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ABSTRACT 
Nowadays the main challenge is to obtain a method for the 

estimation of key reservoir parameters with the lowest 

possible estimation error. Accurate reservoir characterization 

requires the integration of core and log data to understand the 

variation in hydraulic properties such as porosity, 

permeability and capillary pressure. Time-lapse seismic can 

be used as an important tool in reservoir characterization, 

monitoring and management. Reservoir parameters are 

converted to seismic parameters by using the rock physics 

models. This paper presents an analysis and explanation of an 

approach of developing rock physics model, and explains how 

the input data can be obtained to the model. And also this 

study presents an intelligence approach for the oil reservoir 

characterization by using seismic elastic properties and rock 

physics model together with minimum estimation error. 
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1. INTRODUCTION 

In time-lapse or “4D” seismic projects, the objective is to 

infer fluid production from two or more seismic surveys 

recorded at different times in the reservoirs production life 

cycle. Rock physics modeling allows us to make these “time 

shifts” by changing saturation, pore pressure, and even 

porosity in the key reservoir intervals. Estimation of 

permeability and porosity using seismic data is a new 

challenge in the oil industry. Porosity and permeability are 

two of the most important parameters in most reservoir 

simulation models, and they have a large impact on reserve 

estimates, production forecasts and the economical evaluation 

of the reservoirs.  

The process of oil or gas production causes variations in 

reservoir parameters such as fluid types, fluid saturation, 

pressure, temperature and viscosity, and thus changes seismic 

properties of saturated reservoir rock [1]. Converting 

saturations and pressure changes into seismic properties such 

as P-wave velocity, S-wave velocity and density changes 

requires information about the rock properties. The 

dependence between fluid saturation changes and the seismic 

parameters are described by rock physics models (RPMs). 

Once these rock physics relationships are established for a 

given reservoir rock, the seismic forward modeling can be 

done. That means converting a given pressure and fluid 

saturation state for a given reservoir rock into a seismic 

section. Moreover, this procedure acts as a bridge that relates 

seismic parameter changes to reservoir parameter changes and 

vice versa. This means that rock physics is a key element in 

such a process. Several theories and empirical relations link 

seismic properties of reservoir rock to pore spaces, pore 

fluids, effective pressure and other reservoir parameters. For 

the developing of RPMs, elastic moduli and densities of fluid, 

grain and dry rock are input data and they can be computed 

using empirical or theoretical relations. Even relations from 

laboratory measurements of core samples are important in 

developing of RPMs, empirical relations work only for 

specific situations and theoretical models have limitations due 

to their assumptions [2]. This paper makes an analysis on 

method of constructing Duffy-Mindlin’s model for saturated 

reservoir rock and gives a brief introduction to the model. 

This work aims at improving previous studies and presenting 

a robust, general and mathematically sound methodology for 

reservoir characterization. Our approach contains two new 

elements compared to the previous works: 

− The use of rock physics models, 

− The use of artificial intelligence for estimations. 

In this paper we present an intelligence method for a joint 

estimation of porosity and permeability, which is generated by 

using field data from an oil field in Norway and using the rock 

physics models. 

2. ROCK PHYSIC MODELS 

A saturated porous reservoir rock contains of rock matrix and 

fluid, which can be considered as solid and fluid phases, 

respectively; when the pore has no fluid, the porous rock can 

be named as dry rock. Oil production from a reservoir makes 

alterations in fluid phase, while almost no changes in solid 

phase. Seismic wave velocities in a porous medium saturated 

with water depend on three constants, namely the bulk 

modulus (K), shear modulus (μ) and density (ρ). The bulk 

modulus or incompressibility of an isotropic rock is explained 

as the ratio of hydrostatic stress to volumetric strain. In other 

words, it knows us how difficult it is to compress the rock. 

The shear modulus or shear stiffness of the rock is explained 

as the ratio of shear stress to shear strain and in other words, 

how difficult it is to alter the shape of a rock sample. Han and 
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Batzle (2004) have indicated that the bulk modulus of dry and 

water-saturated rocks, which are symbolized as Kd and Kw, 

respectively, are more sensitive to the saturation of water than 

the P-wave velocity (Vp) under the same condition of 

pressure, further, the alteration in water saturation has little 

influences on the shear modulus since the shear modulus of 

fluid (μf) is zero. Since bulk modulus K is the most sensitive 

to the fluid saturation [2], Gassmann’s model [3] calculates Vp 

and Vs of saturated rock by calculating K together with μ and 

ρ for saturated reservoir rocks, which are Ks, μs and ρs, 

respectively, in order to effectively reflect effects of fluid 

substitution. Duffy-Mindlin’s model [4] believes VP and VS as 

functions of not only ρs, Kf, Kgr, μf, and μgr but also Young 

modulus (E) and Poison ratio (γ ). However, since E and γ are 

explained as functions of Kd and μd, all parameters that are 

necessary for the construction of RPM in Duffy-Mindlin 

model are the same with Gassmann’s equation. Duffy and 

Mindlin [4][5] assumed array of identical spheres as a face-

centered cubic to calculate Young modulus (E) and Poison 

ratio (γ ) as:  
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Where Kd is bulk modulus of dry rock, and μd is shear 

modulus of dry rock. Derives seismic velocities as a function 

of E and γ, effective pressure (Pe) and base parameters as: 
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Where Ks is bulk modulus of saturated rock, ρd is density of 

dry rock,   is the effective porosity of the medium, Kf is 

bulk modulus of pore fluid that is calculated by using Wood’s 

relation [6]: 
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Where Ko, Kg and Kw are bulk modulus of oil, gas and water 

respectively. And C11 and C12 are obtained, respectively, as: 
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The bulk modulus of saturated rock can be calculated by using 

Gassmann’s equation. It can be shown as the following 

equation [7]: 
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Where Kfr is the bulk modulus of the solid frame work,   is 

the effective porosity of the medium, Kf is bulk modulus of 

pore fluid that is determined by using Wood’s relation. Duffy-

Mindlin’s model consists of most important effects such as 

porosity, lithology, and mechanical compaction and also for 

fluid because of presence of fluid bulk modulus, Kf. 

Furthermore, the model considers the presence and variations 

of effective pressure, Pe. Hence, in the presence of shale 

compaction, the model must be employed even though the 

model is more complex than Gassmann’s equation. The 

advantages & disadvantages of Duffy-Mindlin’s model are 

presented in Table1. 

There are two ways of empirical relations and theoretical 

models for calculating μd and Kd. empirical relation can be 

best if we can obtain the values of Kd and μd from laboratory 

measurements of core samples. However, since core 

measurements are not always valid, we often calculate Kd and 

μd by using empirical relations such as Geertsma and Smith 

[8]. Here is the empirical relation that investigates the relation 

of dry moduli, grain moduli, porosity:  
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Where Ad is either Kd or μd and   is porosity.  

Theoretical models which compute the effective elastic 

moduli based on assumptions of contact surfaces between 

grains such as Hertz-Mindlin [9]. The Hertz–Mindlin model is 

employed to explain seismic parameter alterations due to 

pressure changes. The model presents [10]:  
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Where Pe is the effective pressure, μ is the shear modulus of 

the solid phase, γ is poisson’s ratio and n is the coordination 

number. In the original Hertz-Mindlin theory n is identical to 

3. Some laboratory measurements of samples proposed a 

larger number for n. Vidal [11] discovered n = 5.6 for P-

waves and n = 3.8 for shear waves for gas sands, while 

Landrø [12] employed n = 5 for oil sands. We use n = 5 in this 

study. C is the average number of contact points between the 

grains in a volume fraction, related with sorting, shape and 

packing of the grains, and porosity [13]. It is explained as:  

220 34 14C    
                                         

(13) 

The effective pressure employed in Hertz–Mindlin theory is 

considered as the difference between the lithostatic Pext and 

the hydrostatic pressure P [14]: 

e extP P P 
                                                   

(14) 



International Journal of Computer Applications (0975 – 8887)  

Volume 80 – No.8, October 2013 

21 

Where η is the coefficient of internal deformation that is 

commonly an unknown parameter. Table 2 presents the 

seismic elastic parameters of Norne oil field for this study. 

3. CASE DESCRIPTION  

The field to be studied is an oil reservoir in the Norne field. It 

is located in the blocks 6608/10 and 6508/10 on a horst block 

in the southern part of the Nordland II area in the Norwegian 

Sea. The rocks within the Norne reservoir are of late Triassic 

to middle Jurassic age. It was discovered in 1991, and oil 

production started in 1997. The Norne Field contains two 

separate oil compartments, the Norne Main Structure, Norne 

C-, D and E-segment, and the Northeast segment, Norne G-

segment. In this study we use the Norne E-segment data 

(Figure 1). The present geological model contains five 

reservoir zones. They are Garn, Not, Ile, Tofte and Tilje. Oil 

is principally found in the Ile and Tofte Formations, and gas 

in the Garn formation. The sandstones are buried at a depth of 

2500-2700 m. The porosity is in the range of 25-30 %, while 

permeability changes from 20 to 2500 mD [15]. 

4. PROPOSED METHODOLOGY 

4.1 GENETIC ALGORITHM 

The first step in GA method, like any other optimization 

algorithms is clarifying the objective function and its decision 

variables. Basic components of genetic algorithm are gene, 

chromosome and population. Genetic algorithm operates on a 

finite set of chromosomes (points) which are named 

population. The different populations are explained as gens. 

Population size, mutation probability and crossover 

probability are the control parameters that are used in genetic 

algorithm. Genetic algorithms are generally executed as 

follows: 

1- Explain the problem as an objective function that shows 

the fitness, fi, of each candidate solution, αi, that is 

named chromosome. 

2- Randomly initialize a population created by a certain 

number of chromosomes, with each chromosome 

representing a candidate solution to the problem. 

3- Assign each chromosome a fitness score in accord with 

to the objective function. If the chromosome population 

satiates the convergence tolerance, it is selected as the 

solution to the optimization problem. If not, the 

following steps are taken. 

4- Produce a mating pool of the chromosomes from the 

existing population. 

5- Create offsprings from the chromosomes in the mating 

pool by means of a crossover operator. 

6- Change some of the chromosomes by the mutation 

operator. 

7- Go back to step 3. 

Figure 2 indicates general Genetic algorithm scheme. Genetic 

algorithm is applicable for optimizing the design parameters 

formed into a corporation into a specified fitness function to 

achieve a goal fitness quantity. The key characteristic of 

genetic algorithms and other similar algorithms is that they 

are derivative-free. In fact, the stochastic nature of the 

algorithm with dynamic evaluation of the fitness function 

changes it into a powerful systematic random search engine. 

This approach is an alternative to incapable derivative-based 

methods. This extends its ability to a wide range of 

applications. Recently this approach has been employed to 

many different optimization problems including non-linear 

geophysical inversion [16].  

4.2 MULTI AND SINGLE OBJECTIVE 

OPTIMIZATION 

In single objective optimization we take into account 

minimizing or maximizing only one objective, without 

considering the effect of other criteria. Multi-objective 

optimization is delineated as the task of finding one or more 

optimum solutions when a problem contains more than one 

objective or goal. Unlike single objective that handles a single 

space (decision variable space), in multi-objective 

optimization, a new space is also taken into account which is 

named the objective function space. In a multi-objective 

optimization problem, the decision vector is symbolized by x 

and the decision space is shown by X. Similarly, the objective 

vector is symbolized by y and Y represents the objective 

space. The multi-objective optimization, in general form, can 

be explained as: 

Maximize/Minimize fm(x),            m = 1,2,3, … , M 

Subject to    gl(x)   0                     l = 1,2,3, … , L            (15) 

Ht = 0                                             t = 1,2,3, ... , T 

Where solution x is a decision vector of n variables, x = (x1, 

x2, … ,xn). M is the number of objective functions in the 

problem which can be minimized or maximized: f(x) = (f1(x), 

f2(x), … ,fM(x)). The multi-objective optimization problem 

also may have constraint functions (gl(x) and Ht) which 

compute the set of feasible solutions. In any single objective 

optimization, the optimal solution is the one that presents 

maximum (or minimum) value of the objective function. 

However, in the context of a multi-objective optimization, the 

notion of optimality is different and we are curious in finding 

good compromises among the objectives that we hope to 

optimize. 

Although multi-objective optimization algorithms have been 

widely employed in some engineering problems, their 

applications to petroleum engineering problems are still 

limited. Traditionally the oil industry employs some form of 

weighted sum approach for handling multiple objectives 

without considering the limits of this approach.  Dal Moro and 

Pipan [17] employed multi-objective evolutionary algorithm 

for the joint inversion of seismic surface wave dispersion 

curves and reflection travel times. Boomer and Brazier [18] 

also suggested a new method to achieve velocity models from 

inversion of seismic data based on a non-dominated sorting 

genetic algorithm.  

In this paper we use the multi-objective optimization and 

Genetic Algorithm for reservoir characterization with 

minimum errors by using seismic elastic properties.  

5. RESULTS AND DISCUSSIONS   

Two different rock physic models have been modified to 

determine bulk modulus of dry rock, namely Geertsma and 

Hertz-Mindlin models. The models have been modified by 

defining a set of coefficients to be adjusted by Genetic 

Algorithm (GA) optimization. 

Multi-objective GA has been used to estimate the optimal 

coefficients so that Vp, Vs and ρs are estimated by the 
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Geertsma and Hertz-Mindlin models as close to 

measurements as possible. Measurements are presented in 

Table 2. Estimated values are shown in Table 3 and associated 

errors in Table 4. According to the results, the modified 

Hertz-Mindlin model is a considerably more accurate 

predictor, compared with the modified Geertsma model. For 

each run of Genetic Algorithm, Porosity and permeability of 

each formation were calculated using the Duffy-Mindlin’s 

model and Hertz-Mindlin model, respectively presented in 

Tables 5 and 6. Corresponding horizontal permeability 

realizations were created by empirical porosity permeability 

relations that are presented in Table 7, and Table 8 illustrates 

the current reservoir zonation which is used in the simulation 

model [19]. 

6. CONCLUSION 

Rock physics models explain crucial relations between 

reservoir parameters and seismic properties of reservoir rock 

and they are very important not only for a time-lapse seismic 

project but also for the reservoir characterization of one 

reservoir. In this work it was proved that the Duffy-Mindlin’s 

model works properly at porous reservoir, especially in case 

of presence of shale compaction In the case, we need to use 

not only empirical relations for constructing rock physics 

model but also a contact theoretical model for the calculation 

of dry moduli. Geertsma’s empirical relation is often used due 

to its consistency to Duffy-Mindlin’s model. Among 

theoretical models, Hertz-Mindlin’s theoretical model is the 

most popular one, since the other theoretical models are based 

on the model of Hertz- Mindlin. This paper has shown the 

modified Hertz-Mindlin model is a considerably more 

accurate predictor, compared with the modified Geertsma 

model, and it is more suitable for calculation of dry moduli. 

Also it is proved that Genetic Algorithms are a feasible 

technique for generating reservoir characterization using time-

lapse seismic data. The method is capable of handling many 

parameters, which is critical when dealing with large full-field 

reservoir simulation models. This paper has proved the 

application of a Genetic Algorithm to a realistic case, with 

respect to main issues of model’s formulations for the 

reservoir characterizations. 
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8. NOMENCLATURE 

K: Bulk modulus  

Kd: Bulk modulus of dry rock 

Kw: Bulk modulus of water-saturated rock 

Ks: Bulk modulus of saturated rock 

Kfr: Bulk modulus of the solid framework 

Kf: Bulk modulus of pore fluid 

Ko: Bulk modulus of oil 

Kg: Bulk modulus of gas 

Kw: Bulk modulus of water 

Vp: P-wave velocity 

Vs: S-wave velocity 

μ: Shear modulus 

μf: Shear modulus of pore fluid 

μs: Shear modulus of saturated rock 

μd: Shear modulus of dry rock 

ρ: Density 

ρd: Density of dry rock 

Sw: Water saturation 

Sg: Gas saturation 

Pe: Effective pressure 

So: Oil saturation 

 : Porosity 

γ: Poisson’s ratio 

Pext: Lithostatic pressure 

P: Hydrostatic pressure 

E: Young modulus 

 

Table 1. Advantages & Disadvantages for Duffy-Mindlin’s 

model 

Advantages Disadvantages 

Suitable for porous reservoir, 

especially in the case of presence 

of shale compaction 

 

Fairly complex 

calculations 

Take into account almost effects 

of reservoir parameters on 

seismic responses 

Essentially need to 

obtain dry modulus 

The estimation of the effects of 

fluid substitution would be well 

to make comparison between 

production stages 

--------------- 
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Table 2. Seismic elastic parameters from Norne oil field [20] 

Overburden 

Vp 

Vs 

ρs 

3350 

1800 

2450 

Inside reservoir 

Vp 

Vs 

ρ s 

3200 

1600 

2300 

Under reservoir 

Vp 

Vs 

ρ s 

3500 

1900 

2450 

Garn formation 

Kfr 

μfr 

Kma 

ρma 

19 - 37  

12 - 21.5  

37  GPa 

2650 kg/m3 

Ile, Tilje, Tofte 

formations 

Kfr 

μfr 

Kma 

ρma 

18.5 - 27.5  

11 - 13  

37  GPa 

2650 kg/m3 

Bulk modulus of oil 

Bulk modulus of gas 

Bulk modulus of water 

Water density 

Gas density 

Oil density 

Salinity 

Ko 

Kg 

Kw 

ρw 

ρg 

ρo 

SAL 

1 GPa 

0.1 GPa 

2.7 GPa 

1000 kg/m3 

190 kg/m3 

860 kg/m3 

0.05 ppm 

 

Table 3. Estimated values of Vp, Vs and ρs by the modified models 

Geertsma Model VP Vs ρs Hertz-Mindlin Model Vp Vs ρs 

Overburden 2713 2646 1813 Overburden 3149 1926 2254 

Inside reservoir 2528 2416 1794 Inside reservoir 3072 1696 2093 

Under reservoir 2905 2831 1862 Under reservoir 3290 1995 2327 

 

Table 4. Estimation errors of the modified models in percent 

Geertsma Model VP Vs ρs Hertz-Mindlin Model Vp Vs ρs 

Overburden 19 47 26 Overburden 6 7 8 

Inside reservoir 21 51 22 Inside reservoir 4 6 9 

Under reservoir 17 49 24 Under reservoir 6 5 5 
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Table 5. The calculated porosity distribution of formations 

Formations Porosity 

Garn formation 0.23 ≤    ≤ 0.34 

Ile and Tofte formation 0.19 ≤   ≤ 0.31 

Tilje formation 0.18 ≤   ≤ 0.29 

 

Table 6. The calculated permeability distribution of 

formations (mD) 

Formations Permeability 

Garn formation 36 ≤ K ≤ 1243 

Ile and Tofte formation 24 ≤ K ≤ 1996 

Tilje formation 51 ≤ K ≤ 2231 

 

Table 7. Porosity-Permeability relations for each layer 

 

 

 

 

 

Table 8. Reservoir zonation from the simulation model 

 

 

Figure 1. Top view of Norne field showing E-segment used 

in this study 

 

 

 

 

Layer number Relation 

1 Log10(K) = 7.2  + 0.6 

2 Log10(K) = 31.4 -3 

3 Log10(K) = 23.5 -4 

5,6 Log10(K) = 16.8 -2 

7,8 Log10(K) = 18.2 -2.5 

9 Log10(K) = 22.5 -3.3 

10 Log10(K) = 13.96 -0.85 

11 Log10(K) = 17.1 -2.1 

12 Log10(K) = 17.3 -2.11 

13 Log10(K) = 13.3 -0.9 

14 Log10(K) = 20.32  + 3 

15 Log10(K) = 15.83 -1.9 

16 Log10(K) = 12.7 -0.24 

17 Log10(K) = 19 -1.95 

18 Log10(K) = 14.1 -0.87 

19 Log10(K) = 21.7 -2.07 

20 Log10(K) = 15.1 -1.09 

21,22 Log10(K) = 23.98 -2.6 

Layer number Formation name 

1,2,3 Garn 

5,6,7,8,9,10,11 Ile 

12,13,14,15,16,17,18 Tofte 

19,20,21,22 Tilje 
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Figure 2. Schematic diagram of Genetic Algorithm 
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