is no time consumption while

passing a module or primitive. They only have an effect on

connectors. Following this, branching connectors within our

concept will send one particle to every output port. Based on

their functionality branching connectors determine which

branch of the EPC will receive an active particle. All

remaining branches receive an inactive particle. Out of this it

is ensured that a synchronizing connector receives a particle

on every input port. By this time and result of synchronization

only depends on receiving particles and functionality of the

synchronization connector, only using local information.

Apart from this, connectors represent control flow

functionality and will be transformed into two kinds of

configurable primitives – one for branching (“spread”) and

one for synchronization (“sync”). During instantiation the

mode of operation is specified by setting the name and

parameter value according to the represented eEPC connector

(AND, XOR, OR).

5.4 Transformation of Resources
Resources are essential elements of simulation models.

Therefore they need to be represented within the eEPC. But

there are no elements dedicated to resources within the

common eEPC elements. However, there are some eEPC

elements that could be interpreted as resources like participant

or application (see Figure 3 - left). These elements only allow

an undirected association with functions. That means they can

only be allocated during the execution of a single function. It

is not possible to allocate the same resource over wider model

sections that consist of multiple eEPC elements. Therefore

allocation- and deallocation points need to be distinguished

within the eEPC, e.g. by using directed association. Looking

at the available eEPC the element data object meets the

requirements by allowing input and output relations (see

Figure 3 - right).

Function

Participant

Application

Function

Event

Function

DataObject

DataObject

Figure 3: Modeling resources with eEPC elements

Within the simulation system (MLDesigner) resources are

divided into server resources and quantity resources (for

resource types see: Mission Level Design Inc, 2012). Each

resource type of the MLDesigner includes its own waiting

queue which is able to consider priorities. Within the

simulation model the same resource can be allocated by

several blocks (shared resource). Server resources are active

elements and are used to delay a particle for a defined service

time. When a particle enters the block, it tries to allocate the

linked server resource. If the server resource is available, the

particle will be delayed by defined service time. After this the

resource gets deallocated and the particle leaves the block. As

long as a particle uses the resource and no further processing

capacity is available all other particles requesting the resource

have to wait till the resource is available again. For example,

server resources can be used to model medical devices as

ECG device.

A quantity resource is able to provide an amount of resource

units for a particle for a whole model section. Therefore

resource units get allocated at a defined point within the

simulation model and in case that the resource is no longer

needed they will be deallocated on another point. If the

capacity of the resource pool is currently depleted all other

requesting particles have to wait. For example quantity

resources can be used to model patient beds at a ward.

Looking at the eEPC it is possible to associate multiple

resources to a function. This leads to a synchronization

problem on resource allocation within the simulation system.

It is not guaranteed that the linked server resources are

available simultaneously, e.g. due to possible delays on

resource allocation. Within the simulation system it is

appropriate only to work with quantity resources. Server

resources can be substituted by quantity resources in the

required functionality within our approach.

Within the eEPC it is still possible to use both,

participant/application and data object, to refer to the same

resource. The defined transformation rule will take care, that

all cases will be linked to the same quantity resource within

the simulation model. As far as the associated resources are

equally named within the eEPC, they are linked to the same

central resource.

In case the sequence of resource allocation is important, the

sequence needs to be modeled within a refined function of the

eEPC. For example in case of an inpatient admission: a

patient bed, a patient and a nurse are needed. To avoid

unneeded resource allocation of the nurse, until the bed and

the patient are allocated, resource usage must be modeled in a

reasonable sequence. Normally the patient is waiting till the

bed is available. Then an available nurse is bringing the

patient to the bed.

In our approach each patient is represented by a particle with

unique identifier within the simulation model. By this patients

are passing the simulation model during simulation run.

Looking at the eEPC again, it is possible to have parallel

branches. Parallel branches are only meaningful to model

parallel support processes that do not require the attendance of

the patient. With regard to Sarshar, Dominitzki & Loos [25]

an efficient modeling of elective-sequential processes is not

given, when clinical pathways are modeled as EPC. This can

be overcome by using parallel branches in conjunction with a

dedicated patient resource. This resource is implemented as a

special quantity resource that is allocated on per patient basis

to ensure that a patient particle can only be part of one process

step at the same time. To model elective-sequential processes

a branching connector (AND/OR) is used to split involved

sequential process steps into parallel branches. Each process

step, that needs the patient has to receive an association to the

dedicated patient resource within the eEPC. Allocation can be

done as it was described for other resources. In consequence

it also can be done over model sections.

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.9, October 2013

24

Figure 4: Mapping eEPC to MLDesigner

(e)EPC simulation system (MLDesigner)

non refined function

refined function

eEPC

event

control flow

logical connectors

participant application data object

directed association

undirected association

process interface

EPC module

function module (see Figure 6)

port

connector

primitive

resource

connection between two

EPCs (EPC modules)

modules for resource management

EPC1

EPC2

function

module 1

function

module 2

function

module 3

function

module 4

EPC module 1

 Participant Application DataObject

non refined

Function

refined
Function

Event

process

interface

SetArrivalTime
Allocate

Resource1
DoService

Free

Resource1

Event1 Event2

Output_Event

Input_Event

Input

Output

 Spread Sync

Quantity_Resource

Allocate

Resource
Free

Resource

EPC1

EPC2

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.9, October 2013

25

5.5 Transformation of Hierarchy
As mentioned above, EPCs can form a hierarchy and a

simulation model is able to be set up in a hierarchy as well.

There are two ways to transfer hierarchy information from the

EPC to the simulation model.

 Composition (refinement):

Upstream and Downstream events from the interface of

the refined function correspond to the start and end events

of the EPC on lower hierarchy level. While transforming

the EPC into a simulation model, the refined function is

used as an identifier.

 Concatenation:

Concatenation means connecting multiple EPC with each

other on the same level of abstraction. Therefore the

element process interface is used to mark the events at the

concatenation point. While transforming the EPC into a

simulation model, this element is used as an identifier.

Based on this transformation rules are set up. The mapping is

visualized in Figure 4.

6. IMPORT OF eEPC INTO THE

SIMULATION SYSTEM BY

MEANS OF EPML
For the Simulation of the processes, which are modeled as

eEPC an import and conversion into executable structure of

the simulation system are necessary.

For this purpose a library of basic blocks is created in the

simulation system.

With relation to current requirements this library contains:

 functionality offering modules which are required in the

generated eEPC functions like resource allocation or time

consumption,

 primitives which are able to represent each kind of logical

connectors,

 auxiliary modules and primitives to manage control flow

and data structures,

 internal data structures to store the particle state and other

needed information.

These basic blocks offer the needed functionality to manage

the control flow and take into account the distinction in active

and inactive particles within the simulation model. Then the

resulting library can be utilized by a software converter to

perform transformation from eEPC to the target simulation

system. Instead of having to generate all needed functionality

on the fly the converter is able to acquire the needed

functionality by instantiating and configuring basic blocks

from the library. This leads to a reduction of complexity for

the transformation process.

To use these basic blocks for simulation purposes a matching

internal data structure is necessary to manage the control flow.

For example the internal data structure is used to store the

state of particles (active/inactive) and to provide an interface

for status information of the last simulated block, like arrival,

completion or service time.

6.1 Generating of function modules and

ports
Every non refined function of the eEPC gets transformed into

its own function module with the same name. In the following

step the interfaces of the function modules are determined.

Therefore on the input side of the function the control flow in

the eEPC will be traced back in opposite direction (upstream)

until it hits upon an event. In case a connector is met, all its

input flows are taken into account. The search will go on for

each branch of the eEPC until an event is met. Each upstream

event becomes an input port in the current function module.

The same procedure is done to identify downstream events,

except the control flow is followed in direction and in case

that a connector is met, all output flows are considered. All

found downstream events are transformed into output ports on

the current function module. Each port name is derived from

the corresponding event name (see Figure 5 and Figure 6).

6.2 Generating of connectors
Within the current function module all input ports get

connected by using synchronizing connectors according to the

connection structure of the corresponding events in the eEPC.

The same happens in analog manner for the branching

connectors on the output side. Connector primitives are

configured and named according to their semantics (XOR,

OR, AND) upon instantiation. Branching connectors use an

equal weighted distribution for branching decision in initial

(standard) configuration.

6.3 Generating of basic functionality and

of resource usage
As it was already defined function modules may consume

time or use resources as basic functionality. Therefore needed

basic blocks from the library are instantiated and linked.

Function modules always have a time consuming block

instantiated. In opposite to this blocks for resource usage are

only generated in case that at least one resource is assigned to

the current function in the eEPC (see Figure 6). Each basic

block that affects a resource must be linked to a shared

quantity resource. Therefore quantity resources with external

scope are generated and linked according to an associated data

object, participant or application element. Thereby an external

resource is not created as a concrete resource instance; it just

provides an interface for further linkage on the next higher

hierarchy level.

6.4 Generating of EPC modules and of

hierarchy
A refined function references to a single eEPC. Out of this, a

refined function is transformed in the same way as an eEPC.

Each eEPC diagram gets transformed into an EPC module.

Input- and output ports are generated according to the

respective start and end events in the eEPC. Within these EPC

modules the generated function modules get instantiated. The

module instances may use resources that require a proper

linking. Therefore external quantity resources are generated.

Linking always happens in regard to the resource name. Out

of this resources which are used by multiple function modules

are linked to the same external resource within the EPC

module.

Ports get connected regarding to their linkage within the

eEPC. In an EPC module, only ports representing the same

event get connected with the help of connector primitives.

Connection between different events can only occur on the

level of function modules.

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.9, October 2013

26

6.5 Generating of the top level system
To simulate a model within the MLDesigner it must be

instantiated within a “system model”. A system model in the

MLDesigner is a top-level model and consists of instantiated

primitives or modules. A system model does not have any

input/output ports and cannot be instantiated. Global

simulation parameters (e.g. seed for random number

generation, length of simulation run) or global resources can

be defined here [26].

Following this the converter generates a system model and

instantiates the top level EPC module. The module instances

may use resources that require a proper linking. Therefore all

required resources get instantiated. Needed resources are

identified by external resources of the EPC module. For each

used external resource an internal resource is generated with

standard parameter settings. Thereby an internal resource is a

concrete resource instance; it provides resource capacity

(standard capacity is one) and a waiting queue.

To use the generated model in a simulation, it is necessary to

connect a particle source. Therefore a particle source in line

with the current specifications and internal data structure was

implemented and added to the transformation library in

MLDesigner. While importing the eEPC, the source can be

instantiated with a standard parameter set of particles to be

emitted during simulation run (default parameterization is 1

particles every time step for 10 time steps). Connection points

for sources are defined by not connected input ports of EPC

modules after import of the eEPC into the simulation

environment. These connection points get connected

automatically with an instantiated source. To validate the

simulation model, e.g. that released particles do not get stuck

within a simulation run, particle sinks need to be connected.

Elements from the standard library of MLDesigner are

sufficient and can be connected to output ports of EPC

modules that are not connected after eEPC import.

By connecting particle sources and providing default

parameters the imported eEPC is now able to be executed.

6.6 Transformation on an example of an

Function-Module
In the following the transformation result is shown on an

example of a function module (see Figure 5 and Figure 6).

Event1 Event2

Event3 Event4

v

XOR

Function

Resource3

Resource1

Resource2

Figure 5: Example of a function with resource usage to

illustrate the transformation process

Upstream events (Event1, Event2) are transformed into input

ports (see left side of the function module in Figure 5) and

synchronized by a Sync primitive which is configured and

named as AND connector. After that the sub module

“SetArrivalTime“ is used to log the arrival time of the

incoming particles into the internal data structure. Then the

resource allocation is done by generating an allocation module

for each resource that is assigned for allocation to the

respective EPC function. For each resource in use, an external

resource is generated to allow a later linkage to the shared

global resource. Resource allocation may consume variable

amount of time for the different resources. To synchronize the

resources allocation a Sync primitive, which is configured and

named as AND, is used. As soon as all needed resources are

allocated, a service time is generated and the particle gets

delayed by module “DoService”. Also within this module

status information like service time and completion time are

logged into the internal data structure. Resources designated

by eEPC model to be deallocated, get deallocated by

generating “Free Resource” modules. The resulting particles

get synchronized for reason of flow control and meet the

generated connector and ports on the output side

corresponding to downstream events and connector structure

of the eEPC. The generated elements are placed automatically

according to an in advance defined raster layout.

6.7 EPML Coding and Converting
The described transformation process is done by a software

converter using XSLT (Version 2.0) style sheets based on our

met transformation rules. EPML was chosen as interchange

format for the eEPC diagrams. The XSLT instructions are

defined in regard to the EPML notations. EPML notations are

a result of an export of eEPC from the modeling Editor

(SemTalk). Selected EPML notations and their equivalence

within eEPC are described in the following.

An EPML file consists of collection of one or more eEPC

diagrams. Each diagram is defined within an <epc> tag and

has a unique identifier. Within the EPC tag all corresponding

elements and edges are stored.

In the scope of EPML we find <function> and <event> tags

for function and event of EPC. Control flow edges of EPC are

represented by <arc> tags. Connectors also have dedicated

tags <and>, <or> and <xor>.

For the elements participant, application and data object

which are used as resources, EPML tags <participant>,

<application> and <dataField> are provided. For association

of these eEPC elements the <relation> tag is used. Also

concatenation and composition are supported by EPML. The

following

Figure 7 shows the example of a directed resource usage

coded in EPML.

EPML in version 1.1 does not support directed associations.

Therefore SemTalk is using the name attribute to distinguish

between input and output relations.

The transformation is done by executing the designed XSLT-

style sheets with a XSLT-processor. Therefor SAXON XSLT-

processor (Saxonia Ltd.) is used. The XSLT converter is used

to transfer the EPML code into the simulation system. Our

approach is implemented in the MLDesigner, which is the

target simulation system for transformation. To achieve the

support of other target simulation systems by our converter,

the transformation rules are divided into two parts. All

functions related to accessing and selecting eEPC elements,

like for selection of input events are stored in a separate

library template. The simulation specific definitions are stored

within another XSLT template. Thus it is possible to easily

adapt the converter by just adding a new XSLT template with

necessary definitions regarding the new simulation system.

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.9, October 2013

27

Figure 6: Resulting function module in target the simulation system

<dataField id="4016" defRef="769">
 <name>Entitytyp.769</name>
 <description>Resource</description>

 <graphics>
 <position height="150" width="200" x="732" y="696" />
 </graphics>
 …
</dataField>

<relation id="4015" from="4006" to="4001" name="is Input for"/>

<relation id="4017" from="4007" to="4016" name="has Output"/>

Figure 7: Example of a directed resource usage in EPML

7. RESTRICTIONS AND

ADDITIONAL PROCESS DATA
First of all, an eEPC describes processes – in our paper these

are hospital processes, especially clinical pathways. Because

of that our transformation approach is limited to process

models. But, that is alright for process optimization and

validation purposes, as it is the aim for our further work.

Within our approach automatic model transformation is

limited by the powerfulness of the used modeling language.

Information, which cannot be described within the process

modeling language (eEPC), cannot be transformed into a

simulation model. The same applies to the used interchange

format (EPML).

EPC modeling allows only limited specifications of non-

refined functions. Functions are only defined by their shape

and their name within the EPC. Also refining functions do not

create functionality which is needed to execute a model. Even

resource usage within the eEPC, which is an elementary

scenario of executable process models, can only be handled

by creating a specific semantic for simulation, as it is shown

successfully in this paper.

Furthermore, the automatic transformation into an executable

model is limited by parameters needed for the simulation run,

e.g. capacity of a resource. Till now parameters within the

eEPC are not specified yet, to transfer them into the

simulation model. However, there are already some EPC

editors existing, e.g. SemTalk, ARIS Toolset. They allow

defining parameters within the EPC. Also EPML provides a

possibility for user defined attributes, which can be useful,

e.g. for parameters. But it should be asked whether parameters

are necessary at that point. The generated simulation model

may not have the final stage with regard to the simulation

aims. From this point of view an implementation of parameter

transfer is not done but seems to be possible for us. Within

our transformation approach the generated simulation model

uses default parameter sets for instantiated elements.

In many cases model transformation is the starting point for

further model building of complex systems. Our approach

ensures the possibility to connect a user specific central data

structure to the instantiated elements of the simulation model

without affecting the internal data structure. Therefore further

modules are added to the MLDesigner library.

8. VALIDATION AND

VERIFICATION OF THE MODEL

AND THE CONCEPT
Simulation experiments should deliver reliable results to help

decision making. Validation and verification are important to

ensure this. Validation means whether the model is

implemented correctly (also called technical validation). This

also covers whether the model is operating in the intended

manner - so that the eEPC is correctly transformed. The third

aspect is external validation of the simulation model - whether

the model correctly reflects the “real world” within the

defined limitations of the model. Verification means whether

the specification is met - if the implemented converter is

working correctly.

There are a lot of methods for validation and verification as

Page [27, pp. 145-155], Kosturiak & Gregor [28, pp. 123-125]

and Müller [29, pp. 181-203] have shown. It has to be

checked for each individual case which of the possibilities can

be used. There is no general accepted way or method.

Validation and verification can only be done by consideration

of the underlying modeling purpose or question of

investigation.

It is assumed, that eEPC modeling is done in line with

modeling rules, in Becker, Rosemann & Schütte [30]. Modern

modeling tools, as Microsoft Visio or SemTalk, support

correct modeling by implemented checking rules.

In the following used methods for validation and verification

for our model design and transforming approach are

described. In this paper an executable model is created out of

an eEPC. First of all it is the aim to transfer knowledge

automatically into the simulation environment in a

standardized way. At the moment there are no specific

simulation aims, which should be considered in the following

AND SetArrivalTime

Allocate

Resource3

Allocate

Resource2

AND DoService

Free

Resource3

Free

Resource2

AND XOR

Event4

Event3

Event2

Event1

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.9, October 2013

28

validation steps. To analyze specific questions the generated

simulation model can be manually expanded by a user. By

this the transformation result may change.

That means that there have to be two steps.

1. Validation and verification of transformation results

and the correct working of the converter.

2. Validation and verification of the further usability of

the generated simulation model by using it for a
specific simulation purpose.

First of all the transformation result is reviewed whether the

transformation rules are met, for example whether a non-

refined eEPC function is transformed into a function module

within the generated simulation model. After this it is

reviewed whether the structure and hierarchy buildup of the

generated simulation model is the same as it is in the eEPC.

Within this scope the completeness of all functions, logical

connectors and the usage of the same interconnections as in

the eEPC are checked. As mentioned, events are transformed

into ports. The next check is to find out whether all events are

transformed into ports within the simulation model.

After transformation a detail check is to be done for the

primitives representing logical connectors and the correct

resource usage. The connectors need to be checked regarding

their correct functionality and if the instantiation is in line

with the original eEPC. Therefore the instantiated sources

generate particles in a test run. The correct behavior of these

particles is checked by passing the connectors. So it is

possible to validate the right function and configuration of the

connectors. This way it can also be checked, whether all

particles pass the elements of the simulation model, whether

the internal data structure works and whether no particles get

stuck.

For validation and verification purposes a complex hospital

process of a patient’s stay, documented as eEPC, is used and

transformed into an executable model. This process of a

cardiologic department of a university hospital consists of e.g.

admission of patient, several diagnosis procedures, treatment

for example in a heart catheter lab, processes on cardiologic

wards and discharge.

Based on these steps it was detected, that loops within the

eEPC lead to a problem with particle synchronization of XOR

and OR connectors at the incoming feedback branch, which

was fixed manually. For example in the case that a connector

has two input ports, one of it is a feedback branch, the

operation mode of the connector is switched to merge. That

means that incoming active particles will just pass instead of

waiting for particles on all input ports. Inactive particles on

the feedback branch will be destroyed. The problem is to

identify feedback loops on transformation run, to perform the

necessary adaption. This will need further consideration to

resolve this issue automatically during the transformation

process. No further faults were found.

Ongoing, the automatic generated simulation model will be

used for a cardiologic department of a university hospital, to

optimize the scheduling and sequencing of patients within the

department, to reduce waiting time and length of stay.

Therefore the created simulation model will be extended

focused on this simulation aim. Based on real data (historical

data), collected within the university hospital, a further

(external) validation will be done. This will also show,

whether the automatic generated simulation model is suitable

to build up specific executable specifications as it is intended.

9. PROPOSAL FOR A

SIMULATION SPECIFIC

EXTENTIONS WITHIN eEPC AND

EPML
The alternative usage of some elements (data object,

participant, application) for modeling resources is only

possible in case that these elements are not used within our

modeling approach as originally intended. For example it is

intended to model a data flow with the help of a data object,

e.g. input and output of data during the process flow.

For further modification and development of modeling

language scope of eEPC and EPML it would be desirable to

have separate elements for resource usage, e.g. resource usage

in only one function or the usage over wider sections with

possibilities to model allocation and deallocation points.

Function

Function

Function

Resource

Resource

Resource

Variant 1

Variant 2

Figure 8: Use cases for a proposed resource element in

eEPC (usage, allocation, deallocation)

Figure 8 shows a possible graphical realization of a proposed

resource element for the mentioned two variants. The element

may be connected to non-refined functions in directed or

undirected fashion, this allows the allocation for just one

function (variant 1) or over wider model sections that consist

of multiple eEPC elements (variant 2). In EPML this proposal

could lead to the introduction of a new “resource” eEPC

element tag. Attributes and sub elements remain the same as

for already existing tags (e.g. function, event). For

interconnection possible relation types of the arc tag could be

extended by “allocate”, “deallocate” and “uses”. This allows

to model directed and undirected resource access. Resources

are often shared among multiple eEPCs residing in the same

EPML directory. To establish a proper link between these

resource instances it is necessary to use unique identifiers

throughout the model. So linked resources either need to have

the same name or alternatively need to reference the same

resource definition. As well the definition tag gets a new type

value “resource”. An example of these proposed extensions to

EPML can be seen in Figure 9. The modifications of this

example are consistent to EPML version 2.0.

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.9, October 2013

29

<definitions>

 <definition defId="1002" type="resource">

 <name>Resource</name>

 <description>Resource

 description</description>

 </definition>

</definitions>

…

<directory name="Root">

 <epc epcId="4" name="EPC 1">

 <function id="1">

 <name>Function</name>

 <description>Function

 description</description>

 …

 </function>

 <resource id="2" defRef="1002">

 <name>Resource</name>

 …

 <resource>

 <arc id="3">

 <relation source="1" target="2"

 type="allocate|deallocate|uses"/>

 …

 </arc>

Figure 9: Integration of proposed resource element in EPML

10. SUMMARY AND OUTLOOK
On an example of hospital processes it was shown how an

executable simulation model can be built up automatically out

of extended event driven process chains (eEPC).

It was shown, that eEPC are suitable to model hospital

processes (e.g. treatment path) and can be transformed into a

model within a simulation environment. Therefore we defined

the needed semantic. To make the eEPC model able to

execute in a simulation run, functionality (e.g. resource usage,

control flow management) is needed. We have shown how

this can be added to an eEPC process model during

transformation run.

In Detail a converter was developed to import eEPC models

into a simulation environment (MLDesigner). As interchange

format event driven process markup language (EPML) was

used. Transformation rules were defined in XSLT. Based on

the template structure of our style sheet design it is possible to

easily adapt the converter according to the target simulation

tool.

As shown the standard definitions of EPC were not sufficient

to model additional requirements like resource usage.

Therefore the unspecified extended EPC was used but is also

not sufficient. For the moment we use the eEPC elements data

object, participant and application as resource identifiers. We

suggest an extension of eEPC/EPML notations for simulation

purpose.

We have also shown that loops within the eEPC lead to a

problem with particle synchronization of XOR and OR

connectors at the incoming feedback branch. This needs

further consideration on automatic transformation.

In our further work, the approach described here will be used

to generate an executable model that will be extended to allow

optimization with regard to scheduling and sequencing of

patients within the cardiologic department of a university

hospital. This will show whether our approach is also feasible

to build up simulation models with specific simulation aims

out of the transformation results.

Furthermore, we have a positive attitude towards the usage of

standardized building blocks, which were developed in

Salzwedel et al. (2007). These building blocks must be

extended by our met EPC requirements and be filled up with

functionality. Following this, standardized building blocks can

be instantiated during the transformation process of eEPC

models. This will lead to a higher level of automation, less

manual adjustments and therefore faster buildup of executable

specification.

11. REFERENCES
[1] Schienmann, B. 2002. Kontinuierliches Anforderungs

management: Prozesse- Techniken- Werkzeuge.

München, Germany: Addison-Wesley.

[2] Davis, A. M. 1993. Software Requirements: Objects,

Function and States. Prentice Hall, Englewood Cliffs,

N.J. USA.

[3] Salzwedel, H., Fischer, N., & Schorcht, G. 2009. Moving

Design Automation of Networked Systems to Early

Vehicle Level Design Stages. SAE World Congress.

April 20-23. Detroit, Michigan, USA, http://www.tu-

ilmenau.de/fileadmin/public/sse/Veroeffentlichungen/20

09/SAE2009-H.Salzwedel.pdf.

[4] Helm, E. J., & van Oyen, M. P. 2011. Design and

Optimization Methods for Elective Hospital Admissions.

Paper presented at 2011 MSOM Annual Conference.

June 26-28. Ann Arbor, Michigan, USA,

http://sitemaker.umich.edu/jhelm/files/helm_vanoyen-

elective_adm_sched.pdf.

International Journal of Computer Applications (0975 – 8887)

Volume 80 – No.9, October 2013

30

[5] Hutzschenreuter, A. K., Bosman, P. A. N., & La Poutré,

H. 2008. Enhanced hospital resource management using

anticipatory policies in online dynamic multi-objective

optimization. In: Pelikan, M., & Branke, J. (Ed.):

Proceedings of 7th International Joint Conference on

Autonomous Agents and Multiagent Systems, May 12-

16, Estoril, Portugal, pp. 45-52.

[6] Kühn, M., Baumann, T., & Salzwedel, H. 2012. Genetic

algorithm for process optimization in hospitals. In:

Troitzsch, K. G., Möhring, M., & Lotzmann, U. (Ed.),

Proceedings of 26th European Conference on Modeling

and Simulation, May 29th - June 1st, Koblenz, Germany,

pp. 103-107.

[7] Salzwedel, H., Richter, F., & Kühn, M. 2007.

Standardized Modeling and Simulation of Hospital

Processes - Optimization of Cancer Treatment Center. In:

Proceedings of the International Conference on Health

Sciences Simulation. January 14.-18. San Diego,

California. http://www.tu-

ilmenau.de/fileadmin/public/sse/Veroeffentlichungen/20

07/Hospital%20Optimization%20HSS%202007.pdf.

[8] Object Management Group Inc. 2013, The Architecture

of Choice for a Changing World: OMG Model Driven

Architecture, http://www.omg.org/mda/ accessed 6

January 2013.

[9] Willink, E. D. 2003. UMLX : A graphical transformation

language for MDA. Workshop on Model Driven

Architecture Foundations and Applications, 4 September

2003. University of Twente, Netherlands.

[10] Varró, D., Varró, G., & Pataricza, A. 2002, Designing

the automatic transformation of visual languages. In:

Science of Computer Programming 44 (2): 205–227.

[11] Kalnins, A., Barzdins, J., & Celms, E. 2004. Model

Transformation Language MOLA. In: Proceedings of

MDAFA Model-Driven Architecture: Foundations and

Applications. Linkoeping, Sweden, pp. 14-28.

[12] Agrawal, A., Karsai, G., & Shi, F. 2003. Graph

Transformations on Domain-Specific Models. In

Proceeding of OOPSLA '03 Companion of the 18th

annual ACM SIGPLAN conference on Object-oriented

programming, systems, languages, and applications,

October 26 – 30. Anaheim, CA, USA, pp. 386-387.

[13] Petsch, M., Schorcht, H., Nissen, V., & Himmelreich, K.

2008. Ein Transformationsmodell zur Überführung von

Prozessmodellen in eine Simulationsumgebung:

Modellierung betrieblicher Informationssysteme. Ges.

für Informatik: Bonn, pp. 209–219.

[14] Kloos, O., & Nissen, V. 2010. Vom Prozess zur

Simulation - ein Transformationsmodell-Ansatz. In:

Claus, T., & Herrmann, F. (Ed.): Proceedings of

Workshops „Simulation als betriebliche

Entscheidungshilfe“, 14. ASIM-Fachtagung „Simulation

in Produktion und Logistik“, Karlsruhe, Germany, pp.

105-119.

[15] Ammon, D. 2006. Konzipierung und Realisierung einer

Software zum Import von ARIS-Modellen in

MLDesigner (2006-06-01/077/IN00/2222). Germany,

Ilmenau: Technical University of Ilmenau.

[16] Eiff von, W. 2001. Geschäftsprozeßmanagement:

Methoden und Techniken für das Management von

Leistungsprozessen im Krankenhaus. Gütersloh,

Germany: Verl. Bertelsmann-Stiftung.

[17] Wenzlaff, P. 2006. Glossar zum Prozessmanagement im

Gesundheitswesen und zu Integrierten

Behandlungspfaden: Praxishandbuch Integrierte

Behandlungspfade. Heidelberg, Germany: Economica.

[18] Keller, G., Nüttgens, M., & Scheer, A.-W. 1992.

Semantische Prozeßmodellierung auf der Grundlage

"Ereignisgesteuerter Prozeßketten (EPK)". Inst. für

Wirtschaftsinformatik, Univ. Saarbrücken, Germany.

[19] Mendling, J. & Nüttgens, M. 2003. XML-basierte

Geschäftsprozessmodellierung. In: Uhr, W., Schoop, E.,

& Esswein, W. (Ed.), Proceedings der 6. Internationalen

Tagung Wirtschaftsinformatik: Medien - Märkte –

Mobilität, Heidelberg, Germany: Physica, pp. 161-180.

[20] Mendling, J., & Nüttgens, M. 2005. EPC Markup

Language (EPML) - An XML-Based Interchange Format

for Event-DrivenProcess Chains (EPC). Technical

Report. Wien, Austria.

[21] Mendling, J., & Nüttgens, M. 2004. Exchanging EPC

Business Process Models with EPML, In: Nüttgens, M.,

& Mendling, J. (Ed.), Proceedings of the 1st GI

Workshop XML4BPM - XML Interchange Formats for

Business Process Management, Marburg, Germany, pp.

61-79.

[22] Helbing, D. 2008. Konzeption und Realisierung eines

Konverters zur Übertragung von MoBimeP-Strukturen

als Referenzen für MLDesigner-Modelle. Germany,

Ilmenau: Technical University of Ilmenau.

[23] SemTalk GmbH 2012. Tutorial SemTalk Version 4.0:

EPK Edition. http://www.semtalk.com/pub/tutsem40

epcg.pdf, accessed 4 April 2012

[24] Rittgen, P. 2000. Quo vadis EPK in ARIS? - Ansätze zu

syntaktischen Erweiterungen und einer formalen

Semantik. In: König, W., Mertens, P., Hasenkamp, & U.

et al. (Ed.), Wirtschaftsinformatik 42 (1): 27-35.

[25] Sarshar, K., Dominitzki, P., & Loos P 2005. Einsatz von

Ereignisgesteuerten Prozessketten zur Modellierung von

Prozessen in der Krankenhausdomäne. In: Nüttgens, M.,

& Rump, F. J. (Ed.), Geschäftsprozessmanagement mit

Ereignisgesteuerten Prozessketten. In:Proceedings 4. GI-

Workshop und –Arbeitskreistreffen 167, pp. 97-116.

[26] Mission Level Design Inc. 2012. User’s Manual ML

Designer version 2.8., http://www.mldesigner.com/

fileadmin/assets/MLDesigner/Manual/manual.pdf,

accessed 18 December 2012.

[27] Page, B. 1991. Diskrete Simulation: Eine Einführung mit

Modula-2. Berlin, Germany.

[28] Kosturiak, J., & Gregor, M. 1995. Simulation von

Produktionssystemen. Wien, Austria: Springer.

[29] Müller, J.-A. 1998. Simulation ökonomischer Prozesse.

Wien, Austria.

[30] Becker, J., Rosemann, M., & Schütte, R. (1995).

Grundsätze ordnungsmäßiger Modellierung. In

Wirtschaftsinformatik 37 (5): 435-445

